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Abstract

It is well-known that there is no Hamiltonian mechanicsm to describe a dissipative system either in Classical or
Quantum mechanics. Probabilistic models are introduced to describe the effect of the environment that leads to dissi-
pation. It is argued in the context of such models that one is forced to use non-commutative stochastic processes to
give a satisfactory description.

Introduction

Most of us are familiar with the standard theories in classical and Quantum Mechanics which
are primarily designed to deal with a conservative Hermiltonian system. Non-conservative or
dissipative systems have also been dealt with in literature’, though in a somewhat phenomenol-
ogical spirit. From a physical point of view, it is clear that dissipative motion of a system must
result from its interaction with its environment (or heat-bath), the dynamics of which we may
not be interested in. But if we look at the total system viz. the system and its environment, the
dynamics is again expected to be conservative. In other words, the dissipative motion is be-
lieved to be the direct consequence of our inability to observe or of the lack of interest in the
motion of the total system. Here we first briefly study a classical stochastic model for the
damped harmonic oscillator and then the quantum stochastic theory of dissipative system under
the influence of a potential.

2. Classical damped harmonic osciilator

If we choose the constants like the mass of the particle and the spring constant suitably, then the
equation of motion of interest here is:
2,
il’—-i"£+20c£+vz)c=0, )
dt dt

where a > 0 is the friction coefficient and v is the frequency of the oscillator. We rewrite (1) as
a pair of first order equations in analogy with the Hamilton's equation (with F=vV-o>0)

dx dp 5

—=p-—ox,——=-0“x—0p, 2

Pt U p €3
a more symmetric version of which is

di . dp ~ ,
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*Text of invited lecture at the Annual Faculty Meeting of the INCASR at Bangalore on November 15, 1996.
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where we have set T=x and F=38"!p. Clearly equations (2) or (2") cannot be obtained as
Hamiltonian equation for the pair (x, p) or (¥,5) for any real Hamiltonian. Also note that if we
solve any of these equations and compute the Poisson bracket between x(1) and p(s), we get
{x(5), p(0)} = —e”* gven though {x(0), p(0)} =-1.

Next we want to consider a model of evolution where the particle is coupled to classical

Brownian motion (?) representing the environment in which the particle moves. In terms of the
variables (¥,p) this is given by the stochastic differential equations.

% = (20)"? pdo> + (~0F + 6p)d:

45 = ~(20)"? do + (~0fp - &) dt. )
Rewriting equation (3) in matrix-form with &= {%)A = (:g‘ §a> =~ +i60,0 = (?5’) we have:
dé=Akdt+iQe) M oldw. (3)
This matrix equation (3') can be explicitly solved:
&) = exp{+z~((za)“’2> o(1)+ 5¢)a}5(0) or )
x(r) = x(0)cos(8 + (20) P (r)| + 67 p(0)sin( & + (20) " eo(2))
49

p(£) = p(0)cos( 8t + o) %(:)) ~ 8¢(0)sin(6t + (za)““)w(z))

Two conclusions are immediate from (4) and (4°) () {x(2), p(5)} = {x(0), p(0)} =-1. for all r and
almost all @. In fact, we see from (4") that (x(0), p(Q)) > (x(2), p(1)) is a symplectic flow. (i) If
we denote by (-) the expectation w.r.t. the Brownian motion, then we get from (3) that

dflf) = —a(x)+( p),ﬂd—flz ~a(p)~ 82(x) which is identical to (2). Thus the expectation of the ob-
servables, in which all the effects of the environemnt is washed out, satisfy exactly the equation
of motion of the damped harmonic oscillater though the total evolution of the same sets of ob-

servables in interaction with its environment remains symplectic.

For a systemn whose conservative version is governed by a more general Hamiltonian
H=Lp*+V(x), the same procedure leads to some difficulties. Here the equations (1) and (2) .

are replaced respectively by

2 .

4% e vi(x)=0 and 5)

dt” dt
dx dp 2 .
Z=lH s o ={H, pt—op +a’x. 6)
dr { k} dt { 1)} 7 ¥ (

One may try to include the extra term ¢fx in (6) in the Hamiltontan by writing a new Hamilto-
nian B’ =4 p* +V(x) - La?x* so that (6) becomes
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dx dp
- = H/,#J“' ‘ﬁ—————:[ " —
dt { Xp—ox d 4 P} ap, {7}
which can be dilated to {as in (3)):
dx = (2002 pdes + (o +{H’.x})dt
8

dp=~(20)"") xdw + (~ap + {H', p})ar

Ito's formula implies that d{x, p},; =0 and hence {x, p},=~1 V 7. However, a closer examina-
tion of the Hamiltonian A" shows that it need not be a physical Hamiltonian for most physical
potentials V since it may not be bounded below. A remedy to this situation will be given in the
next section in the context of quantum mechanics.

3. Dissipative Quantum Systems

We shall consider only a single quantal particle in one space dimension, the conservative ver-
sion of whose motion is governed by a general Hamiltonian of the form H given in the last

paragraph of the last section. If we take the route of modifying the Hamiltonian to H’, then &,
though essentially self-adjoint® on C§ (IR), is not bounded below in general.

For the stochastic description, we need to use the theory of quantum stochastic differential
equations (q.s.d.e), an introduction to which may be found in [4,5,6]. The Hilbert space of the

states of the total system is H = LAIR) ® F(Lz([RT, ¢%). where L*(IR) is the usual state space of
a 1-dim quantal particle, IR, stands for time and T” for bosonic second guantization. It may be
useful to mention here that the symmetric Fock space T(L*(IR,, €')) is unitarily isomorphic to
L:(IPl X IP,), the space of square-integrable functionals of two independent standard Brownian
motions. Here let Afr) and A}“(r)( j=12) be the pair of annihilation and creation operators re-
spectively, and let us consider the g.s.d.e.:

2 i
2 [
dU(r)=U(1) E{RjdAj ~RjdA ~—1—R R; derHJt i (%)
J=t J

with initial value U(0) =/, and R, = (20" )(x +p*)=2e)"P V. (N s the seif-adjoint num-
ber operator in L*(IR)), R, = the unitary multiplication operator by exp(%az.\-z} in L*(/R), and H

. .. . . - . . 4 3 y .

is the self-adjoint Hamiltonian operator for a wide class of potentials’). Note that one of the
operator coefficeints R is unbounded though self-adjoint and the theory of such g.s.d.e. has
been dealt with in [6] and refrences therein. It can be shown that equation (3) has a unique uni-
tary solution in #. It is worth remarking that when the friction coefficient {in this model the
coefficient of coupling between the system and the stochastic process) o is set equal to 0. U()
becomes equal to ¢ exp(iwa(9)), which is a trivial random phase-change from the usual
Schrédinger evolution. Also the solution of (9) leads to an unitary evolution (or a propagator)

¢“2") {5 not a group but a projective group).

which is not a group (when ¢ = O the solution &




278 QUANTUM MECHANICS OF DISSIPATIVE SYSTEMS*

Next we want to look at the evolution of the observables position and momentum in the
Heisenberg picture. For a bounded observable B € B(L (IR)), we set j, (B) = UUNB ® 1) U(n*
and find that j(B) satisfies formally the q.s.d.e. :

dj,(B) = 2{/, (R B])aa, = ([ Ry BldaF )} + (2 (B (10)

where

>
L(B)= 2[1\ BR, ——-R R B~——B[’ ‘R )H[H, B]=~a[N.[N. B]|+ (R, BR, — B)+i[H,Bl.(11)
j=l
If we now want to study the effect of the stochastic coupling on the system only, we have to
average out the stochastic variables, i.e. take the expectation () with respect to the vacuum in
the Fock space LR, C ). Setting B(t) = (j(B)), we get
tIB(r)

" L(B)(t)or equivalent B(r) = ¢*'( B) (12)

To study the equations of evolution of interesting (but unbounded) observables like x and p,
either one writes (12) in these cases formally or one assumes that the potential V is sufficiently
smooth (as in the classical situation). In the later case, one can compute L(x) or L(p) on Ci (R ).
Either way one gets:

dx(r) dp 2
—t =g P, = =P+ X — v (x), (13)
dr P =Y ()

the same equation as (6) or equivalently (5).

Discussion

(1) One could have worked with the unphysical Hamiltonian A* (which incidentally becomes H
as a— 0) in which case the stochastic coupling in the quantum case could have been success-
fully achieved with only one copy of classical Brownian motion and there would be no need to
introduce quantum Brownian motion.

(2) It is probably evident that the stochastic mechanism employed here to obtain a frictional or
dissipative evolution is quite different in spirit to the conventional Langevin equation or to the
independent oscillator model of Ford-Lewis-O'Connell’. In a suitable limit of the mdependcnt
oscillator model, one gets the quantum Langevin equation:

dx d*x dx
= p,—5+ 20—+ V'(x) = F(£), 4
a P di (x)=F(2) @

where F(t) = od(). For simplicity of discussion, let us assume V =0 in which case (14) can be
t

explicitly solved as p(t) = pc* +0 [ duw(s), and x(t) = x(0 +I p(s)ds.. 1If one now
0

computes the commutator bracket at time 7, one finds that [x(2), p(1)] = e'z“’[x(O), p(0)] = ie”™.
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Thus if one believes that by coupling the system to its environment and by looking at the total
evolution the conservativity should be restored, then that belief is certainly not borne out in the
usual Langevin-type model.

(3) A similar exercise can be carried out if velocity-dependent forces are present, i.e. for gyro-
scopic system {e.g. in presence of a Lorentz force) as has been done in Li-Ford-O'Connel)® in
the context of convential Langevin-type equation. For static electric field, static and uniform
magnetic field, and with no source current, one can essentially repeat the calculations of section
3 with four quantum stochastic processes and obtain the damped equation of motion for the
expectation of observables with Lorentz force present. For a more general situation, the opera-

tor R, in section 3 has to be replaced by multiplication by exp(—z‘—azjg}z +(p(5)), where the func-

tion @ is the solution of a certain differential equation.
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