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Abstract 

Propagation characteristics of planar periodlc segmented waveguxdes consisting of infinitely extended parabolrc 
refractive index segments m the transverse drrection have been analysed usmg the matrix formulation of Gaussian 
beam propagation. Modal propagation and conlitmns far the existence of guided made in such a segmented 
waveguide have also been obtained. 
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1. Introduction 

Segmented waveguides consisting of a periodic linear array of high index regions em- 
bedded in a lower refractive index region (Fig. 1) have recently attracted considerable 
attention for applications to nonlinear interactions, particularly for second harmonic 
generation (sHG)'. Periodic segmented waveguides have been used to achieve efficient 
phase-matched SHG in KTP and L ~ T ~ O , ' - ~ .  In these structures, domain inversion and 
waveguides can be achieved simultaneously, making them very attractive for use in non- 
linear guided wave interactions employing periodic structures. Segmented waveguides by 
themselves are also interesting since the effective index and mode spot size of the propa- 
gating mode can be controlled by simply varying the duty cycle of segmentation which 
can be used in the efficient design of z-variant linear waveguide devices such as mode 
expanders, polarisation converters, wavelength filters, etc., and in periodic structures 
such as Bragg reflectors6, mode expanders, wavelength filters and polarisation convert- 
ers. Some studies on the linear characteristics of segmented waveguides have been re- 
ported recently by Li and I3urke7, and Weissman and f~ardy'. However, there is no sim- 
ple analytical method to study propagation in these structures. There have also been 
some experimental studies on the linear characteristics of segmented waveguides, em- 
ploying the concept of equivalent nonsegmented (uniform) waveguides9. ''. 

In a recent study, we have considered a planar periodic segmented waveguide formed 
by segments characterised by an infinitely extended parabolic refractive index variation 
in the transverse direction". Since the transverse distribution of the fundamental mode 
of a waveguide characterised by an infinitely extended parabolic index profile is  a 

*A p a t  of this work was presented at CEOT-94, Indian Instrtute of Saence, Bangalore, July 18-22, 1994 
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FIG. 1. a. A periadlr segmented waveguide compni- FIG. 2 a .  A penodlc xgmenrcd wiivcrude wlth pe- 
ing a linear array of high rndcx region?. h. Schemat~c nod A ~ n d  duty cycle 0 3 Variitliun ui bcsrv rpul rlrc 
of the loegrtudma! moss-section of a segmented (h) and phase fionx ( c )  ol the Gaowan mode along : 
wauegu~de; A is the period of segmentation. 

Gaussian (see, Thyagarajan et d l 2 ) ,  and since a Gaussian beam remains Gaussian on 
diffraction in a homogeneous medium, we expect the modes of the above segmented 
waveguide to be 'Gaussian-hke'. Using thc mztrix formulation of Gaussian beam propaga- 
tion, we have obtained simple analytic expressions for determining the fundamental 
mode parameters". The analysis shows that the effective index of the mode vanes al- 
most linearly with the duty cycle o i  segmentation, and is independent of the period of 
segmentation; the spot size of the mode varies along thc waveguide periodically, lepeat- 
ing after every period of segmentation and the average value of the spot size of the mode 
increases with decreasing duty cycle. These results are conslstent with Lhe reported rz- 
suits on segmented In this communication, we discuss the stabiiity of a 
mode in such a segmented waveguide, and obtain the condition for the existence of 
guided modes in such waveguides. We show that, dependmg on the waveguide parame- 
ters. there exists regions in which the field distribution becomes unstable and the beam 
diverges rapidly as it propagates through a distance of a few periods. Using typical val- 
ues for the waveguide parameters, we have illustrated the propagation behaviour corre- 
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sponding to different regimes of waveguide stability. For the sake of completeness, we 
have outlined the analysis in the following section. 

2. Analysis 

Figure 2a shows a periodic segmented waveguide with a period A and duty cycle 
y (= d lA)  consisting of alternate regions of high- and low-index media. We assume the 
refractive index profile of the segmented waveguide to be given by 

where nl  is the axial refractive index in the high index segment and a is a measure of 
gradation of the refractive index profile. 

Since a segmented waveguide is not uniform along the propagation direction, the 
conventional definition of a mode may not be applied. We may, however, define the 
mode of a segmented waveguide as that transverse field distribution which repeats after 
every period of segmentation; the reduction in amplitude of the field will correspond to 
the propagation loss, while the phase change with propagation determines the effective 
index of the mode. Such a definition is very similar to the definition of a mode in a lens 
~ a v e ~ u i d e ' ~ , ' ~  or an oscillating mode in an open optical r e s o n a t ~ r ' ~ .  Since the funda- 
mental mode of a waveguide is characterised by an infinitely extended parabolic index 
variation, one expects the fundamental mode of such a segmented waveguide also to be a 
Gauss~an under the paraxial approximation. We thus assume the field distribution of the 
fundamental mode of this segmented waveguide to be Gaussian and of the form 

where q  is the complex beam parameter, and is defined as (see yarivI4) 
1 1 iA -=--- 

q(z) R(:) m 2 ( z )  ' 
(3) 

h is the wavelength in the medium, k = 21r/h, R, the radius of curvature of the wavefront 
and w, the beam spot size 

Under the paraxial approximation, the transformation of a Gaussian beam through an 
optical system is described byI4 

where A,B,C and D are elements of the ray matrix of the optical system which relate the 
ray parameters at the input plane to those at ;he output; q, and q ,  are the complex beam 
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parameters at the input and the output planes, respectively. Thus, know~ng the valoes of 
the beam radius R(3,) and spot size w(z , )  a1 any given plane with z = z , ,  ?he correspond- 
ing values at any other plane with z = io, can be obtained using eqns (2)-(4). 

Propagation in a segmented waveguide consists of propagation through a hornogene- 
ous medium of length ( A  - d) ,  through a parabolic index medium of length d and re- 
fraction at the interfaces between the two regions. The ABC and D matrices correspond- 
ing to these are given by 

Propagatron t h ~ o u g h  a homo,qeneous medrum 

Propagation through a parabolic index medium 

Refraction at planur- inrerfuuce hetween media of indices o f n ,  and n2 

For propagation in the segmented waveguide shown in Fig. 2a, the A,  R ,  C and D matrix 
elements corresponding to one period of segmentarion are given by the product of the 
four ray-transfer matrices corresponding to two refractions, propagation through a me- 
dium of index nz of length (A-d) and through a parabolic index medium of length d: 

In writing the ray-transfer matrices for the interface we assume the refractive index in 
the region with parabolic refractive index as n, ,  which is the axial refractive index. 

As mentioned earlier, to determine the modes of the segmented waveguide, we look 
for those field distributions which rcpeat themselves after one period except for a change 
in amplitude and phase. Thus for an initial field f (x ,  z ) ,  if u(x, z + A) i s  the field distri- 
bution after one period, then for a mode we must have 

where I ol is a measure of the loss and 4 gives the phase change in one period. In ?he 
present case since we are considering infinitely extended segments, the segmented 
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waveguide will be lossless, i.e., I 0 ; = 1.  If qJ, R, and wJ are the Gaussian beam parame- 
ters in the plane P,, j = 1, 5 (see Fig. 2a), then for 2 mode we have q5 = q,,  or 

w5=wi ,andR5=R, .  (10) 

Using eqns (4), (8) and (lo), we get the parameters ofthe mode as 

In the above analysis we have neglected the reflection losses at the interface which are 
significant only when the condition for Bragg diffraction is satisfied. The total phase 
change in one period is given as 

The effective index of the mode is then given by 

nm =A, 
ko A 

From eqn ( 1  I), we see that if - > 1, then wl and hence new become complex and IAiDl 
hence under such conditions the segmented waveguide does not support any guided 
mode. This condition is similar to the stability criterion for a lens waveguideI4. Thus for 
stable modes in a segmented waveguide, we must have 

where = aA is the normaiised period and y = d/A is the duty cycle. It is interesting to 
note that the stability condition given by eqn (i5) is independent of the wavelength of 
operation and depends only on the waveguide parameters. 
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(for y = 0 1,O.S. 0 9) for a segmented wavegu~de w ~ t h  parameters given by eqn (16) 

3. Numerical results and discussior~ 

Consider a segmented waveguide with the following values of various parameters: 

ho = 0.85 pm, A = 5 pm 

Figures 3a and b show the variation of the effective index of the fundamental (Gaussian) 
rnode with the duty cycle (for a given period) and the period of segmentation (for three 
different duty cycles). These results are consistent with the recent experimental results o i  
Thyagarajan et  al.' and Ualdi et d l 0  and also with the theoretical results of Li and 
I3mke7 and Weissrnan and ~ a r d ~ ' .  Figures 2b and c show the variation of the beam spot 
size and the wavefront of the fundamental mode along the length of the waveguide. It is 
obvious that the mode of the segmented waveguide periodically diffracts and refocusses 
as it propagates through the waveguide. This is very similar to propagation in  a kens 
waveguide. Figure 4 shows the variation of the maximum vaiue of the spot size of the 
rnode (for a given duly cycle) with duty cycle. For smaller duty cycles, since the beam 
has to propagate over a longer distance in the homogeneous medium, the spot-size of the 
mode automatically increases to minimise the diffraction effects. In an actual segmented 
waveguide with finite transverse boundaries, this would also resutt in lower losses. 

The stahility diagram for the segmented waveguide is shown in Fig. 5. The shaded 
area corresponds to the region where If (A+D)l >l(i.e., where eqn (15) is not satisfied). 
Hence, the shaded arca indicates the region where the segmented waveguide does not 
support any guided mode. The stability predicted by our analysis is due to the fact that 
the diffraction effects are either under- or overcompensated by the convergence provided 
by the parabolic index segments, depending upon the waveguide parameters. Figurcs Sa 
and b show the variation of spot size of the Gaussian field along the length of the 
waveguide corresponding to the stable and unstable regions of segmented waveguide. 
The waveguide parameters are chosen such that in the first case the diffraction effects 
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Rc 4 Variation of maximum spot size as a function Wa. 5 Stabi!ay dmgi3-m of a pzruboiic trrden seg- 
o f  duty cycle for A =  5 pin mented waveguide The shaoed area corresponds to 

regions of unstable operation. 

are overcon~pensated by :he convergence (Fig. 6a), and are undercompensated in  the 
second case by the convergence provided by the parabolic index segments (Fig. 6b); thus 
in the unstable region any input field grows in transverse extent with propagation and 
eventually leaks out of the waveguide. This aspect is very important for practical reaU- 
sation of low loss segmented wavcguides. From Fig. 5 one can see that for & 2 3 the 
waveguide 1s stabje for all duly cycles, burit tor &> 3 thcre are regions of nonguidance. 
Practical parabolic index waveguides have a - 0.03. Thus, for stable operation Z < 3  
implies, A 5 100 urn. Hence, most practical segmented waveguides would correspond :o 
the stable region of operation. 

Although our analysis is presented for a segmented waveguide with infinitely cx- 
tcnded segments (in the transverse direction), it brings out many of the salient aspects of 

FIG. 6 Propagation of an mpui fie% i n  stahle and unsrrhlc regtons fox y= C 7 nnd A = 3 1 pm. The figures depct 
tile vvnatioa of spot size along Uio length of pra:agairor, represmnitg a. the cnsil of undezccmpensation, a d  5 
rbc case odovercornpessaoon of biffriractm efieils. 
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propagation in segmented waveguides. The present analysis can also be easily extended 
to segmented waveguides with segment.; consisting of infinitely exlended parabolic in- 
dex variation in both transverse directions. Our analysis may he applicable with little 
modiCication to study huried graded index segmented waveguides. 

In conclusion, we have n~odelled segmented waveguides with infinitely extended 
paraboii~ index segments in terms of propagation of the mode, and dependence of the 
effective index on the duty cycle and the period of segmentation using the matrix formu- 
lation of Gaussian helirn propagation. We have also obtained conditions Tor the existence 
of guided modes in such a scgmented waveguide. 
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