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Abstract 

It is well-known that there is no Hamiltonian mechanicsm to describe a dissipative system either in Classical or 
Quantum mechanics. Probabilistic models are introduced to describe the effect of the environment that leads to dissi- 
pation. It is argued in the context of such models that one is forced to use non-commutative stochastic processes to 
give a satisfactory description. 

Most of us are farnilias with the standard theories in classical and Quantum Mechanics which 
are primarily designed to deal with a conservative Hesmiltonian system. Non-conservative or 
dissipative systems have also been dealt with in literature', though in a somewhat phenomenol- 
ogical spirit. From a physical point of view, it is clear that dissipative motion of a system must 
result from its interaction with its environment (or heat-bath), the dynamics of which we may 
not be interested in. But if we look at the total system viz. the system and its environment, the 
dynamics is again expected to be cor~servative. In other words, the dissipative motion is be- 
lieved to be the direct consequence of our inability to observe or of the lack of interest in the 
motion of the total system. Here we first briefly study a classical stochastic model for the 
damped harmonic oscillator and then the quantum stochastic theory of dissipative system under 
the influence of a potential. 

If we choose the constants like the mass of the particle and the spring constant suitably, then the 
equation of   notion of interest here is: 

where a > 0 is the friction coefficient and v is the frequency of the oscillator. We rewrite (I) as 

a pair of first order equations in analogy with the Hamilton's equation (with 8 = $ - ol? > 0): 

a more symmetric version of which is 

*Text of invited lecture at the Annual Faculty Meeting of the JNCASR at Bangalore on November 15, 1996. 
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where we have set .Y = r and .F = iTip. Clearly equations (2) or (2') cannot be obtained 2s 

Hamiltonizn equation for the pair (s, p )  or jY,p") for any real Harniltonian. Also note that if we 

sohie any of these equations and compute the Poisson bracket between s(t) and p(t) .  we ger 

{s(f). p(r)) = -e-'"I even though (~(0). p(0))  = -1. 

Next we want to consider a model of evolution where the particle is coupled to classicai 

Brownian motion d 1 )  representing the environment in which the particle moves. EI? terms of the 
variables (.Y,F) this is given by the stochastic differential equations. 

d( = A@ i i(',a)''"!~~dw. 

This matrix equation (3') can be explicitly solved: 

I Two conclusions are immediate from (4) and (4') (i) (x(t), ~ ( 1 ) )  = {x(O) ,  p(0) )  = -1. for ail r and 

almost all co. In fact, we see from (4') that (~(0). p(0))  H (~( t ) ,  p(r))  is a symplectic flow. (ii) If 

we denote by (.) the expectation w.r.t. the Brownian motion, then we get from ( 3 )  that 
d i p )  - = - a ( x )  + (p).y = - a ( p )  - 6'(x) which is identical to (2). Thus the expectation of the ob- 

servable~, in which all the effects of the environemnt is washed out, satisfy exactly the equation 
of motion of the damped harmonic oscillator though the total evolution of the same sets of ob- 
servable~ in interaction with its environment remains symplectic. 

For a system whose conservative version is governed by a more general Namiltonian 
H = iP2 T V ( X ) ,  the same procedure leads to some difficulties. Were the equations (1) and ( 2 )  

are replaced respectively by 

d".x rls 
--7 + ?,a - + V'(x) = 0 and 
dl- dl 

One may try to include the extra term d x  in (6) in the Harniitonian by writing a new Hamilto- 
7 7 nian N' = iP2 + V ( x )  - $a-x -  so that (6) becomes 



KALYAN 5. SIWH.4 277 

which can be dilated to (as in (3)): 

Iio's formula implies that d(x, P ) ~  = 0 and hence {r, p ) ,  = -1 'd i. However, a closer examina- 
tion of the Harniltonian H' shows that it need not be a physical Wadtonian for n~ost physical 
potentials V since it may not be bounded below. A remedy to this situation will be given in the 
next section in the context of quantum mechanics. 

We shall consider only a single quanta1 particle in one space dimension, the consen-ative Ler- 
sion of whose motion is governed by a general Hamiltonian of the form H given in the last 

paragraph of the last section. If we take the route of modifying the Hamiltonian to If', then H'. 
though essentially self-adjoint3 on CF (IR), is not bounded below in general. 

For the stochastic description, we need to use the theory of quantum stochastic differwtial 
equations (q.s.d.e), an introduction to which may be found in [3,5.6]. The Hilbert space of the 

states of the total system is H= L'(IR) O T(L'(IR~, c')). where L2(M) is the usual state space of 

a I-dim quanta1 partlck, 1RT stands for time and for bosonic second quantization. It ma? be 

useful to mention here that the symrnerric Fock space T(L'(IR+, ~ ' ) 1  is unitarily isonorphlc :o 

L'(IP, x IP?), the space of square-integrable funct~onals of two independent standard Brswn~an 
motions. Here let A,(t) and ~ ; ( t ) ( j  = 1,2) be the pair of annihilation and creation operators re- 

spectively, and let us consider the q.s.d.e.: 

ber operator in L'(IR)). R2 = the unitary multiplncation operator by e.ip(icc'x2) ~ z r  L'(IR). and N 

IS the self-adjoint Mamiltonian operator for a wide class of potzntials'~. Note that oce sf  :he 
operator coefficeints R, is unbounded though self-adpint and the theoq of such q.s.d e. has 
been dealt w t h  In [6] and refrences therem 11 can be showln that eqrratlos, (9) has a unique nm- 
~ X J J  solution in H. It is w5rkh remarkmg that when the friction coei'fment (in t h r  n~odei the 

coeff~cient of coupling between the system and the stoc?,ast?c p x e s s )  o: 1% see eqc-a1 to 0. C(rl 

becomes equal to eiffr exp(ze(i)), which is a t m m '  rundorrr phase-change from the usual 
S~hrodmger evolution. Also the solution of (9) leads to an uni"rarq e:olutior? lor a propagator) 

~ h k h  is not a group (wher! a = 0 the solution c'" e"?'" is cot a grocp but a projertke group) 
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Next we want to look 
Heisenberg picture, For a 
and find that j,(B) satisfies 

where 

If we now want to study the effect of the stochastic c c q h g  on thc system only, wc have to 

average out the stochastic variables, i.e. take the expwtution (.) with rcspcct to the vacuum in 

the Fock space I'(L'(R+, c')). Setting B(t) = (j ,(B)),  we get 

dB(t) -- - L (B)(t)or equivalent B(t )  = cL'(!3) (~ 12) 
dt 

To study the equations of evolution of interesting (hut unbounded) obsesvahlcs like .\: and p. 
either one writes (12) in  these cases formally or onc tlssumcs that thc potential V is sufficiently 
smooth (as in the classical situation}. In the Iutcs case, one can cornpute i ( x )  o r  L(p)  on Cr(R ). 
Either way one gets: 

d.u(t) d p  - = -ar + 1.1, - = -np + n'.y - l l ' ( .v) ,  

dt rlt 

the same equation as (6) or equivalently (5). 

Discussion 

(1) One could have worked with the unphysical Wnmiltonian H f  (which incidentally bectmes H 
as a --+ 0 )  in which case the stochastic co~lpling in the quantum case could have been success- 
fully achieved with only one copy of classical Bruw~~ian motion and these would be no need to 
introduce quantum Brownian motion. 

(2) It is probably evident that the stochastic mechanis~n employed here 1.0 obtain n frictional or 
dissipative evolution is quite different in spirit to the conventional Lmgevin equation or to the 
independent oscillator model of ~ o r b ~ e w i s - ~ ' ~ o n n e l l ~ .  In n suitable limit of the independent 
oscillator model, one gets the quantum Langevin equation: 

where F(t) = c%.~(t). For simplicity of discussion, let us assume V = 0 in which case (14) can be 
t t 

explicitly solved as p(t)  = pc-2m + o. e2n(E-')dw(s), and x(t)  = x(0)  + J p(s)d.s.. If one now 
0 0 

computes the commutator bracket at time t, one finds that [x(t), p(t)] = E?-~'[x(o), p(O)] = ie? 



Thus if one helicves that by coupling the systcrn to its cnvircmnlent i\nd by looking at the total 
evolution the cwnservutivity shoillci hc rt.stosec1, then that belief is certainly not borne out in thc 
~1~~131  l ,ili~gt.~in-t~p~rnc,dcl. 

( 3 )  A similar exercise c ~ ~ n  be carried out  if velocity-depenclent Ibsccs are present, i.c. for gyso- 
scopic systcm ( r . , ~ .  in  psesencc of a Lorentz force) as has been d m e  in ~i-~ord-0'~onncll"in 
the contest of conventirzl Langevin-type cquation. For static electric field, static and uniform 
magnetic field, and with no source current, one can essentiaIly repent the calculations of section 
3 with four quantum stochastic processes and obtain the damped equation of motion for the 
expectation of obsesvnbles with Lorentz force present. For a rrlore general situation, the opera- 

tor R2 in section 3 has to be replaced by multiplimtion by exp($ a'/# + &)), where the func- 

tion (D is the solution of a cestain differential equation. 

1. EXNER, P., Open Quantum Systems and Feyn~nnn Integrals, 1985, Dodrecht, 

2. SCHUSS, z., Theory and Applications of Stochastic Differential Equations and 
Diffusion Processes, 198 1, North Holland. 

3. AMREIN, W. O., JAUCH, J. M. AND Scattering Theory in Quantum Mechanics, 1977, W. A. Benjamin. 
SINHA, K. B., 

4. PARTHASARATHY, K. R., An introduction to Quantum Stochastic Calculus, 1992, Birk- 
hauser. 

5. MEYER, P. A., Quantum Probability for* Probabilists, 199 1, Springer-Verlag. 

7. FORD, G .  W., LEWIS, J. T. AND 

O'CUNNELL, R. F., 

Quantum Stochastic Calculus - a Review, RIMS Kokyuroku 1995, 
923,206-227. 

Quantum Langevin Equation, Phys. Rev. A, 1988, 37(11), 4419- 
4428. 

8. LI, X. L., FORD, G. W. AND Magnetic field effects on the motion of a charged particle i n  a heat 
O'COIINELL, R. F., bath, Plzys. Rev. A, 1990, 41(10), 5287-5289. 




