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Abstract

Vector controlled PMSM servo drive is a MIMO full state feedback system. Since only the measurable quantities are
used as the feedback to the controller, the whole problem is treated as a linear quadratic tracker (LQT) with output
feedback for the purpose of designing the optimum controller to meet the given specifications. The performance of the
optimal controller is evaluated by studying the transient and steady state response to step changes in reference speed.
The sensitivity of each current and speed loop controllers to changes in motor parameters and load torque are investi-
gated. A torque observer is used for the feedforward torque control to make the optimal controller robust against load
torque variations.

Major discipline: Electrical Machines and adjustable speed drives(5).

1. Introduction

The control of electrical motors used in high performance servo drives and robots demand con-
trol concepts that can achieve high dynamics and the prescribed accuracy for all operating
conditions. The class of reference input signals, external disturbances, parameter variations and
the power source characteristics define the operating conditions of the servo drive. Among AC
motors, the permanent magnet synchronous motor (PMSM) has a high power density and
torque to inertia ratio, because of the use of high quality rare-earth magnetic materials, that
make it the most popular choice for replacing DC motors for servo applications in the power
range of 1-10 kW", The PMSM with sinusoidal flux distribution is preferred over the one with
trapezoidal flux distribution due to lower torque ripple. Generally the control design is based on
linear models with the assumption that the mechanical and electrical time constants differ at-
least by one order of magnitude which result in series control structures. In many industrial
drives, the vector controlled PMSM with current controlled voltage source inverter and PI
speed regulator has been used as high performance servo systems. The PI controller is simple
and easy to implement. Also it is known that it can yield attractive controller performance and
robustness properties. Such controllers reject constant external disturbances, and has good low
frequency disturbance response properties. The overall performance of the drive system de-
pends ultimately on the selection of the controller parameters. However, as application fields of
servo systems expand, various high-grade demands for speed control characteristics arise. For
example the spindle of an NC machine is required to maintain constant speed under fluctuating
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load torque conditions, a robotic arm should be able to maintain its velocity and trajectory in-
spite of variations of moment of inertia etc.

The conventional PI controller design is based on the linear SISO systems control tech-
niques, However vector controlled PMSM is a MIMO system which has a non-linear model and
it exhibits coupled dynamics. This paper presents the design of controller for a PMSM by opti-
mal control methods. The performances of the controllers for a wide operating range are evalu-
ated. The sensitivity of the controllers to plant parameter variations and load torque variations
are compared.

2. Vector control of PMSM and the motor dynamics

Control of PMSM can be achieved either through closed loop field oriented control, where
the two physical quantities generating the torque i.e. the flux and the current are kept orthogo-
nal to each other or through the open loop control without field orientation such as v/f control.
In the field oriented control of PMSM the flux producing component of the stator current
is made zero and the torque component of the stator current is made orthogonal to the magnetic
flux. Field orientation gives good dynarnic performance but suffers from poor disturbance
rejection at low speeds. In servo control problem this implies that the error in speed caused
by a torque disturbance is independent of the speed at which the motor is running. On the other
hand in v/f control the field disorientation gives better disturbance rejection (i.e. small peak
deviation from set speed) at low speeds. But the transient response is inferior to the field ori-

ented control. The block diagram for the field oriented speed control of @ PMSM is shown in
the Figure 2.1

The torque is controlled by the Iy loop and the flux by the Iy loop. The speed is controlled

by the outer loop. The torque and speed dynamics of the vector controlled PMSM is shown in
equations (2.1,
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Fic. 2.1. Field oriented control schematic of a speed controlled PMSM drive.
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From the equations (2.1) it can be seen that the d- and g- axis equations have cross coupling
terms. These crass coupling effects becomes significant at higher speeds and can be cancelled
by feedforward compensations as shown in the Figure 2.1, to achieve decoupled control of d-
and - axis currents.

The error between the commanded and actual speed is operated upon by the speed PI
controller that will decide the required current reference for the torque. In the constant air gap
flux mode of operation, the direct axis reference current Iy, is made zero. PI controllers are
used as current controllers. The error generated by comparing the demanded corrent with the
actual current of the motor, is passed on to the current controller. The output of the current
controller with proper decoupling gives the necessary reference voltages in the d-q axis refer-
ence frame. These voltages are then transformed into stationary reference frame and are given
as the reference voltages to the inverter. A 1 kHz sine-triangle PWM inverter is used. The
maximum lag of the inverter can be half the period of the carrier frequency. i.e., 0.5 msec and
the motor electrical time constant is 8.2 msec. In practice, antialiasing filters are used to filter
the measurement noise that oceurs at frequencies greater than 50KHz. The bandwidth of the
system is 122 rad/see. The frequency of antialiasing filter is fixed as 490 rad/sec without loss of
information. The motor parameters used for the simulation is shown in the appendix L. Applica-
tions such as machine ool drive require fast response to stép change in speed without any over-
shoot. So the speed controller design is aimed at critical damping and the settling time less than
100 msec.

3. Optimal control

Due to the interaction of the control loops in a multivariable system, even though each SISO
transfer function can have acceptable properties with step response and robustness, the coordi-
nated motion control of the system can fail to be acceptable’. By using modern control tech-
niques, many of the limitations of the classical controls for multivariable feedback control sys-
tems can be overcome. Modern control designs use fundamentatly time domain technique
whereas classical control designs use {requency domain technique. In the modem controller
synthesis using state feedback technique, all the states must be available for feedback. To over-
come this difficulty, output feedback is used. Further unlike the full state feedback, the output
feedback control law allows any dwud dymumcal contro] structure, thereby regaining much of
the intuition of classical control duxg

For a MIMO system, eigenvalues and eigenvectors are to be assigned to the closed loop
feedback system to achieve some desired dynamical transient response characteristics’. In a
multivariable system, eigenvectors determine the shape of the response modes and the eigen-
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values determine the domain characteristics of the response. In servo drive control it is always
desirable to have a time invariant response, in which the convergence characteristics of the
system are clearly known to the users. The closed loop eigenstructure assignment technique hag
been used in the design of state feedback control law for eftective shuping of the time response
for MIMO time invariant systemss. In such systems the designs always lead to unigue feedback
gain matrix because of the time invariance. But this method is inadequate when it is used to
formulate a feedback control law for a MIMO time varying PMSM system described in equa-
tion (2.1) where the system matrix keeps changing with the speed of the system (®.). To main-
tain the time invariant response mode, a varying eigenstructure assignment has to be carried
out.

An alternate approach to the eigen structure assignment technigue is the optimal control’,
When applied to a MIMO time varying system, the optimal control designs transter the itera-
tions on eigenvalues and eigenvectors to the iterations on elements in a cost function 1. The
resultant optimised designs will achieve some compromise between the use of the control effort
and the response, and at the same time guarantees a stable system. Each iteration on the parame-
ters in J produces a candidate design that can be evaluated considering the specitications, To
achieve the optimal controller, a linear guadratic performance criterion of states and inputs are
minimised. For standard discrete LQT with output feedback problems, the performunce index
used is

M A
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where x" and u" are state and input deviations respectively, Q is the state weighing matris, R
is the input weighing matrix, e~ is the steady state error, V the steady state vrror weighing ma-
trix and g;; the weight of the gain element k;; of the gain matrix K. In the present case, because
of the PI structure of the controller, the steady state error will be zero and hence the correspond-
ing term in the performance index can be made zero. For the selected controller structure it
can be seen that this is a special case of output feedback that is also a full state Teedback. How-
ever the linear quadratic tracker with output feedback approach is used to obtain the optimum
gains.

The stability margins of the linear quadratic regulator in the continuous-time cases are in-
finity and 60degrees for gain and phase respectively'”. Although discrete time optimal linear
quadratic regulators have margins inferior to continuous-time case, guaranteed phase and gain
margins have been obtained'"’, The deficiency of the stability muarging arises only in cases where
the optimal feedback gains are very large. So it cannot occur in discrete-time case and the sta-
bility margins will thus provide a reliable indication of the robustness of the corresponding dis-
crete-time optimal regulator.

4. Formulation of PMSM drive as an optimal control problem

The dynamic model of PM machine transformed to the d-q reference frame® in continuous state
space form is given by equation (4.1).
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Which is in the form oy, = A.x, + By, ¥p = Cpxyt Dyt where
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The plant states and outputs are x, = v, = [1, 1,,]";
Inputs to the plant are 1, = |V, Vu,][.

Since an anti-aliasing filter is also used in the control path to filter out the high frequency
noises such as measurement noise, the dynamics of the anti-aliasing filter should be included in
the system formulation. Here a low pass filter of the form H,(s) = a/(s + a) is used. For the mo-
tor details indicated in the Appendix-1, the bandwidth is 122 rad/sec. The filter frequency is
selected as 490 rad/sce. The anti-aliasing filter dynamics represented by the matrices A,, B,, C,

and D, are
. -4 0 5 a 0 . I 0 D 00
T =0 a0 1T T o of

The filter states and outputs are x, = v, = [14, I_W]T;
The input to the filter are u, =14 1,‘;]"}

The filter states augmented plant G, is described by the matrices A, B, C. 8nd D, which is
given by

patt = A, [2x2) where a,,=0[2x2];

part - Gpa2 ;
Apg —_—{ : " [4x dmatrix]; e

“m:l ;o padl

a 0
dpn =Ay . [2X2]; Upaat = 0 gl [2x2];

b,
B,,‘,::[b’ ”]...[4x2];

pull
where bl’”” = B,,... l2 X 2], bpull =0... [2 X 2];
The states of G, are x,, = [x, X, 1" input to G, are uy, = i,; and ontputs are Yp, = Yy

The augmented plant G,,(s) is transformed into the discrete domain using the ZOH equiva-
lent transformation to obtain G,(z). The transformed G, must be augmented to the discrete
current controller dynamics.

The digital current controller structure for the PMSM drive is as shown in the Fig. 4.1. The
dynamics of PMSM that is transformed into the discrete domain and the dynamics of the com-
pensators form a part of the system formulation. The sampling frequency of the current loop is
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Fic. 4. 1 Digital current controller structure for PMSM

selected as 5 kHz. The delays due to computations and the inverter lag are taken care of by in-

troducing a sample delay at each of the current loops.

Referring to the Fig. 4.1, the delay dynamics can be represented as
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and the PI dynamics can be represented as
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where T is the sampling time of the analog current feedback signal.

Combining the equations (4.2) and (4.3), the compensator dynamies (G, can be written s
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ie x(k+ 1) =A, x (k) + B.uk); where
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The states of G, are x, = [e1q €14 €29 €3] 3
the inputs to G, are 1. = (L Ly, I,,»,I,,,fl‘,,,,:,-]T; and the outputs of the G, are y,. = X..

Augmenting the compensator G, to the plant-filter Gy, dynamics, the total system dynamics
G is obtained. If the complete system is represented in the form

xa=Ax+B w+E ryy=Cx+F.or; z=H x (4.5)
ay  ap
A =[ " I“j|‘.. [8x8;where a)y = A,,...[4x4);
4y dm
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The augmented total system is shown in the Fig. 4.2. The system states, inputs, reference in-
puts and outputs respectively are

x=[,x]" . Bx 1 u= Upa = Uy [2X 115 1= [Iydrqu.cqu]r; y=y_.[4x1];
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Fia. 4.2. Augmented block diagram for the current control of the PMSM with output feedback.
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form of the LQT with the output feedback.

Kpd 0 Kid . .
where X = . It is evident that the PMSM is formulated in the standard

In practical servomechanisms the torque dynamics will be much faster than the speed dy-
namics. Moreover, the number of outputs that can be controlled is limited by the number of
inputs. So the controller structure is divided into two as in the case of conventional methods, (1)
the fast current controller loop and (2) the slower speed control loop. The current controlled
loop is a two input -two output system, where as speed controlled system can be reated as a
single input single output system. Hence both controllers are designed separitely with respec-
tive loop dynamics.

Considering the speed control loop, the plant can be approximated s a first order lag corre-
sponding to the mechanical time constant of the rotor., The block diagram for the speed control
loop is shown in Fig. 4.3. A lag of 10 msec, is introduced at the speed feedback to account for
the speed sensor lag in practical systems. This lag is represented in the form of 1/(1+7Ts) where
T; is the sensor lag. As this is a first order system it is possible to use standard classical SISO
techniques to design the speed controller. But this will not yield optimum gains. Therefore the
same method used for optimal current controller design is used to design the speed controller
also, by formulating it as a LQT problem with output feedback.

The plant dynamics Gy, is described by matrices Apos Buo, Cypand D, where
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Fic. 4.3, Structure of digital speed controlier for PMSM.
Apw = [-B/ 1] where B, = friction coefficient; and J,, = rotor mechanical inertia.
By = [1/],,]: The state of G, 15 3,0 = [0,); the input is Upw = [Vl and the output is Voo = Xpa

The sensor dynamics should be augmented to the plant dynamics. The sensor dynamics G can
be described by the matrices A,, B,, C, and D, where

A= U B = UT Co={1]: and D, =[0];
The state and output of G, 18 v, = v, = [,,]; and the input is u, = [©,];

The augmented sensor plant dynamics G, is given by the matrices Ay, Bgs, Cop and Dy,

(=B, /J, 0 1 [-11d, 0
where A, = T e R [01};and D, =0

The states of the sugmented plant are v, = {0, ©,,]"; the input is ty, = = [V,] the output
iS ,\‘m» = “ﬂm\h

The continuous dumain (7, must be transformed into discrete domain and the digital com-
pensator dynwmics wust be augmented to get the complete system dynamics. It can be noted
that the speed control Toop is also a full state feedback system, Following the same frame work
for current controller design, the speed compensator G, is represented by the matrices A, Beo,
Cooand D, where

rn n} Tl I
AL =) LR, e . T, is the speed sampling interval.
(N1 l Y lj ¢ {' Im / 2 '[;[) /2} € \p p g

The states of G, 8¢ X, = (€10 €10]':
the inputs are u, = {0y, (v),,;.“(,‘}"; and the outputs are Yoo = Xeeh
The plant augmented to the compensator and the sensor is denoted by G,

T . o\ = T. ;
The states of G, are \(,, e 1w €20 W (x),,,J" the outputs are Y, = [e1,, €2, ®y,,] > and the in-
PULS ATC 1, = [,y Wy Vi) 's The performance output is 2o, = Ho.Xo = [0y,
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Once the system is formulated in the form given in equation (4:5) the upt‘imai speed feed-
back gains can be obtained by following the same steps as is done for the ogtnnal current con-
troller design. For variable speed industrial drive applications such. as machine tool drive, it is
required to have fast response to step change in reference speed wnt?wut any overshoot. So the
speed controller design is aimed at critical damping and the settling tlnlfi less than 100msec. For
fast transient response and limited current, the' current controller spectfications are decided as
¢ = 0.707 and settling time of the current loop should be less than 5 msec.

5. The Optimal controller design

The application of the performance index J to the control system design achieves an optimal
system that compromises the minimum state errors and minimum energy criteria. The objective
now is to determine the gain matrix K. The optimal feedback gain matrix K can be obtained by
minimising the performance index given in equation ’(3.1) subject to the constraint of the Alge-
braic Riccati Equation (5.1) for discrete time systems” i.e.,

roT
A'PA -P+0+CKRKC=0 (5.1)
where A, = A - B.K.C is the closed loop system matrix
P a positive definite symmetric constant matrix.

Now the optimal cost of the system becomes

J=—i—t;-(P.X)+%2i > (k) -

where X =X.%7 and X =~(A, —I)"' B,.r is the state at steady state and B =1 -BKVFis the
closed loop input matrix.

=)
tJ

The minimisation problem may be solved using one of the numerical techniques available
such as SIMPLEX method. With SIMPLEX method we can f{ix any gain element of the gain
matrix K and obtain the optimal gain values for the rest of the clements in the gain matrix by
minimising the performance index J. This in fact gives a lot of flexibility in arriving at the sta-
ble optimal gains of the PI control structure for the system. Once the system is formulated, the
entire optimal contro] problem can be boiled down 10 the selection of Q and R matrices to ob-
tain the desired closed loop system response. The steps for obtaining the optimal gain values are
as follows.

Step 1: Choice of the initial stabilising gain matrix: As already mentioned in section 5, the
optimisation process is an iterative process. Therefore to start with, an initial gain matrix K that
makes the closed loop system (A - B.K.C), stable has to be used. The gain cun then be opti-
mised by minimising the J. The PMSM and the combination of compensator and PMSM are
both open loop stable. If the feedback gains are very small, then the closed loop poles are very
close to open loop poles and hence the closed loop system is stable. As a result, the initial pro-
portional gains are set to zero and the integral gains are chosen as 0.01. This will usually pro-
vide the system stabilising starting gains for the PMSM, which can be ensured by checking the
closed loop eigen values are within unit circle.
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Step 2: Choice of state and input weighing matrices Q and R: When the system is formu-
lated as a LQT with output feedback, problem of designing the optimal feedback gain depends
on the selection of the Q and R matrices to obtain the desired response of the closed loop sys-
tem. The translation of specifications into Q and R is imprecise and so selection of Q and R
need to be iterative. If the state vector is so selected to have physical significance, then the
choice of Q, R entries are more readily reflective of physical insights especially if diagonal Q,
R are used. To have control over the closed loop eigenvalues and eigenvectors of a multivari-
able system, Q is sclected as p. H" H. where p is a scalar and H is the performance output ma-
trix. If p is assigned a large value | the resulting gain leads to a fast response of the system and
vice versa. For a multiple input system if R is selected diagonal, the system can tolerate inde-
pendent gain variations without disturbing stability. But with entries of very different sizes give
poor robustness to input cross coupling. So R can be selected as p.d where d is a diagonal ma-
trix and 1 is scalar. If pis selected large, the resulting gains K will lead to a slower system re-
sponse and vice versa.

Step 3: Minimisation of the performance index, J : The performance index J = 12/.tr(PX) is
minimised under the constraints of equation (5.1) using the subroutines for SIMPLEX method
available in MATLAB. This results in the optimal feedback gain K. The step responses of the
system for various values of Q and R are shown in the Figure 5.1. To meet the specification
requirements, the gains corresponding to (d) are selected.

The speed responses for step reference corresponding to various Q and R are shown in the
Figure 5.2.

response to Isq reference
v T

03 50 100 150 200
No. of samples --- one sample =
Kpd Kid Kpg Kiq Q R
(@  [-6.2837 ~473.0803 237608 -169.1319];  OOL*H'H;  diag [1000 1]
(b [-24.305¢ 8117125  -5.6957 ~956.251; 0.01*H'H;  diag [100 1
(€)  [~29.6732  -687.9348  -2.1968 ~285.1706]; 0.01*H'H;  diag[l 11
(d)  [-24% ~1019.6 b -907.1%; 0.01*H’ . H;  diag [100 11

FiG. 5.1. Step response of Isq for different € and R at @, = 300 rad/sec.
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6. Torque observer design

Classical controllers employing integral feedback are well known for their by product property
of constant disturbance rejection and / or achieving the set point regulation’’. The idea i that
the input to the integrator can asymptotically be zero, yet the output asymptotically constant so
as to allow cancellation of the disturbance and / or asymptotic set point reference tracking of the
reference ‘r’. For set point regulation , there is an external constant reference ', and one seek a
controller such that the plant output tracks *r’ in the presence of constunt unknown distur-
bances. It is proved that we can achieve fufly the gouls of arbitrary set point regudation, only
with additional arbitrary constant dissurbance inputs, when the plant matrix is syuare and with
no zero at the origin'In the proposed controller design procedure, the foad torgue is treated as
an external disturbance that can be observed. Hence a disturbance load torgue observer s de-
signed to feedforward the extra input required to compensate for the load distarbance at the
drive to get robust performance against load torque variations.

For flux vector controlled drives the current control loop time constant is small cnough to be
neglected (3 ms). Then the machine transient can be represented as

\[”.d/d[ mm + Bll~®lu + Tl, = KT/}-“_«/ ((1’- 1 )

Let J, =T, + A, Kp, = Kr= AKy, and B, = B, + AB,, where J,,, Ky and B,, are nominal values
and A represents the variations or unknown parameters.

Now the equivalent disturbance torque T} (5) can be written as"

Li($)=TL()+8B,,.0,()+A,,.5.0,(5) = AK . ], () (6.2)
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o (8)

v

Tus+ By, N

A
Td (S}
Fig. 6. Block diagrum of motor and equivalent disturbance observer
The terms on the right hand side represents the external load torque, torque due to parameter
variation and the torque variation due to flux vector control failure and torque ripples respec-
tively. From equations (6.1) and (6.2),

Ta($)= Kyl ()= 87,,0,(5) - B,,(s) (6.3)

The estimate of disturbance torque is constructed by using a low pass filter [1/(T,.s+1)]. This is
an observer with T, as the observer time constant [6]. By block diagram simplification, the fol-
lowing transter functions are calculated.

e pe ) Lo (6.4)
Ty T.s+ifJ,.s+B,

Since 7, is very small, o,(s¥7T;(s) becomes zero quickly. Thus the equivalent disturbance has
been cancelled by the approximate zeroing method. Now,

w,s) Ky
l.\‘qn;f(s) J" N B"

(6.5)

shows that the dynamics of the system are not been changed for the controller design point of
view.

7. Design of robust controllers for PMSM drive

For designing the optimal controllers, it is assumed that an exact state variable description of
the plant to be controlled is available. However in practical situations, the actual and the model
plant will never be identical. Some of the parameters such as stator resistance, rotor mechanical
inertia, rotor frictional coefficient, may be at variance with respect to that of motor model,
which could lead to deterioration in performance and stability. Therefore it is important to con-
sider the stability robustness and performance robustness for designing optimal controllers.
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The studies on the robustness propesties of a stable closed loop system transfer function
shows that these properties can be represented in tel;n[ls of the singu%ar values of ‘sensitivity and
complementary sensitivity (cosensitivity) functions™ . The sum of these two tm?ctmns is an
identity matrix. The key results of the study on the relutil(:n between these functions and the
desired properties are tabulated as shown in Table 1. below ™.

where O represent the maximum singular value, S is the sensitivity function, §=(/ + GGy,
T'=G,G(+ G,G.)""; the cosensitivity function and G,,G. are transfer functions of plant and
compensator respectively. In the present design, it is desired o keep the tracking error small in
the face of the measurement noise. To ensure small tracking error, S(jw) should be small at
those frequencies where the reference input r(£) and disturbance () are large. This will yield
good disturbance rejection. On the other hand, for satisfactgq: sensor noise rejection, the cos-
ensitivity T(j®) should be small at high frequencies say at o "

This is guaranteed if ~ 5(GG) << L, fora>=w, (7.1)

To guarantee stability robustness in the face of plant modelling uncertainty, it is given that
the cosensitivity T(j®) should be bounded abave by the reciprocal of the multilplicative model-
ling discrepancy bound m(®). i.e.,

o (T(jw)) < 1/ m(w) (7.2)

If the worst case uncertainties in the parameters like stator resistance, rotor mechanical inertia,
rotor frictional coefficients etc. are known, then the upper bound m(®) can be found from

M(j®)=(G, - G,) G,
m(j©) = & (M(jm))

where G, represents the actual plant.

(7.3)
(7.4)

In this paper, the worst case uncertainties in the parameters considered are 50% t(} 500%% of
rotor inertia, 50% to 150% of stator resistance and friction coefficients. Normally the stator
resistance variations of a PMSM are very small, less than 10% of the nominal value and the
stator leakage inductance variation is almost nil.

The Fig.7.1 shows the stability robustness graph of the inner current loop of the PMSM
servo drive considering the assumed worst case uncertainties in the parameters at a rotor speed
of 300 rad/sec. Fig. 7.2 (a) and (b) shows the stability robustness of the outer speed loop of the

Table [

The rale of sensitivity and complementary sensitivity in classical control

Property desired S or T constraints
Tracking O (S) small
Disturbance suppression O (S) small
Noise suppression e (T) small

Control magnitude limitation
Sensitivity to structured plant parameter variations
Sensitivity to unstructured multiplicative uncertainty

§ (S) not small when & (G,) is small & ($) small
O (8) small
O (T) small
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FiG. 7.2, Stability robustness of speed loop with 500% J_and 150 % By at 0= 300 rad/sec.

 in rad/sec.

PMSM drive using different values of optimal gains at 300 rad/sec. As seen from the equation
(4.1, since @, also forms a part of the system matrix, the matrix A as well as the optimum feed-



484 R.MARY LOURDE, er al.
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Fi6. 7.3 Optimal controller gains at various speeds

back gains of the system will vary with @ . Hence the robust optimal feedback gains of the PI
controllers should be found at various speeds. Accordingly, the optimal controller gains com-
puted at various rotor speeds are pictorially represented in the Fig. 7.3.

The gains corresponding to speeds other than that marked in the Fig. 7.3 can be obtained
through interpolation.. Alternately, a constant feedback gain which is optimum for a particular
speed (for example corresponding to the rated speed) can also be used for other reference
speeds. But these gains may not be optimum at other reference speeds. However they result in
stable closed loop system for PMSM drive over the entire range of speeds. It is verified and an
example is shown in Fig. 7.4. The Fig. 7.4 illustrates the stability robustness of the inner current
Joop of the PMSM drive at different speeds using the optimal controller gains corresponding to
a reference speed of 300 rad/sec. It is evident from the Fig. 7.4 that even though the magnitude
of the robustness bound change with rotor speeds, the maximum singular value of the cosensi-

tivity function T(jw) is well with in the bound and hence the closed Joop system is stable at all
speeds.

The Fig. 7.5 shows the stability robustness of the speed loop in the face of the motor me-
chanical parameter variations at different speeds using the gains corresponding to the rotor
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speed of 300 radfsec. Tt is tound that {or the speed loop, the effect of using constant speed feed-
hack gains at all speeds on the stability robustness is alimaost nil.

From Fig. 7.4 it is noted that using the gains corresponding to higher speeds than the refer-
ence specds, increases the stability robusiness of the drive. However, stability robustness of the
drive is decreased when using the gains corresponding to lower speeds than the reference
speed. Hence it one need to use o constant feedback gain for the entire range of reference
speeds, the gains corresponding (o the rated or maximum speed can be used while ensuring the
stability of the closed loop systen.

8. Simulation results

The simulation results using the optimal P controler is shown in Figure 8.1. The motor is
given a reterence speed uf 300 rad/sec. and it is disturbed with a load torque of 5 Nm. at 0.4
sec. atd the load is released at 0. 7seconds, The results are shown in Figure 8.1.

The effect of motor parameter variations with optimal controller is simulated and is shown

in Figure 8. 2w und (b below.

It shows that the controller has good disturbance rejection and is robust against parameter
variations, The variations in mechanical constants such as moment of inestia and friction coef-
ficient affects the speed of transient response. From the simulation results it can be noted that
for the varigtions in moment of inertia and friction coefficient that are the most likely parame-
ters at variance, the optimal controller gives very small variation in output therefore it is robust.
The performance of the controllers at low speeds are illustrated in Figures 8.3.
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FIc. 8.1. Response of the drive using optimal controllers

9. Conclusions

The structure of the controller being fixed as Proportionat-Integral (PD), the algorithm for tuning
the controller parameters based on optimal control theory is illustrated. The performance of the
controllers applied to a PMSM servo drive were studied. The results show that the change in
speed due to a load torque disturbance and the steady state error is absolute irrespective of the
motor running speeds. The simulation results also show that with the PI controtier designed
using optimal control methods, desired time domain specifications can be achieved fur step
changes in the reference speed.

Frequency domain information is very useful in output feedbuck design methods for deter
mining robustness to disturbances and stability in the face of unmodelled dynamics. It also as-
sists in deciding the fineness of the gain scheduling such as low frequency bounds for the pa-
rameter variations as the state varies from the nominal operating point. While the classical con-
trol method concentrates primarily on the tracking problem, the optimal control method concen-
trates both on the tracking and regulation problem. Also in optimal control methods, constraints
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Appendix I : Motor parameters usedd

R, =0.98 obm/phase; L 8035 mibphine, Ao e 0 N b
B,, = Se-4 Nm/rad/s; Ky o= D012 vivadfsee b bR NmON,
Nominal speed = 3000 tpiy, Nom. vugrent = W4 A, Nowae foreque - 4 Nnn

Appendix IT : List of symbols used

Ry.Ly ~stator resistance and leakige mductane
Vi, Iy ~dircet axis voltage and current

Vi Iy Squadrature asis voltgw and current

Kg ~buck-emt constant ¢ valtsfrad)

Ky ~torque constant {Nm/A )
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