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Introduction

The problem of finding a “consensus” object for a collection of mathematical objects has a long
and rich history™ '**. A consensus function is a mapping ¢ : ®* — ®, where & is a finite set and
R =y ®*. An element of ®* is called a profile or input profile. We will also consider n-
consensus functions for ®, which map R" to R, Generalized consensus functions for ®, which
map & * to 2" (i.e. the power set of ®), are also commonly studied but we will not discuss them
in this paper.

The following concrete example illustrates the definition above and is also the principal ex-
ample of interest in this paper. In this example, & is the set of rooted trees with leaves labelled
bijectively from the set {1, 2,..., n}. A consensus function in this situation is required to take as
input a set of rooted trees and produce as output a single rooted tree where all trees have the
same leaf labels. The difficulty in this consensus problem (as in all others) is that we need to
produce an output that “captures the information” in the input while being restricted to be a
tree. In the sequel we will formalize the desirable properties of general consensus functions and
then return to the particular consensus problem for rooted trees.

Perhaps the first mathematical formulation of consensus functions is due to the economist,
K. Arrow’. He considered the special case where ® consists of all total orders on some ground
set U. An application, for example, is where U represents possible options for governmental
expenditure, an element of ® represents a ranking of these options, a profile represents the re-
spective rankings of the citizens, and a consensus function chooses a ranking of options based
on the citizen’s wishes. Arrow proved a now-famous impossibility theorem; he defined a rea-
sonable set of desirable properties for n-consensus functions and showed that they were impos-
sible to achieve.

Since Arrow’s seminal work other authors have extended the axiomatic treatment of con-
sensus to other mathematical objects (sets &) and proved analogues of the impossibility theo-
rem. Barthélemy and Janowitz* describe a “meta-theory” of consensus that handles more gen-
eral mathematical objects such as partial orders and trees. Neumann' focuses on consensus
functions on trees, desirable properties of these function, and construction methods that satisfy
various subsets of these properties. Our focus in this survey paper will also be on consensus

ﬁlrllgztll?rgs on rooted trees. Several authors have proposed particular tree consensus methods' > *
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In the present paper we begin by reviewing the axiomatic framework for consensus methods
in Section 2. Our discussion is closely based on the descriptions in [4], and [14]. In Section 3
we describe several important and widely-used consensus functions for trees. We also study
the axiomatic properties of these functions. Finally in Section 4 we describe variants of the
consensus problem that have been studied as well as extensions that are worth studying. We

also discuss possible applications of consensus techniques in computational biology and other
areas.

2. Axiomatic Framework for Consensus Methods

2.1. Arrow’s Theorem

We begin by describing Arrow’s impossibility result. Our description is adapted from [7, pages
523-524].

Arrow’s result is restricted to n-consensus functions over &, where R is the set of total
orders over some ground set U= {u,..., u,}. For this case Arrow posed the following ques-

tion: is there an n-consensus function ¢ : 8" — g that satisfies the following (reasonable) prop-
erties?

Positive Association of Social and Individual Orderings: For any u, v € U, for any profile
Pe R" if u<vinc(P) then u <vin c(P') where P" is an arbitrary profile obtained from P by
(possibly) increasing the preference for u; i.e. if P =(ay,..., a,) then P* = (a{ »--» 0y ) satisfies the
following: if x <y in ¢;and y <x in a] then y = u. '

Independence of Irrelevant Alternatives: For any distinct u, v, w € U, for any profile P € R,
if v<w in ¢(P) then v<w in c(P") where P* is an arbitrary profile obtained from P by
(possibly) changing the preference for u; ie. if P = (ay,..., a,) then P* = (a1,...,a,) satisfies the
following: if x <ying;and y<x in a} thenx=uory=

7n

Individual’s Sovereignty: For any distinct u, w € U there is some profile P such that # <w in
c(P).

Nondictatorship: There is no j such that u < v in g; forces u <v in c(ay,..., a,) regardless of
Aiseeny Qi1 Ajy15eeey e

Theorem 1 (Arrow) For n>2 and k=3 there is no n-consensus function that satisfies all of
the above properties.

Arrow’s theorem can be generalized to weak orders; see [4] for details. A number of papers
have considered consensus functions with reduced requirements, while others have proved
analogues of this theorem for consensus of other types of mathematical objects.

2.2. Meta-Consensus Theory

Arrow’s theorem applies to consensus functions for total orders but one might naturally talk
about consensus functions for other mathematical objects such as partial orders, rooted trees,
partitions of a set, etc. Barthélemy and Janowitz define an axiomatic structure for a broader

class of objects. In this section we describe these axioms; the content of this subsectlon is
largely drawn from”.
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The axiomatic properties described by Arrow explicitly rely on the fact that ¢® is a set of
total orders of the ground set U. And € R contains certain information, such as u < v, that may
or may not be reflected in ¢(P) when a is part of the profile P. In developing a more generalized
framework for consensus, it is necessary to identify the information in the elements of % that
should influence the consensus function. Barthélemy and Janowitz formalize this notion by
associating with & a set B, called the bricks of ®, and also a mapping b : ® — 2”. Thus an ele-
ment a € R has certain bricks (or information) associated with it (via b). For example, when ®
is the set of total orders on U, we can define the set 8 to be UX U and for a € R, b(a) = {(u, v) |
4 < v under the total order a}. Since we only consider consensus functions, as opposed to gen-
eralized consensus functions, b(c(P)) is well-defined.

Now we are ready to describe various properties of consensus functions as defined.

Stability, Neutrality, and Monotone Neutrality: A consensus function ¢ on R is

1. stable provided that for all oce ¢B, for all k>0, for all profiles P = (ay...., a;) and
Pzz (al',...a,:)
F{l: oe bla)} ={1: e b(aj)} then ae b(c(P))) & ae b(c(P)).
2. neutral provided that for all ¢, S B, for all k> 0, for all profiles P, = (day,..., a;) and
Pg—_— ([l],,...,a]/\,)
If{I: e blap} ={l: Be ba))} then e b(c(P\) = P& blc(P)).
3. monotone neutral provided that for all ¢, f e 4, for all k> 0, for all profiles P; = (q,....,
@) and P, = (af.....a;)
If{l: e blap} ={l: Be b(a))} then e b(c(P)) = B e blc(Py)).
Note that monotone neutrality implies neutrality implies stability.
Paretian: A consensus rule ¢ on % is paretian provided that for all e B, for all £ > 0, for all
profiles P = (a,..., ay)
It eV b(a;) then ore b(e(P).

Symmetric: A consensus rule ¢ on ¢R is symmetric if and only if b(c(P)) is invariant under any
permutation of P.

We now state some characterization theorems for consensus rules in terms of the previous
properties.

Theorem 2

L. For weak orders and total orders, the only stable and paretian consensus functions are
the dictatorships; that is, for each integer k there exists an integer p, k such that for

each P = (aii,...aik)eﬂik,c(P)= a, -

2. For partial orders and partitions of finite sets, the only stable and paretian consensus
functions are the oligarchic rules; that is, for each integer k there exists a non-empty

subset I of indices between 1 and k such that for each P =(a,-l,...,aik)eﬂtk,
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o(P) =Nk, a; . (Here we are viewing each partial order as a binary relation or a set of

ordered pairs. Intersection of partial orders is therefore the usual set intersection).

3. For rooted trees the only neutral k-consensus functions are characterized as follows:
There are subsets Di,..., Dy, of {1, 2,..., k} such that D;(\ D;# @ for all i, j and for any
profile P = (ai,..., ax), a € b(c(P)) if and only if {1 : a € b(a)} = D for some i.

Part 1 above is yet another version of Arrow’s theorem due to Arrow’. Part 2 for partial orders
is due to Mas-Collel and Sonnenschein'® and for set partitions is due to Mirkin"®, Part 3 is due
to Neumann'*,

Corollary 1

1. For weak orders and total orders, there is no consensus function that is stable, paretian
and symmetric.

2. For partial orders and partitions of finite sets, the only consensus function that is stable,
paretian and symmetric is the unanimity rule; that is, ¢(P) =N}, a..

2.3. Consensus of Rooted Trees

In this section we consider the consensus problem when R consists of rooted trees. The contents
of this section are drawn mainly from'*.

Let U={1, 2..., m}). Let cR be the set of all root (labelled) trees with leaves U. We define
the bricks B associated with ® as the the subsets of U; i.e., B= 2Y In this special case, the
bricks are more commonly referred to as clusters. For a tree T € R, b(T) contains each Vg U
such that some rooted subtree of T contains exactly the leaves in V. We will assume, without
loss of generality, that internal nodes in the trees of | have more than one child. Thus &(T) is a
one-to-one function. Note that for any T, b(T) contains the singleton sets {i},i=1,..., m.

A common monotone neutral consensus function is the “majority rule” where a cluster is
present in the consensus tree if and only if it is present in a majority of the trees in the profile.
Neumann argues that monotone neutral rules preserve very little information in the situation
where there are minor differences between the clusters of the trees in the profile. (See for ex-
ample, Figure 1, taken from Neumann'%).

Therefore he proposes a new definition.

Faithful: A consensus function c is faithful provided for any positive k, for any profile
P =(Ty,..., T}) and any choice of cluster X; € b(T), i=1, 2,..., k, c(P) contains a cluster V such

that
12 3 45

123 45 5 23 41

Fic. 1. Example to show “information loss” of majority rule.
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Notice that a faithful consensus function is paretian. Neumann draws a connection between
paretian CONSensus functions satisfying the axiom of independence of irrelevant alternatives and
faithful consensus functions. We shall refer to these axioms as Axiom (P) (Paretian), Axiom (I)
(Independence of Irrelevant Alternatives) and Axiom (F) (Faithfulness). We first extend the
definition of Axiom (I) for rooted trees. For Vo Uand T € R, Tly refers to the homeomorphic
subtree of T obtained by deleting all leaves in U\ V and collapsing any degree 2 internal nodes

that are created.

Axiom (I) - Independence of Irrelevant Alternatives for Trees: For V. U, ¢(Ply) contains a
cluster Wif and only if ¢(P) contains a cluster W’ such that W ¢ W' < u/v.

Theorem 3. If ¢ is a consensus function on rooted trees that satisfies Axioms (P) and (/) then it
satisfies Axiom (F).

Neumann points out that there are faithful, paretian consensus functions that do not satisfy
Axiom (). Thus faithfulness is a weakening of the independence of irrelevant alternatives ax-
jom. Neumann leaves open the question of whether a consensus function satisfying Axioms (P)
and (I) must in fact be dictatorial.

24. A Closer Look at Axiom (I)

In this section we prove some new results that further restrict the class of non-dictatorial con-
sensus functions that satisfy (P) and (I). This goes part way towards answering the open ques-
tion of Neumann.

Axiom (I) suggests that we can characterize a consensus rule by its behavior on each triple
of elements in U. In other words, we consider all possible restrictions of the profile to three
elements of U and find the structure of the output tree on these three elements. The information
obtained from all of these triples would then characterize the consensus tree.

There are four possible shapes of a tree with three leaves x, y, and z shown in Figure 2.

We will refer to these shapes by the shorthand (xy, 2), (x, yz), (xz, ¥), (xyz) respectively. The
first three shapes are called resolved while the last is called unresolved. Thus, for example, the
profile (xy, z)* refers to a profile of k trees where all of them have the shape that gives x and y a
more recent common ancestor than x and z or y and z. For such an input, a pretian consensus
function should yield an output that also has the shape (xy, 2). We say that a consensus function
¢ is Paretian with respect to resolved triples if for any x, y, z € U, for any profile P € ' such
that lf xy’ Z) _Pl(a w»i} then (xy, ~) - L(P)l{\ »o)e

A A A N

FG. 2.
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The above definitions of axioms (I) and (P) are made with the view that clusters are the
bricks of rooted trees. Since we want to talk about trees as constituted of shapes of triples, we
need to “translate” these axioms to such a view and the following lemmas do this.

Lemma 1: If a consensus function satisfies Axiom (I) and (P), then it is paretian with respect
to resolved triples.

Proof: Let k be any positive integer and let P = (T...., T}) be any profile in ®*. Let {x, ¥,z bea
set of three elements such that Pl . .y = (xy, 2)*. Since {x, y} is a cluster that is present in all the
trees in the profile, {x, v} must be present as a cluster in c(Pl ,, -)). Axiom (I) then says that
some cluster B between {x, y} and U\ {z} must be present in ¢(P). The existence of such a
cluster guarantees that the shape of {x, y, z} in c(P) is (xy, 2). Thus we have shown that if the
shape (xy, z) is present in all the trees of the profile, it is also present in the output which is ex-
actly axiom (P) for triples.

Lemma 2. Let c: R* — R be a consensus function. Then c(Ply) is well-defined for any profile P
and for any A < U such that |Al = 3. Furthermore, c is completely determined by its behavior on
such restricted profiles.

Proof: The first part follows from axiom (I). The second statement is true because there is at
most one tree consistent with the set of shape specifications for all triples.

Thus, any rule that satisfies axiom (I) is defined by a set of elementary rules characterizing
the behavior of the rule on triples. This is the motivation behind the so-called local consensus
rules proposed by Kannan, Warnow, and Yooseph®. However, the implication is only one-way,
i.e., any rule that satisfies (I} is characterized in terms of its behavior on triples but not every
rule which is characterized in terms of its behavior on triples satisfies axiom (I). Thus local con-

sensus rules afford an interesting alternative to faithful rules and this is discussed in the next
section.

The definition of neutrality with respect to clusters is just a special case of the definition of
neutrality in general. A rule is said to be non-neutral on triples if there are profiles P and P’ in
®* and two ordered triples of elements A = (x, v, z) and B = (a, b, ¢) such that under the mapping

x—a, y—b, 7> c, the profile PIA is transformed into P’ly but ¢(Ply) is not transformed to
C(P"B).

Lemma 3. Suppose ¢ is non-neutral on triples. Then there are ordered triples (x, y, 2) and (u,
¥, z) and identical restricted profiles on these triples such that c on these restricted profiles
produces different shapes for the respective triples.

Proof: Consider a graph whose vertex set is all ordered triples. Two vertices (x, y, z) and (&, v,
w) are connected if and only if for every restricted profile on (x, y, z) and the corresponding
profile for (u, v, w) obtained by replacing p by x, g by v, and r by z, ¢ produces identical shapes
for the respective triples. Since ¢ is non-neutral on triples, this graph has more than one compo-
nent. However, this means that there must be two nodes that differ in only one component that
are in different components of this graph. By permuting the order of the triples in these two
nodes if necessary we can find triples to differ only in the first component that are not in the
same component of the graph.

We are now ready to prove:
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Theorem 4. Any consensus rule ¢ satisfying (I) and (P) that is non-neutral on triples must be
dictatorial.

Proof: By Lemma 3 there are ordered triples (a, ¢, d) and (b, ¢, d) for which there are a pair of
«dentical” profiles P and P’ (with k arguments for some & >0) that cause ¢ to produce non-
identical shapes. Let U, the set of elements be {a, b, ¢, d} and construct a profile in 7T 4K as fol-
lows:

Start with T, = T» = - = T, = (ab, ¢). “Inject” d into each tree in order to make the triples (a,
¢, d) and (b, c, d) have the (identical) profiles P and P’ respectively. (Note that this can always
be done.)

By the fact that c is paretian on resolved triples, the output tree must have the shape (ab,
¢) on the triple (a, b, ¢). Then, no matter where d is injected into the output tree, the shapes of
(@, ¢, d) and (b, ¢, d) will be identical contradicting the fact that they are supposed to be differ-
ent.

Neumann proves that any non-dictatorial consensus function satistying (I) and (P) must be
non-neutral on clusters. We show, on the other hand, that any non-dictatorial consensus func-
tion satisfying (I) and (P) must be neutral on triples. The combined restrictions on such consen-

sus functions are very strong and further support the conjecture that any consensus function
satisfying (I) and (P) must, in fact, be dictatorial.

3. Particular Tree Consensus Rules and Their Properties

In this section we review a number of tree consensus rules from the literature. Primarily these
rules view clusters as the bricks making up rooted trees. There are a few exceptions of which
we will describe two — the Adams’ consensus rule that views objects called nestings as the
building blocks of trees and the local consensus rules that view triples as the building blocks.
The discussion of the last subsection should provide some motivation for why triple-based con-
sensus rules might be important.

3.1. Cluster-based Consensus Rules

Before we discuss cluster-based consensus rules it is useful to state some well-known facts
about clusters and trees.

Fact 1. Let T be a rooted tree and A, B € C(T) (the cluster encoding of T). Then A\ B & {A,
B, 0}.

Fact 2. A set of clusters S is said to be compatible if and only if there is a tree T such that
C(D)=S. A set of clusters is compatible if and only if for every pair of sets A, Be S,
ANBe {A, B, ).

3.1.1. Neutral Rules

Strict Consensus: For a profile P=(Ty, Ta,..., TV E T nk the strict consensus rule sc(P) pro-
duces a tree T such that C(T) = N c(T).

i=1
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Notice that sc(P) is defined for every profile P by the facts about compatibility of clusters,
The strict consensus rule is paretian and monotone neutral. However, it does not satisfy axiom
(D) nor even axiom (F). The critique of the strict consensus function is that it is not very infor-
mative — minor differences between the clusters of the trees in the profile can lead to the out-
put tree not containing any clusters at all.

Threshold Consensus: The strict consensus is a special case of a family of consensus ruleg
called threshold consensus rules. These rules are best defined as k-consensus rules for each
positive integer k. Let 1 <#(k) <k. A t(k)-threshold k-consensus rule ¢ is defined as follows:
For a profile P =(T),..., Ty) € T, , c(P) contains those clusters that are present in at least (k) of
the input trees.

Unfortunately, threshold consensus rules are not necessarily well-defined when #(k) < k2
since the set of clusters that must be present in the output may prove to be incompatible. How-
ever when (k) > k/2, the threshold consensus always exists. If A and B are two clusters that
must be present in the output tree, then each of them occurs in at least #(k) of the trees in the
profile and since #(k) > /2 there must be some tree in the input profile that contains both A and
B as clusters. Thus A and B are compatible. Since such compatibility holds for each pair of
clusters in the output, the set of output clusters are compatible and c¢ is well-defined.

The case of f(k)=k is exactly the strict consensus. Another case of importance is
tk) = (k + 1)/2 and this threshold consensus rule is called the majority consensus rule. '

The case #(k) = k/2 leads to some analysis of theoretical interest. For k odd, this is still the
majority consensus. For k even, it is possible that the set of clusters that are required to be in the
output are not compatible. The so called median procedure chooses an output tree that con-
tains all the clusters that occur in strictly greater than half of the trees in the input profile as well
as a subset of the clusters that occur in exactly half of the input trees. The problem of deciding
whether there is a binary tree of this form is NP-complete'?.

Consider a metric space on 7, where d(T), T>) is defined to be the cardinality of the sym-
metric difference of C(T\) and C(T») for T\, T» € T,. A consensus problem in this context is,
given a profile (..., T}), find a tree 7 that minimizes ¥+, d(7;, 7). It is easy to see that any
tree produced by the median procedure is optimal for this criterion. Although this metric space

seems too coarse to produce informative trees, the idea of posing the consensus problem as an
optimization problem in a suitable metric space is attractive and worthy of further exploration.

Further generalization of threshold rules: Neumann'* provides a nice characterization of
neutral rules on rooted trees. Associated with any neutral k-consensus rule ¢ is a set D(c) of
subsets of {1, 2,..., k} such that if X, ¥ € D(c) then X [\ ¥ 2. Furthermore, for a given profile
P=(Ty,..., T) € T, , acluster A is in c(A) if and only if {ilA € T;} € D(c). This is possibly the
last word on neutral rules.

3.1.2. Faithful Rules

Neumann presents a common framework for deriving all known faithful rules. However, this
does not represent a characterization of faithful rules and such a characterization is an interest-



CONSENSUS OF TREES — DESIRABLE OF PROPERTIESAND COMPUTATIONAL METHODS 36!

ing open problem. We describe Neumann’s l’rame\}mrk in some»yhat different terms. It is easy
o argue following Neusnapn that all tbe rul&f defined hy’ our framework are faithtul. It also
appears that all of the fmthfu] rules obtm'nuble in Neumann S l‘rumgwnrk can be obtained by our
scheme. One advantage of our scheme is that while Neumann's framework can produce some
rules that are not faithful, every rule produced here is faithful and well-defined.

Let T be a rooted tree with leaf set 8. An expansion of T is obtained by applying the follow-
ing operation any number of times (possibly 0 times): Choose an edge (i, v) in the current tree
and create a new node w in the middle of this edge. That is, make w a child of u and the parent
of v. Thus, the expanded tree 7" differs from 7 only in that it (possibly) has some degree 2 in-
ternal nodes. Let u be the parent of v in 7. Suppose in 77 we have a path u=ay, aj,..., gy =v
petween u and v. Recall that N(u) and N(v) are the clusters associated with u and v respectively
and notice that the conversion of T to 7° does not change these clusters. For some 7 such that
0<i<] we treat N(u) as the cluster associated with ay, a,...., ¢; and N(v) as the cluster associ-
ated with @ 1s..., & Consider this assignment of clusters to the new nodes part of the expansion
PIOCESS.

For any rooted tree 7" (including trees with internal nodes of degree 2) the depth of a node
v (denoted d(v)) in T is the length of the path from the root to v. We will also define the depth
of the cluster N(v) to be the same as the depth of v. We can now define a family of faithful
rules:

Given a profile P = (T, T,..., T};) the first step in the rule is an expansion of each of the trees

in the profile to create a new profile P'=(7/\73.....T}). C(c(P)) (the cluster encoding of the
consensus tree) is defined to be

:zu{( 1 X0l X, € C(T;)d(X;) =d}

The proof of Neumann'" can be used to prove that every rule defined in this manner is faith-
ful and well-defined.

3.2. Nestings and the Adums Consensus

Given a rooted tree 7" with leaf set N = {1, 2,..., n}, for any A U N define lcay (A) to be the least
common ancestor in 7" of the elements in A. Using the notation “v < " to denote the fact that
node u lies on the path from node v to the root and 1 # v, we can define a partial order on the
least common ancestors of subsets of N.

Adams defines a nesting relation, Ry on (N) X P(N) as follows:
Rr={(A, B) : A € B, lca;{A) < lcarB)

Based on this relation he defines a consensus rule ¢ as follows: Given a profile P, c(P)=T
where T'is the unique tree satisfying the following two properties:

(V€ PYA,B)e R, = (A, B) € R{VA, Be C(T), (A, B)e Rr= (A, B) & RpV, e P
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Neumann states that the Adams consensus method is faithful. Although, the original paper
describing this method' gave an exponential time procedure for computing this consensus func-
tion, subsequently other authors have shown that it can be constructed very efficientlyg.

Adams argues that nestings serve the role of basic informational blocks or bricks better than
rooted triples. However, the more efficient computation of the Adams consensus is achieved by
an algorithm that views triples as the bricks suggesting that a triple-based view is at least g
powerful as a nesting based view.

3.3. Triples and Local Consensus

As explained previously, looking at consensus rules restricted to rooted trees with 3 leaves
captures a lot of information about these rules. In particular if the consensus rule satisfies axiom
(1), information about its behavior on such trees completely determines the rule.

Local consensus rules are a family of triple-based rules and were defined by Kannan, War-
now, and Yoosephg; We will use the term triple profiles to indicate profiles where the leaf set of
each tree is a set of three elements. A local consensus rule is defined by a set of strong and
weak constraints. Both types of constraints map triple profiles to particular shapes of these tri-
ples. Let A = {x, y, z} and let C be a constraint that maps a triple profile P, to a particular shape
S on A. Such a constraint is satisfied by a consensus rule, ¢, if given any profile P such that
Py =Py, c(P) contains the shape S. All local consensus rules require that all strong constraints
be satisfied while a maximal number of weak constraints must be satisfied.

The generality of the definition of local consensus rules leads to a rich class of such rules. In
particular, several of the rules we have discussed including the strict consensus and the Adams
consensus can be viewed as particular local consensus rules or minor variations of such rules*’,
The generality also means that while many of the rules are easy to compute in a unified frame-
work, some are NP-hard®. In addition, the class of local consensus rules contains neutral rules,
faithful rules, and rules that are not well-defined on all profiles. The particular choice of rule
can be made by the user based on particular assumptions about the data set at hand.

Of particular interest are the local consensus rules that are not well-defined on all profiles.
Traditionally, such partially-defined consensus rules have not been studied at all. However such

rules may be attractive where the data set is suspect, and the non-existence of a consensus tree
points to problems in the data.

Discussion and Conclusions

In this paper we have surveyed some of the literature on consensus functions with a focus on
consensus functions on rooted trees. Such consensus functions are widely used in the construc-

tion of evolutionary or phylogenetic trees on data sets. The need for such functions in this ap-
plication arises for a number of reasons.

o Data from different genes may support different trees for the same set of species.

e Different algorithms with different objective functions may support different trees for
the same set of species.
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o Different optimal or near-optimal trees may arise from the same data set using the same
objective function.

The choice in all these cases is either to find a consensus of all the potential trees or to try to
find a subset of the species on which all the trees in the profile are in agreement. The latter ap-
proach leads to the maximum agreement subtree problem which also has a large literature not
reviewed in this paper.

Axiom (1) does not seem very appropriate in the biological context, A number of authors
have argued that in the phylogeny context the shape of a triple (a, b, c) in the consensus tree
must be influenced by the position of other species. The neutrality axiom is not perfect either. It
is possible that the existence of certain clusters is confirmed by evidence not present in the
profile of trees provided to the consensus algorithm. In such cases it may be proper to infer this
cluster in the output on scantier evidence than required for some other cluster. Thus the search
continues for appropriate axioms for consensus functions of rooted trees, at least for the appli-
cation to phylogenies.

One possible solution is as follows. The current axioms view the existence or non-existence
of clusters as a 0-1 event. However, the process of evolution is continuous and the trees used to
model this process can be assigned weights on the edges (corresponding to time) to reflect this
continuity. If the profile consists of weighted trees it may be possible to talk about the degree of
support for a particular cluster in a particular weighted tree. It may then be possible to define
appropriate weighted notions of axiom (1) and the neutrality axiom. It is even conceivable that
there are reasonable consensus functions that satisfy axiom (I) as well as the neutrality axiom in
this context.

Quite rightly, the focus of papers on consensus functions has so far been on the mathematics
rather than the computer science. With a reasonable understanding of mathematical limitations
it is now worthwhile to look at the computational complexity of consensus functions as done,
for example, in®'**.
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