
Introduction 

The problem of finding a "consensus" object for a coilection of mathematical objects has a long 
and rich histoly3' I".''. A consensus function is a mapping r : Kit -+ IQ where 9(, is a finite set and 
R* = U, 9 f .  An element of is called a profile or input yrofilr~. We will also consider n- 
mnsensus jimctions for which map q' to K. Ge11rrn1izc.d consensrrs .fitrzctions for which 
map Z( * to 2yi.e. the power set of a, are also com~nonly studied but we will not discuss them 
in this paper. 

The following concrete example illustrates the definition above and is also the principal ex- 
ample of interest in this paper. In this example, % is the set of rooted trees with leaves labelled 
bijectively from the set (1, 2, ..., i t ) .  A consensus function i n  this situation is required to take as 
input a set of rooted trees and produce as output a single rooted tree where all trees have the 
same leaf labels. The difficulty in this consensus problem (as in d l  others) is that we need to 
produce an output that "captures the information" in the input while being restricted to be a 
tree. In the sequel we will formalize the desirable properties of ge~~eral consensus functians and 
then return to the particular consensus problem for rooted trees. 

Perhaps the first rnathen~aticrzl formulation of consensus f~mctions is due to the economist, 
K. ~rrow! He considered the special case where consists of all total orders on some ground 
set U. An application, for example, is where U reprcscnts possible options for governmental 
expenditure, an element of represents a ranking of these options, a profile represents the re- 
spective rankings of the citizens, and a coi~sensus function chooses a ranking of options based 
on the citizen's wishes. Anow proved a now-famous inlpossibility theorem; he defined a rea- 
sonable set of desirable properties for n-consensus functions and showed that they were impos- 
sible to achieve. 

Since ATOW'S seminal work other authors have extended the axiomatic treatment of con- 
sensus to other mathematical objects (sets and proved analogues of the impossibility thea- 
rem. BarthClemy and ~anowi tz~  describe a "meta-theory" of consensus that handles more gen- 
eral mathematical objects such as partial orders and trees. ~eurnann'" focuses on consensus 
functions on trees, desirable properties of these function, and construction methods that satisfy 
various subsets of these properties. Our focus in this survey paper will also be on consensus 
functions on rooted trees. Several authors have proposed particular tree consensus methods'. 5 v  '* 
11, 15,16,8 
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In the present paper we begin by reviewing the axiomatic framework for consensus methods 
in Section 2. Our discussion is closely based on the descriptions in [4], and [14]. In Section 3 
we describe several important and widely-used consensus functions for trees. We also study 
the axiomatic properties of these functions. Finally in Section 4 we describe variants of the 
consensus problem that have been studied as well as extensions that are worth studying. We 
also discuss possible applications of consensus techniques in cornputational biology and other 
areas. 

2.1. Arrow ' s  Theorem 

We begin by describing Arrow's impossibility result. Our description is adapted from [7, pages 
523-5241. 

Arrow's result is restricted to n-consensus functions over where is the set of totdl 
orders over some ground set U = {ul, ..., u,,,). For this case Arrow posed the following ques- 
tion: is there an n-consensus function c : 5" -+ that satisfies the following (reasonable) prop- 
erties? 

ositive Association of Socia erings: For any u, v E U, for any profile 
P E R", if u < v in c(P) then U <  v in c(P'7 where P" is an arbitrary profile obtained from P by 
(possibly) increasing the preference for u; i.e. if P = (al  ,. .., a,,) then P1' = (a;, . . . , a, ) satisfies the 
following: if x c y in aj and y < x in a; then y = u. 

ence of Irrelevant Alter~atives: For any distinct u, v, w E U, for any profile P E g", 
if v < w in c(P) then v < w in c(Pif), where P" is an arbitrary profile obtained from P by 
(possibly) changing the preference for u; i. e.  if P = (a ,..., a,,) then P" = (a;, . . . , a,: ) satisfies the 
following: if x < y in aj and y x in aj then x = u or y = u. 

Individual's Sovereignty: For any distinct u, w E U there is some profile P such that u < w in 
@>. 

: There is no j such that u <: v in aj forces u < v in c(al,  ..., a,) regardless of 
al,..., aj-1, aj+l,.-., a,,- 

Theorem 1 (Arrow) For n 2 2 and k 2 3 there is no n-consensus function that satisfies all of 
the above properties. 

,a 

Arrow's theorem can be generalized to weak orders; see [4] for details. A number of papers 
have considered consensus functions with reduced requirements, while others have proved 
analogues of this theorem for consensus of other types of mathematical objects. 

2.2. Meta-Consensus Theory 

Arrow's theorem applies to consensus functions for total orders but one might naturally talk 
about consensus functions for other mathematical objects such as partial orders, rooted trees, 
partitions of a set, etc. Barth6lemy and Janowitz define an axiamatic structure for a broader 
class of objects. In this section we describe these axioms; the content of this subsection is 
largely drawn from4. 
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le provided that for all a E c%, for a11 k > 0, for all profiles PI = ( a , ,  ..., N ~ )  and 
p2 = (a;, ... a ; )  

If { I  : a E h(czr)} = { I  : a E h(n;) ) then E D(c(PI))  t) a E D(c(Pr)). 

2, neutral provided that for all a, P E 3, for all k > 0, for all profiles P I  = ( c r , ,  ..., c q )  and 
P2 = (a;,...$;) 

If { I  : a E b(q)} = ( 1  : p E b(n;) } then u E h(c(PI )) 3 P E b(c3(P2)). 

provided that h r  all a, P E 9, for all li > 0, for all profiles P I  = (a , ,  ..., 
ar) and P2 = (a;, ..., a; )  

I f  { I  : a E b(ai)) c { I  : /3 E b(n;) } then (Y E b(c(Pl )) * P E b(c(P2)). 

Note that monotone neutrality implies neutrality implies stability. 

Paretian: A consensus rule c on qd is ian provicled that for d l  a E 3, for all k > 0, for all 
profiles P = (a , .. ., ak) 

If a E n:., b(a j )  then a E b(r(P).  

Symmetric: A consensus rule c on CR is sy~n elrie if' and only if b(c(P)) is invariant under any 
permutation of P. 

We now state some characterization theorems for consensus rules in terms of the previous 
properties. 

Theorem 2 

1. For weak orders and totd orders, the ordy stable und paretian corzsensus jimctions ure 
the dictatorships; that is, %for each int~gci. k there exist,s uun integer yk k such that f i r  

each P =  (ai ,,... a i k ) ~ $ ' , c ( p ) =  a,,*. 

2. For partial orders and partitiom offinite sets, the only stable and paretian consensus 
functions are the oligarchic rilles; that is, for each integer k there exists n non-empty 
subset Ik of indices between 1 and k such that for each P = (ai, , . . ., ail ) E R k ,  
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,-(p) = n$ ai, . (Here we are viewing each partial order as a binary relation or a set 

ordered pairs. Intersection of partial orders is therejbre the usual set intersection). 
3. For rooted trees the only neutral k-cons~nsus functions are characterized as follows: 

There are subsets D L  ,..., D,,, of {I, 2 ,..., k )  such that Di n Dj # e) for all i, j and for any 
profile P = (al  ,..., ak), a E b(c(P)) fund only $ { l :  a E b(a1)) = Di for some i. 

Part 1 above is yet another version of Arrow's theorem due to ~ r r o d .  Part 2 for partial orders 
is due to Mas-Collel and ~onnenschein"' and for set partitions is due to  irki in'^. Part 3 is due 
to ~ e u m a n n ' ~ .  

Corollary 

1. For weak orders and total orders, there is no coizsensus function that is stable, paretian 
and symmetric. 

2. For partial orders and partitions omnite sets, the only consensus function that is stable, 
paretian and symmetric is the unanimity rule: that is, c (P)  = nf=I a,, . . 

2.3. Consensus of Rooled Trees 

In this section we consider the consensus problem when consists of rooted trees. The contents 
of this section are drawn mainly from14. 

Let U =  (1 ,  2, ..., m). Let cK be the set of all root (labelled) trees with leaves U. We define 
the bricks 9 associated with as the the subsets of U; i.e., B = 2'. In this special case, the 
bricks are more commonly referred to as clusters. For a tree T E !& b(T) contains each VS U 
such that some rooked subtsee of T contains exactly the leaves in V. We will assume, without 
loss of generality, that internal nodes in the trees of have more than one child. Thus b(T) is a 
one-to-one function. Note that for any T, b(T) contains the singleton sets { i ) ,  i = 1 ,..., m. 

A common monotone neutral consensus function is the "majority rule" where a cluster is 
present in the consensus tree if and only if it is present in a majority of the trees in the profile. 
Neurnann argues that monotone neutral rules preserve very little information in the situation 
where there are minor differences between the clusters of the trees in the profile. (See for ex- 
ample, Figure 1, taken from ~eurnannl~) .  

Therefore he proposes a new definition. 

Faithful: A consensus function c is faithful provided for any positive k, for any profile 
P = (TI .  .. ., TI) and any choice of cluster Xj E b(Ti), i = 1,2, ..., k, c(P) contains a cluster V such 
that 

FIG. 1. Example to show "information loss" of majority rule. 



Notice that a faithful consensus function is paretian. Neuniann draws a conllection between 
paretian consensus functions satisfying the axiom of independence of irrelevilnt alternatives and 
faithful consensus functions. We shill1 refer to these axioms us Axiom (P) (Paretian), Axiom (I) 
(Independence of Irrelevant Alternatives) and Axiom (F) (Faithfulness). We first extend the 
definition of Axiom (1) for rooted trees. ]For V G U and T E !& TIv rcf'ers to the homeomol-phic 
subtree of T obtained by deleting all leaves in u \ l/ m d  collapsing any degree 2 internal nodes 
that are created. 

Axiom (1) - rreleva~lt Alternatives for rees: For V c U ,  c(Plv) contains a 
cluster Wif and only if c(P) contains a cluster W' such that W c W' c u/v. 

3. If c is a consensus function on rooted trees that satisfies Axioms (P) and (I) then it 
satisfies Axiom (F). 

Neumann points out that there are Faithful, paretian consensus functions that do not satisfy 
Axiom (I). Thus fztithfulness is :I weakening of the independence of irrelevant alternatives ax- 
iom. Neumann leaves open the question of whether a consensus functiorz satisfying Axioms (P) 
and (I) must in fact be dictatorial. 

2.4. A Closer Look ut Axiom (n 
In this section we prove some new results that further restrict the class of non-dictatorial con- 
sensus functions that satisfy (P) and (I). This goes part way towards answering the open ques- 
tion of Neumann. 

Axiom (I) suggests that we can characterize a ccmsensus rule by its behavior on each triple 
of elements in U. In other words, we consider all possible restrictions of the profile to three 
elements of U and find the structure of the output tree crn these three elements. The infarmation 
obtained from all of these triples woirld then churacterize the coilsensus tree. 

There are four possible shapes of a tree with three leaves x, y, and s shown in Figure 2. 

We will refer to these shapes by the shorthand (xy, z ) ,  (x, yz), (XZ, y), (q~) respectively. The 
first three shapes are called resolved while the last is called unresolved. Thus, for example, the 
profile (xy, z)%efers to a profile of k trees where all of them have the shape that gives x and y a 
more recent comman ancestor than x and z or y and z. For such an input, a. pretian consensus 
function should yield an output that also has the shape (xy, 2). We say that a consensus function 
c is Paretian with respect to resolved triples if for any a, y, ,- E U, for any profile P E $ such 
that if b y ,  z ) ~  = P I { , ,  then (xy, Z) = c(P)I1",, ,, ;). 
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The &ove definitions of axioms (I) and (P) are made with the view that clusters are the 
bricks of rooted trees. Since we want to talk about trees as constituted of shapes of triples, we 
need to "translate" these axioms to such a view and the following lemmas do this. 

: ~ f n  copzsensLls firnction satisfies Axiom ( I )  and (P) ,  then it is paretian with respect 
to resolved triples. 

roof: Let k be any positive integer and let P = ( T I  ,..., TL)  be any profile in Z('. Let {x,  y, z )  be a 
set of three elements such that PIi,, ,. :) = (q, ;)I. Since { x ,  y} is a cluster that is present in all the 
trees in the profile, {x, y }  must be present as a cluster in c(PI1,, ,:,)). Axiom ( I )  then says that 
some cluster B between {x, y )  and U\ {z) must be present in c(P). The existence of such a 
cluster guarantees that the shape of {x, y ,  z) in  c(P) is (g, z ) .  Thus we have shown that if the 
shape (q, z )  is present in all the trees of the profile, it is also present in the output which is ex- 
actly axiom (P) for triples. 

ma 2. Let c: c: + be a consensus.function. Then c(PIfl) is well-defined for any profile p 
and for any A c U S L ~  that 141 = 3. Furthermom, c is completely determined by its behavior 011 

such restricted profiles. 

roof: The first part follows from axiom (I). The second statement is true because there is at 
most one tree consistent with the set of shape specifications f'or all triples. 

Thus, any rule that satisfies axiom (I) is defined by a set of elementary rules characterizing 
the behavior of the rule on triples. This is the motivation behind the so-called local consensus 
rules proposed by Kannan, Warnow, and ~ o o s e ~ h !  However, the implication is only one-way, 
i.e., any rule that satisfies (I) is characterized in terms of its behavior on triples but not every 
rule which is characterized in terms of its behavior on triples satisfies axiom (I). Thus local con- 
sensus rules afford an interesting alternative to faithful rules and this is discussed in the next 
section. 

The definition of neutrality with respect to clusters is just a special case of the definition of 
neutrality in general. A rule is said to be non-neutral on triples if there are profiles P and P' in 
R' and two ordered triples of elements A = (x, y, z) and B = (a ,  b, c)  such that under the mapping 
x -+ a, y -+ b, z -+ c, the profile PIA is transformed into P'lu but c(PI,,) is not transformed to 
c(p'IB). 

Lernma 3. Suppose c is non-neutral on triples. Then there are ordered triples (x, y ,  z) and (u, 
y, z)  and identical restricted profiles on these triples such that c on these restricted profiles 
produces dzferent shapesfor the respective triples. 

roof: Consider a graph whose vertex set is all ordered triples. Two vertices (x, y, z)  and (u, v, 
w) are connected if and only if for every restricted profile on (x, y, 2) and the corresponding 
profile for (u, v, w) obtained by replacing p by x, q by y, and r by 2, c produces identical shapes 
for the respective triples. Since c is non-neutral on triples, this graph has more than one compo- 
nent. However, this means that there must be two nodes that differ in only one component that 
are in different components of this graph. By permuting the order of the triples in these two 
nodes if necessary we can find triples to differ only in the first component that are not in the 
same component of the graph. 

We are now ready to prove: 



lows: 

Start with T I  = T:! = . = TL = (crb, c,). ''hject" (1 into each tree in order to make the triples (0, 

,, 4 and (b, c, d) have the (identical) profiles P and P' respectively. (Note that this can always 
be done.) 

By the fact that c is paretian on resolved triples, the output tree must have the shape (ah, 
C) on the triple (a, b, c).  Then, no matter where rl  is injected into the output tree, the shapes of 
(a, c, d) and (b, c, d) will be identical contradicting the fact that they are supposed to be diffel: 
ent. 

Neumann proves that any non-dictatorial consensus flitlction satisfying (I) and (I?) must be 
non-neutral on clusters. We show, on the other hand, that my  non-dictatorial consensus f~inc- 
tion satisfying (I) and (P) must be neutral on triples. Thc combined restrictions on such consen- 
sus functions are very strong and further support the conjecture that any consensus function 
satisfying (I) and (P) must, in fact, be dictatorial. 

In this section we review a number of tree consensus rules fiorn the literature. Primarily these 
rules view clusters as the bricks ~naking up rooted trces. There are a few exceptions of which 
we will describe two - the Adams' consensus rule that views ob-jects called ~mt ings  as the 
building blocks of trees and the local consensus rules that view triples as the building blocks. 
The discussion of the last subsection should provide some motivation for why triyle-based con- 
sensus rules might be important. 

3 -1. Cluster-based Consensus Rules 

Belore we discuss cluster-based consensus rules it is useful to state some well-known facts 
about clusters and trees. 

Fact 1. Let T be a rooted tree and A, l3 E C(7') (the cluster. encoding of T).  Tlze~z A n B E {A,  
BY $1. 
Fact 2. A set of cl~isters S is said to he compatible if and only ij'them is a tree T such that 
C(T)= S. A set of clusters is compntible i f  crnd only if for every pair of  sets A, B E S, 
A ~ W E  {A, B , $ } .  

3.1.1. Neutral Rules 

Strict Consensus: For a profile P = ( T I ,  T2,,..  , TI) E I: the strict consensus rule sc(P) pro- 

duces a tree T such that C(T) = nfZl c(T,). 
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Notice that sc(P) is defined for every profile P by the facts about compatibility of clusters. 
 he strict consensus rule is paretian and monotone neutral. However, it does not satisfy axiom 
(1) nor even axiom (F). The critique of the strict consensus function is that it is not very infor- 
mative - minor differences between the clusters of the trees in the profile can lead to the out- 
put tree not containing any clusters at all. 

onsensus: The strict consensus is a special case of a family of consensus rules 
Id consensus rules. These rules are best defined as k-consensus rules for each 

positive integer k. Let 1 5 t(k) l k. A t(k)-t e c is defined as follows: 
 or a profile P = ( T I ,  ..., Tk) E I ~ : ,  c(Pf contains those clusters that are present in at least t (k)  of 
the input trees. 

Unfortunately, threshold consensus rules are not necessarily well-defined when t (k)  < k/2 
since the set of clusters that must be present in the output may prove to be incompatible. How- 
ever when t (k)  > k/2, the threshold consensus always exists. If A and B are two clusters that 
must be present in the output tree, then each of them occurs in at least t(k) of the trees in the 
profile and since t(k) > k/2  there must be some tree in the input profile that contains both A and 
3 as clusters. Thus A and B are compatible. Since such compatibility holds for each pair of 
clusters in the output, the set of output clusters are compatible and c is well-defined. 

The case of t (k) = k is exactly the strict consensus. Another case of importance is 
t(kj = (k + 1)12 and this threshold consensus rule is called the majoriQ consensus rule. 

The case t(k) = k/2 leads to some analysis of theoretical interest. For k odd, this is still the 
majority consensus. For k even, it is possible that the set of clusters that are required to be in the 
output are not compatible. The so called me rare chooses an output tree that con- 
tains all the clusters that occur in strictly greater than half of the trees in the input profile as well 
as a subset of the clusters that occur in exactly half of the input trees. The problem of deciding 
whether there is a binary tree of this form is ~ ~ - c o n ~ ~ l e t e ' ~ .  

Consider a metric space on I;, where d(T1, T2) is defined to be the cardinality of the sym- 

metric difference of C(TI)  and C(T2) for T, ,  T2 E ?;,. A consensus problem in this context is, 
given a profile (TI  ,..., T J ,  find a tree T that minimizes c;=, d( l ; ,  T) . It is easy to see that any 

tree produced by the median procedure is optimal for this criterion. Although this metric space 
seems too coarse to produce informative trees, the idea of posing the consensus problem as an 
optimization problem in a suitable metric space is attractive and worthy of further exploration. 

Further generalization of threshold rules: ~eumann'\rovides a nice characterization of 
neutral rules on rooted trees. Associated with any neutral k-consensus rule c is a set D(c) of 
subsets of (1,2, ..., k )  such that if X, Y E D(c) then X n Y +@. Furthermore, for a given profile 
P = (TI, ..., Tx) E I:, ti cluster A is in c(A) if and only if {ilA E Ti} E D(c). This is possibly the 
last word on neutral rules. 

3.1.2. Faithful Rules 

Neumann presents a common framework for deriving all known faithful rules. However, this 
does not represent a characterization of faithful rules and such a characterization is an interest- 



Let The a rooted tree with leal' sct 3. An c1.vl~ertr,sior~ of 7' is obtained by applyillg the follow- 
ing operation any number of times (possibly 0 tinws): Choose an edge (&[, 11) in the c i l ~ e n t  tree 
alld create a new node \tr in the middle of' this edge. That is, make H. a child of rc :und the parent 
o f v ,  Thus, the expanded tree T differs li.0111 Tonly in that it (possibly) has sollle 2 in- 
ternal nodes. Let 11 be the parent of 11 in 7'. Suppose in 7" we have a path lr  = q,, al,,.., a, = v 
between u and v. Recall that N(rl) and N(\* )  are the clusters associated wit11 LI and v respectively 
and notice that the C O I I V ~ ~ ~ ~ O ~ I  of T to T docs no1 chnngc 111~s~" C I ~ I S ~ ~ I S .  For some I such that 
0 5 i c 1 we treat N(u)  as the cluster ~rssociatcd with (I , , ,  (11 ,..., t r ,  and N(v)  as the cluster. associ- 
ated with a,,,, ..., 0,. Consider this assi~nrnent of' clusters to the new nodes part of the exp~msion 
process. 

For any rooted tree T (including trees with internal nodes ol' degree 2) the ~loptll of' a node 
1, (denoted d(v)) in T is the length of' the pati1 fro111 the ~ w t  to v. We will also d e h e  the depth 
of the cluster N(v) to be the s m e  as the depth of 11.  Wc curt now define a hunily of FCiithfu1 
rules: 

Given a profile P = (7'1, T7, ..., TI,) the first step i n  the rule is an expansion of each of the trees 

in the profile to create a new profile P' = (T,', Ti. .. .. ?'I;'). L'(r(P)) (the clustcr encoding of the 

consensus tree) is defined to be 

The proof of ~eumann"  can be oscd to provc that cvmy riilc defined in this manner is faith- 
ful and well-defined. 

Given a rooted tree T with leaf set N = { I .  2, ..., ir }, for any A U N define Icn7 (A) to be the least 
common ancestor in T of the clcmcnts in A. Using the notation " v  < 11" to denote the fact that 
node u lies on the path from node l1 to tllc nx)t and 1~ ;r- I: we can defhe a partial d e r  on the 
least common ancestors of subscts of N .  

RT = {(A, B )  : A c N, lcnT(A) < Ic.crl(B) 

Based on this relation he defines a consensus rule r os follows: Given a profile P, c(P) = 7' 
 here Tis  the unique tree satisfying the Following two properties: 
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Neumann states that the Adams consensus method is faithful. Although, the ori@nal paper 
describing this method' gave an exponential time procedure for computing this consensus func- 
tion, subsequelltly other authors have shown that it can be constructed very efficiently". 

Adams argues that nestings serve the role of basic informational blocks or bricks better than 
rooted triples. However, the more efficient computation of the Adams CQnSenSuS is achieved by 
an algorithm that views triples as the bricks suggesting that a triple-based view is at least as 
powerful as a nesting based view. 

3.3. Triples and Local Consensus 

As explained previously, looking at consensus rules restricted to rooted trees with 3 leaves 
captures a lot of information about these rules. h particular if the consensus rule satisfies axiom 
(I), information about its behavior on such trees completely determines the rule, 

Local consensus rules are a family of triple-based rules and were defined by Kannan, War- 
now, and ~ o o s e ~ h ' .  We will use the term triple pr.o$les to indicate profiles where the leaf set of 
each tree is a set of three elements. A local consensus rule is defined by a set of strong and 
weak constraints. Both types of constraints map triple profiles to particular shapes of these tri- 
ples. Let A = {x ,  y, z) and let C be a constraint that maps a triple profile PA to a particular shape 
S on A. Such a constraint is satisfied by a consensus ruk, c, if given any profile P such that 
PIA =PA, c(P) contains the shape S. All local consensus rules require that 2111 strong constraints 
be satisfied while a maximal number of weak constraints must be satisfied. 

The generality of the definition of local consensus rules leads to a rich class of such rules. In 
particular, several of the rules we have discussed including the strict consensus and the Adams 
consensus can be viewed as particular local consensus rules or minor variations of such rules8". 
The generality also means that while many of the rules are easy to compute in a unified frame- 
work, some are NP-hard8. In addition, the class of local consensus rules contains neutral rules, 
faithful rules, and rules that are not well-defined on all profiles. The particular choice of rule 
can be made by the user based on particular assumptions about the data set at hand. 

Of particular interest are the local consensus rules that are not well-defined on all profiles. 
Traditionally, such partially-defined consensus rules have not been studied at all. However such 
rules may be attractive where the data set is suspect, and the non-existence of a consensus tree 
points to problems in the data. 

Discussion and Conclusions 

In this paper we have surveyed some of the literature on consensus functions with a focus on 
consensus functions on rooted trees. Such consensus functions are widely used in the construc- 
tion of evolutionary or phylogenetic trees on data sets. The need for such functions in this aP- 
plication arises for a number of reasons. 

Data from different genes may support different trees for the same set of species. 

Different algorithms with different objective functions may support different trees for 
the same set of species. 



The choice in all these cases is either to find a consensus of all the potential t ~ e s  or to try to 
find a subset of the species on which all the trees in the profile are in agreement. The latter ap- 
proach leads to the maximum agreement subtree problem which also has a 1;irge literature not 
reviewed in this paper. 

Axiom (I) does not seem very appropl-iate in the biological context. A number of authors 
have argued that in the phylogeny context the shape of a triple (a, h, c)  in the consensus tree 

be influenced by the position of other species. The neutrality axiom is not perfect either. It 
is possible that the existence of certain clusters is confirmed by evidence not present in the 
profile of trees provided to the consensus algorithm. In such cases it may be proper to infer this 
cluster in the output on scantier evidence than required for some other cluster. Thus the search 
continues for appropriate axioms for consensus functions of rooted trees, at least for the appli- 
cation to phylogenies. 

One possible solution is as follows. The current axionls view the existence or non-existence 
of clusters as a 0-1 event. However, the process of evolution is continuous and the trees used to 
model this process can be assigned weights on the edges (corresponding to time) to reflect this 
continuity. If the profile consists of weighted trees it may be possible to talk about the clegrer of 

support for a particular cluster in a particular weighted tree. It may then be possible to define 
appropriate weighted notions of axiom (I) and the neutrality axiom. It is even conceivable that 
there are reasonable consensus functions that satisfy axiom (I) as well as the neutrality axiom in 
this context. 

Quite rightly, the focus of papers on consensus functions has so fir  been on the mathematics 
rather than the computer science. With a reasonable understanding of' mathematical limitations 
it is now worthwhile to look at the computational complexity of consensus functions as done, 
for example, inh'12's. 
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