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Abstract

Propagation characteristics of planar periodic consisting of infinitely extended parabolic
refractive index segments in the transverse direction have been analysed usmg the matrix formulation of Gaussian
beam propagation. Modal propagation and condittons for the existence of gu:ded mode in such a segmented
waveguide have also been obtained.
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1. Introduction

Segmented waveguides consisting of a periodic linear array of high index regions em-
bedded in a lower refractive index region (Fig. 1) have recently attracted considerable
attention for applications to nonlinear interactions, particularly for second harmonic
generation (SHG)". Periodic segmented waveguides have been used to achieve efficient
phase-matched SHG in KTP and LiTa03"5. In these structures, domain inversion and
waveguides can be achieved simultaneously, making them very attractive for use in non-
linear guided wave interactions employing periodic structures. Segmented waveguides by
themselves are also interesting since the effective index and mode spot size of the propa-
gating mode can be controlled by simply varying the duty cycle of segmentation which
can be used in the efficient design of z-variant linear waveguide devices such as mode
expanders, polarisation converters, wavelength filters, etc., and in periodic structures
such as Bragg reflectors®, mode expanders, wavelength filters and polarisation convert-
ers. Some studies on the linear characteristics of segmented waveguides have been re-
ported recently by Li and Burke’, and Weissman and Hardy®. However, there is no sim-
ple analytical method to study propagation in these structures. There have also been
some experimental studies on the linear characteristics of segmented waveguides, em-
ploying the concept of equivalent nonsegmented (uniform) waveguides” 1°.

In a recent study, we have considered a planar periodic segmented waveguide formed
by segments characterised by an infinitely extended parabolic refractive index variation
in the transverse direction''. Since the transverse distribution of the fundamental mode
of a waveguide characterised by an infinitely extended parabolic index profils is a

*A part of this work was presented at CEOT-94, Indian Institute of Science, Bangalore, July 18-22, 1994.
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FiG. 1. a. A periodic segmented waveguide compris- Fic. 2.a. A pernodic segmented waveguide with pe-

ing a lipear array of high index regions. b. Schematic nod A and duty cycle 0 3. Variation of beamn spot size
of the lougitudinal cross-section of a segmented (b) and phase front (c) of the Gaussian mode along =.
waveguide; A is the period of segmentation.

Gaussian (see, Thyagarajan e al.'?), and since a Gaussian beam remains Gaussian on
diffraction in a homogeneous medium, we expect the modes of the above segmented
waveguide to be ‘Gaussian-like’. Using the matrix formulation of Gaussian beam propaga-
tion, we have obtained simple analytic expressions for determining the fundamental
mode parameters''. The analysis shows that the effective index of the mode varies al-
most linearly with the duty cycle of segmentation, and is independent of the period of
segmentation; the spot size of the mode varies along the waveguide periodically, repeat-
ing after every period of segmentation and the average value of the spot size of the mode
increases with decreasing duty cycle. These results are consistent with the reported re-
sults on segmented waveguides7“’°. In this communication, we discuss the stability of a
mode in such a segmented waveguide, and obtain the condition for the existence of
guided modes in such waveguides. We show that, depending on the waveguide parame-
ters, there exists regions in which the field distribution becomes unstable and the beam
diverges rapidly as it propagates through a distance of a few periods. Using typical val-
ues for the waveguide parameters, we have illustrated the propagation behaviour corre-
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sponding to different regimes of waveguide stability. For the sake of completeness, we
have outlined the analysis in the following section.
2. Analysis

Figure 2a shows a periodic segmented waveguide with a period A and duty cycle
Y (= d/A) consisting of alternate regions of high- and low-index media. We assume the
refractive index profile of the segmented waveguide to be given by

P=ntl-a*x?)  O<z<d

[ArNY

=n d<z< A (1)

n? (x,2+A)= nz(x,z),

where n, is the axial refractive index in the high index segment and « is a measure of
gradation of the refractive index profile.

Since a segmented waveguide is not uniform along the propagation direction, the
conventional definition of a mode may not be applied. We may, however, define the
mode of a segmented waveguide as that transverse field distribution which repeats after
every period of segmentation; the reduction in amplitude of the field will correspond to
the propagation loss, while the phase change with propagation determines the effective
index of the mode. Such a definition is very similar to the definition of a mode in a lens
waveguide'*'* or an oscillating mode in an open optical resonator'?, Since the funda-
mental mode of a waveguide is characterised by an infinitely extended parabolic index
variation, one expects the fundamental mode of such a segmented waveguide also to be a
Gaussian under the paraxial approximation. We thus assume the field distribution of the
fundamental mode of this segmented waveguide to be Gaussian and of the form

—ikx?

where g is the complex beam parameter, and is defined as (see Yariv”)
1 1 iA

@ RD i)

A is the wavelength in the medium, £ = 21/, R, the radius of curvature of the wavefront
and w, the beam spot size

3

Under the paraxial approximation, the transformation of a Gaussian beam through an
optical system is described by'*
Ag, +B
p =, @
Cq,+D
where A,B,C and D are elements of the ray matrix of the optical system which relate the
ray parameters at the input plane to those at the output; ¢, and g, are the complex beam
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parameters at the input and the output planes, respectively. Thus, knowing the values of
the beam radius R(z,) and spot size w(z,} at any given plane with z = z,, the correspond-
ing values at any other plane with z = z, can be obtained using eqns (2)~(4).

Propagation in a segmented waveguide consists of propagation through a homogene-
ous medium of length (A - d), through a parabolic index medium of length d and re-
fraction at the interfaces between the two regions. The ABC and D matrices correspond-
ing to these are given by

Propagation through a homogeneous medium

[A B]z(l A»d]A )
C D (0] 1

Propagation through a parabolic index medium
(A 3) cosod Smod ©
= o |
¢ b —asinod  cosod
Refraction at planar interface between media of indices of ny and ;12
1 0
A B) "
=g 2. (@)
o 4
For propagation in the segmented waveguide shown in Fig. 2a, the A, B, C and D matrix
elements corresponding to one period of segmentation are given by the product of the

four ray-transfer matrices corresponding to two refractions, propagation through a me-
dium of index n, of length (A-d) and through a parabolic index medium of length d:

A B coswlvﬁa(/hd)sinoai Eﬂ—o—(diJr-Vl(/‘wd)cosafd
c pl® n, o . (3)
~@ sin od cos od

In writing the ray-transfer matrices for the interface we assume the refractive index in
the region with parabolic refractive index as n;, which is the axial refractive index.

As mentioned earlier, to determine the modes of the segmented waveguide, we look
for those field distributions which repeat themselves after one period except for a change
in amplitude and phase. Thus for an initial field f(x, z), if u(x, 7 + A) is the field distri-
bution after one period, then for a mode we must have

wx,z+ Ay =|o|f(x,2)e ™, )

where | 6| is a measure of the toss and ¢ gives the phase change in one period. In the
present case since we are considering infinitely extended segments, the segmented
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waveguide will be lossless, i.e., | ¢1=1. If g, R, and w, are the Gaussian beam parame-
ters in the plane P, j = 1, 5 (see Fig, 2a), then for a mode we have g5 = ¢y, or

ws = wy, and Rs= R,. (10)
Using eqns (4), (8) and (10), we get the parameters of the mode as

-1
2 A1 [ @a+D)?
w‘_ﬂ:{]B] 1 2 } , (1)

1_-4-D
R 2B
In the above analysis we have neglected the reflection losses at the interface which are

significant only when the condition for Bragg diffraction is satisfied. The total phase
change in one period is given as

(12)

¢=k,d+k2<A—d>+ﬁ;—%——’25, (13)

where k; = /A i=0, ;8= Jha.
2
¢, = tan™| w} 3 ot od+ L
2 2R,

Y
¢, =tan I: 3 [R3+(A-—d)ﬂ'

The effective index of the mode is then given by

-4
=T (14)

D
From eqn (11), we see that if A+ > 1, then w; and hence n become complex and

hence under such conditions the segmented waveguide does not support any guided
mode. This condition is similar to the stability criterion for a lens waveguide'®, Thus for
stable modes in a segmented waveguide, we must have

“le A+D

<1, or

—1<cos Gy ——1G(1-y)sin ay <1, (1s)
2n,

where & = oA is the normalised period and = d/A is the duty cycle. 1t is interesting to
note that the stability condition given by eqn (i5) is independent of the wavelength of
operation and depends only on the waveguide parameters.
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Fic. 3. Variation of ny of the fandamental mode with a. duty cycle (for A =5 jum) and b. pertod of segmentation
(for y= 0.1, 0.5, 0.9) for a segmented waveguide with parameters given by eqa {16).

3. Numerical results and discussion
Consider a segmented waveguide with the following values of various parameters:
Ao =0.85 pm, A=5pm
ny=1.875,ny=1.85, o =3 x 107 pm>. (16)

Figures 3a and b show the variation of the effective index of the fundamental (Gaussian)
mode with the duty cycle (for a given period) and the period of segmentation (for three
different duty cycles). These results are consistent with the recent experimental results of
Thyagarajan e al.’ and Baldi ez al.'® and also with the theoretical results of Li and
Burke’ and Weissman and Hardy®. Figures 2b and ¢ show the variation of the beam spot
size and the wavefront of the fundamental mode along the length of the waveguide. It is
obvious that the mode of the segmented waveguide periodically diffracts and refocusses
as it propagates through the waveguide. This is very similar to propagation in a lens
waveguide. Figure 4 shows the variation of the maximum value of the spol size of the
mode (for a given duty cycle) with duty cycle. For smaller duty cycles, since the beam
has to propagate over a longer distance in the homogeneous medium, the spot-size of the
mode automatically increases to minimise the diffraction effects. In an actual segmented
waveguide with finite transverse boundaries, this would also result in lower losses.

The stability diagram for the segmented waveguide is shown in Fig. 5. The shaded
area cotresponds to the region where 13(A+ D) > 1(i.e., where eqn (15) is not satisfied).
Hence, the shaded arca indicates the region where the segmented waveguide does not
support any guided mode. The stability predicted by our analysis is due to the fact that
the diffraction effects are either under- or overcompensated by the convergence provided
by the parabolic index segments, depending upon the wavegnide parameters. Figures 6a
and b show the variation of spot size of the Gaussian field along the length of the
waveguide corresponding to the stable and unstable regions of segmented waveguide.
The waveguide parameters are chosen such that in the first case the diffraction effects
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F1G. 4. Variation of maximura spot size as a function FIG. 5. Stability diagram of a parabolic index seg-
of duty cycle for A= 5 pm. mented waveguide. The shaded area corresponds to

regions of unstable operation.

are overcompensated by the convergence (Fig. 6a), and are undercompensated in the
second case by the convergence provided by the parabolic index segments (Fig. 6b); thus
in the unstable region any input field grows in transverse extent with propagasion and
eventually leaks out of the waveguide. This aspect is very important for practical reali-
sation of low loss segmented waveguides. From Fig. 5 one can see that for @23 the
waveguide is stable for all duty cycles, but for >3 there are regions of nonguidance.
Practical parabolic index waveguides have o = 0.03. Thus, for stable operation & <3
implies, A < 100 ym. Hence, most practical segmented wavegrides would correspond to
the stable region of operation.

Although our analysis is presented for a segmented waveguide with infinitely ex-
tended segments (in the transverse direction), it brings out many of the salient aspects of
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Fio. 6. Propagation of 2n input field in stable and unstable regions for Y= €7 and A = 31 pm. The figures depict

the variation of spot size along the length of propagatioz, representing a. the case of undercompensation, and b.
the case of overcompensation of difiraction effects.
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propagation in segmented waveguides. The present ana%ys?s can alsc be easily exténded
to segmented waveguides with segments consisting of infinitely extended parabolic in-
dex variation in both transverse directions. Our analysis may be applicable with Tjttle
medification to study buried graded index segmented waveguides.

In conclusion, we have modelled segmented waveguides with infinitely extended
parabolic index segments in terms of propagation of the mode, ‘dl.’ld dependence of the
effective index on the duty cycle and the period of segmentation using the matrix formu-
lation of Gaussian bedm propagation. We have also obtained conditions for the existence
of guided modes in such a scgmented waveguide.
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