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Abstract 

We present some methods based on the vanatianal principle for modellmg of drffused channel waveguzdes and 
directional couplers. First, we present some analytical trial fields to model the mode of the channel waveguides. 
These are obviously Limited m accuracy by the choke of the form of the trial field. Ta improve upon this aspect, 
we present a numerical method I" whlch the trial field 1s automatically generated. This gives much better accu- 
racy. Finally, we use these methods to model the characteristics of a directional coupier and compare the results 
with available experimental results. 

Keywords: Optlcal waveguides, optical direct~onai couplers, varlatlonal method, diffused channel waveguides. 

I. Pntrodustion 

Diffused channel waveguides are basic elements in several integrated optical devices 
such as directional couplers, interference filters, optical switches, etc. These waveguides 
have two-dimensional graded refractive index profiles and the scalar wave equation does 
not have closed-form field solutions. Therefore, to study the propagation characteristics 
of such waveguides, one uses either direct numerical or approximate meth- 
o d ~ ~ . ~ .  The numerical methods based on finite-differen~e'.~ or finite-element3 methods 
involve extensive computations and do not lead to simple analytical forms for the modal 
fields. This has led to the development of a number of approximate r n e t h ~ d s ~ . ~  which are 
based on the variational principle. Accuracy of the methods based on variational princi- 
ple depends on the closeness of the assumed trial field to the exact modal field of the 
guiding structure. The three approximate r n e t h o d ~ ~ - ~  basically differ only in the form of 
the trial modal field and in all these methods it has been assumed that the scalar modal 
field is separable in its dependence along the width and depth. We have recently devel- 
oped a numerical method7 which is based on the scalar variational principle and gives an 
optimal accuracy under the assumption of separable fields. 

In this paper, we discuss some of the methods for the analysis of diffused channel 
waveguides that we have developed recently. These methods are based on the variational 
principle and, therefore, after discussing the general characteristics of wave propagation 
through channel waveguides in Section 2, we have inciuded the basic features of the 
variational method in Section 3. In Section 4, we discuss the analytical approximations 



Fn;. 1. Schematic of rhe refractwe index diitiibutmn in a diffused channel raveguide 

for the modal field and Section 5 is devoted to the optimal variational numerical method. 
Finally, in Section 6, we apply these methods for obtaining characteristics for direct~onal 
couplers consisting of diffused channel waveguides. 

2. Modes of channel waveguides 

To effectively analyse and design the channel waveguides. it is necessary to understand 
the phenomenon of guidance through them. In the most basic form, this requires the so- 
lutions of Maxwell's equations for the boundary conditions represented by the 
waveguiding structure. Fortunately. for optical waveguides. in most cases of practical 
importance, the conditions are such that the vector nature of optical saves  can be ig- 
nored, at least to a very good approximation, and then, it suffices to solve the much 
simpler Helmholtz equation. This 'simpler' Helmholtz equation, however. is still diffi- 
cult to solve for integrated optical structures such as diffused channel waveguides which 
provide two-dimensional confinement to optical waves. In this case, the Helmholtz 
equation is a partial differential equation and one has to use approximate andlor numeri- 
cal techniques to obtain its solutions. 

The refractive index profile of a channel optical waveguide can be represented as (see 
Fig. 1) 
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where n, is the refractive index of the substrate, n,, the index of the cover (usually air) 

and An, the maximum index change from substrate to the guiding region. In fact, 

no = 4- = n, +An is the maximum index of the film, generally at the central 

point (x = 0) on the top surface (y = 0) of the waveguide film. The Helmholtz equation 
for such a guiding structure is given by 

where Y(x,y,z) is one of the transverse Cartesian components of the electric field. The 

time dependence of the field is assumed to be of the form exp(ior) and ko = d c .  Since 

the refractive index is independent of 2, the 2-dependence of Y can he separated out and 
a solution of eqn 2 can be assumed to be of the form 

where Il/(x,y) satisfies the two-dimensional Helmholtz equation 

and p i s  a constant referred to as the propagation constant. Equation 4 is in fact an ei- 
genvalue equation with P being the eigenvalue and y ( x ,  y) the eigenfunction of the op- 
erator a2/&' +d2/&'+kdn2(x, y). Thus, eqn 4 admits only certain discrete solutions, 
called the guided modes and a continuum of solutions called the radiation modes. It is 
the guided modes that represent the confinement of waves in the waveguide whereas the 
radiation modes are not 'bound' to the guiding region. The function Hx,  y) is the field 
pattern of the mode and p, the propagation constant of the mode, with wlP being the 
phase velocity of the mode inside the waveguide along the z-axis. Depending on the 
value of An and the dimensions of the guiding region, and on the (vacuum) wavelength 
A of the propagating wave, a waveguide may support a number of guided modes, each of 
which, in general, has a different P and Hx,  y). However, most important waveguides 
are the ones which allow only one guided m o d e t h e  so-called single-mode or mono- 
mode waveguides-since these are the basic elements of mosr integrated optical devices. 
We shall confine our discussion to such waveguides in this paper. 

In a channel waveguide, the refractive-index distribution is symmetric along the 
surface of the waveguide (along the x-direction) and the commonly used functions to 
model the index variation are 

. , 
: Gaussian 

erf - erf {y]] 112 erf(W/D)] eiror function 
(5) 

where W and D are constants relate:! to the labr~cation conditions. For example, in Ti- 
diffused LiNbO? waveguides, 2W is the width of Ti strip before diffusion and D, the 
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diffusion depth. The refractive-index distribution along the depth (the y-direction) is 
highly asymmetric and the commonly used functional forms for gb) are 

exp(-ylD) -exponential 

( 6 )  
erfc(y1D) ~mmplemcntary error function. 

We have used thesc repreaentations in our numerical examples for the normalixd 
propagation constant, B, as a function of the normalized frequency, V, where 

3. The variational principle 

The variational principle which has been the basis of a number of methods used in the 
waveguide theory is based on [he integral form oC the Helmholtz equation. We have used 
this principle in developing our analytical models as well as the numel.ica1 method dis- 
cussed in the present paper. Therefore, we bricfly discuss here the salient features of thls 
principle and its application to waveguide analysis. 

The integral form of the Helmholtz equation (eqn 4) for a channel waveguide can be 
written as8 

where both the integrals are over -- to - and it is assumed that the modal field is nor- 
malised 

The right-hand side (W) of eqn 8 is usually referred to as the stationary expression for 
the propagation constant, P, since it is stationary with respect to variations in ly(x,y). 
Since thc modal field is an unknown function and, in fact, is the function that is sought 
for as the solution of the propagation problem, one uses an approximation for i t ,as 
VJ, (x, y), generally referred to as the trial field. This trial field whell used in eqn 8 gives 
an estimate of the propagation constant, say P,. Thus, we have 

Diiferent functions for ~ ( x ,  y )  would give different values of /3,. An important pro- 
perty of this expression is that all these values of p, would invariably be smallei than 
the exact vaiue of p and the exact value is obtained only whcn ly, (x, y) is the same as 
the exact modal field8. Thus, higher the value of B, obtained using eqn 10, closer it is 
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to the exact vdue  of p and better is the corresponding ~ ( r ,  y) as an approximation 
for the modal field. Ther-ejore, a valire of fi obtained r h r o q h  the variational expres- 
sion necessarily represenls a better approximatio?~ for- 2 than any other. appl-onimo- 
tion which has a smaller value. This property is extremely useful in developing simple 
analytical models for the mode of a given waveguide, and the mcthod employed is as 
~ O ~ O W S :  

A trial field y, ( x ,  y; p i ,  p ~ ,  ..., p,,) is set up which involves a number of adjustable pa- 
rameters p, ,  pr, .... p,. The dependence on x and y is chosen in such a way that y, re- 
sembles the actual field as far as possible. This y/, is then substituted in thc KHS of eqn 
10 which is then maximized with respect to the parameters p , ,  p2. ..., p,,. The maximum 
value of p, thus obtained is an estimate for the propagalion constant and the correspond- 
ing y , ( x ,  y; p i ,  p2 ...., p,,) with the optimized values of parameters p , ,  p, ,..., p, is an ap- 
proximation for the modal field. Of various y , (x ,  y )  oblained in this manner, the one 
which gives thc largest value of b, represents the best approximation for the moda! field. 
Generally, by increasing the number of parameters, in a suitable fashion, one can gen- 
erate better trial fields, but a better trial field with smaller number of parameters is al- 
ways sought lor, since it not only simplifies the computalions, but also is easier to use 
for further modelling of devices involving these waveguides. 

4. Ana%yticat approximations for the modal fieids 

The Hermite-Gauss (HG) and the cosine-exponential (CE) trial fields have been devel- 
oped and used mainly for chanuel waveguides; the thrmer for diffused channel wave- 
p idesS  and thc tatter for step-index channel waveguides9-". The CE Re!d has later6 
been used for dirfused channel waveguides also. A common feature of these methods, in 
fact, of most approximate methods, is that the trial field v , ( x ,  y) is approximated by a 
product of a function of x and a function of y. ie., v, ( x ,  y)  is assumed to be separable in 
x and y: 

Various variational methods differ in their assumptions for the functional forms of ~ ( n )  
and #y). For the WG field, these are' 

where Gand d are the variational prameters. The field in the cover region is again neglected. 

The CE field is given by9--" 
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where p, q, o, 5 and 17 are the five variational parameters. CE results, though much bet- 
ter than the HG results when applied to planar and channel waveguides, still have con- 
siderable error in spite of the large number of parameters in the trial field. (The error is 
typically a few per cent in B). 

We have presented recently'2 a better trial field using the secant hyperbolic (SH) 
functions: 

where p and z are the variational parameters with field in the cover neglected. Along the 
depth (y-axis), both HG and SH fields are the first antisymmetric modes of specific pro- 
files-the infinite parabolic and the sech2, respectively, with the field for y < 0 sup- 
pressed, and along the surface (x-axis) these are the corresponding first symmetric 
modes. In both the HG and SH models, the field in the cover region (y < 0) has been 
neglected. Although it is a fairly good approximation, it is the main cause of lower accu- 
racy at lower V values. We have also developed'6 a simple method to improve the KG 
and SH fields on account of the field in the cover region. The improved field resembles 
the mode of the given profile remarkably well both in the guiding and cover regions. The 
explicit form of the improved HG-the evanescent Nermite-Gauss (EWGtf ie ld  is then 
given by16 

with 

The expression for the evanescent secant-hyperbolic (ESH) field is given by1' 

with 

The function ~ ( x )  remains unchanged in the improved fields. The two variational pa- 
rameters and p, are obtained by maximizing the RHS of eqn 10 using the trial field 
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Table I 
~esu!ts far channel waveguides 

("dues of B = [ ( ~ l b ) ' - n : ] l ~ n & )  

- 
v V,,, HG EHG SH ESH CE 

2.12 0.133 0.112 0.125 0.118 0.130 0.123 
2.59 0.248 0.233 0.247 0.231 0.245 0.234 
3.00 0.329 0 313 0.328 0.313 0.327 0.318 

~(x)$(y) .  The field $ (y )  is then replaced by the improved trial fieid obtained using the 
method described above. Thus, the EHG field is obtained by replacing @H&) in eqn 12 
by $EHG(Y) of eqn 15, and XEHG(X) =XXG(X). Similarly, the ESN field is obtained by re- 
placing &&) in eqn 14 by $ d y )  of eqn 17, and XESH(X) = x d x )  We obtain ~ E ~ H ( x .  y) 
and ~ , H G ( x ,  y) from ~ S H ( X ,  y) and ~ H G ( X ,  y). respectively, without the addition of any 
parameter and a single evaluation of the RHS of eqn 10 is required in each case for this 
improvement. An example of numerical values of B obtained using these trial fields is 
given in Table I. The index profile of the waveguide used is error function along the x- 
axis (see eqn 5) and Gaussian along the y-axis (see eqn 6) with W = 3  pm and 
D = 3.35 ,urn. There are no exact values available for channel waveguides. In Table I, 
Vop~ refers to a numerical variational method that we have developed and is described in 
Section 5. This method gives the best estimate for P under the assumption of separability 
(eqn 11). Since the value of B obtained using the VOPT method is the largest, these are 
definiteiy closer to the exact values (which are still larger than, or equal to, V0pT values) 
than the values of B obtained using other trial fields. Thus, the VOPT values serve as the 
most accurate values for the present comparison. Table I shows that the CE method, 
which now has five parameters, is in considerable error, while the EHG and ESH are 
comparable. 

5. The optimal numerical variational method 

!n the variational methods described above the accuracy is limited by the assumption of 
separability (eqn I I )  and by the assumption of specific field forms for ~ ( x )  and $(y) .  We 
have developed a in which any specific form of ~ ( x )  and $0.) are not assumed 
and these are automatically generated by the variational method in the process of opti- 
mization. However, the separability is still assumed. Thus, under the assumption of 
separability, this method generates an optimal trial field and gives the best accuracy for 
the propagation constant. The numerical results discussed later in this section show this 
explicitly. 

5.1. Basic equations 

As mentioned above, we continue with the assumption of separability. Thus, with 
y,(x, y) substituted from eqn 11 into the variational expression, eqn 10 takes the form 
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where it is assumed that both ~ ( x )  and g(y) are normalised 

Our method is iterative and we assume, to start with, a planar index distribution n:(x) 

(it could as well be n:(y)). We introduce this index distribution into the variational ex- 

pression of eqn 19 which can be rewritten as" 

Equations 19 and 21 are identical since the terms containing n:(x) cancel out exactly. 
However, in writing the equation in this manner, we have separated the RHS in two 
terms (written on two separate lines). We will show in the following that each of these 
terms is positive and can be uniquely maximized giving, thus, the maximum value of P,. 

The first term, ~ k ~ n ~ ~ ~ ~ ~ h - ~ l d ~ l ~ l ~  dx is the variational expression for the planar 

index profile, n:(x), and hence is equal to the square of the propagation constant, say 

p:, of its mode. It is thus positive and has a maximum value pi. This value can be ob- 

tained exactly using a standard numerical method14. The function ~ ( x )  is simply the cor- 
responding modal field which can be normalised to satisfy the condition of eqn 20. We 
have thus obtained the maximum value of the first term of eqn 21 and have generated 
the function ~ ( x ) .  

The second term of eqn 21 is also in the form of the variational expression for a pla- 
nar index distribution, n:(~) which is defined as 

which can be easily evaluated using n:(x) and ~ ( x )  of the first term. Thus, the second 
term is also positive and its maximum value is p:, where p, is the propagation constant 
of the waveguide defined by n:(y) of eqn 22. The value of P, and the corresponding mo- 
dal field A@) can he easily obtained numerically. The field &(y) can then be normalised 
as required by eqn 20. 

Next, we use n:(y) generated above to rewrite the variational expression of eqn 19 as 
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The first term on the RHS of eqn 23 is exactly the same as the second term of eqn 21 and 
has already been maximized. The second term, in eqn 23, is again a variational expres- 
sion for the index profile n: ( x )  which is now defined as 

where n:(y) and ~ y )  are obtained in the first term of eqn 23. The second term, thus, has 

a maximum value p: where p, is the propagation constant of the mode of a waveguide 

with the profile n: ( x ) ,  now defined by eqn 24. 

This completes one cycle of iteration; starting from an arbitrary n : ( x ) ,  we have gen- 
erated a new n: (x )  through the variational expression for the given index profile 
n2(x, y ) .  This n: (x )  is the starting point for the next cycle of iteration. The quantity 
,& +p; gives an estimate of the propagation constant 9 of the mode of the given chan- 
nel waveguide n2(x, y ) .  At the end of each cycle of iteration, one checks for convergence 
in this quantity and the iterations are stopped when the convergence to a required accu- 
racy is achieved. In most cases, one requires 2-3 iterations to obtain convergence to 
about 4 digits in B. 

5.2. Implementation procedure 

The method described above can be implemented as an iterative procedure for obtaining 
the propagation characteristics of a channel waveguide. Various steps required for this 
implementation are outlined below: 

STEP 1 : Choose an n: ( x ) .  A good choice is n: ( x )  = n2(x, y  = 0 )  

STEP 2 : Obtain & and ~ ( x )  numerically. Normalize ~ ( x ) .  

STEP 3 : Obtain n; ( y )  using eqn 22. 

STEP 4 : Obtain P: and $(y) numerically for n: ( y ) .  Normalize $ ( y )  

STEP 5 : Obtain n: ( x )  using eqn 24. 

STEP 6 : Obtain P: and ~ ( x )  numerically for n: ( x ) .  Normalize ~ ( x ) .  

STEP 7 : Compute P: = P: + &. Check for convergence in P: . 
If converged, GOT0 STEP 8 
otherwise, GOT0 STEP 3 

STEP 8 : P: and w,(.x, y )  = &)&) are the required propagation constant and modal 
field. 

For translation of this procedure into a computer program, one requires the following 
three elements: 

1. Computation of the propagation constant of a planar waveguide. We have used the 
Ricatti transformationl%nd have solved the resulting first-order differential equa- 
tion using the predictor-corrector methad". 
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2. Computation of the modzl field. We have used the predictor-corrector method for 
the Helmholtz equation directly. 

3. Integration over the field to normalize it and to obtain the index distribution in the 
orthogonal direction (eqns 22 or 24). We have used Bode's 4-point formula" for 
evaluation of integrals, since the truncation eiror of this formula is of the same order 
as that of the predictor-corrector method. 

Other details for implementation are given elsewhere7. 

5.3. Numerical results and comparisons 

We discuss in this section some specific numerical examples to show the accuracies of 
various methods discussed above in comparison to other available methods. In particu- 
lar, we will include the following methods in our comparisons: 

1. VFD: Scalar finite-difference method based on the variational principle. Nu- 
merical resultsZ have been obtained using a 14 x 14 mesh point grid in 
the transverse cross-section. 

2. HFD: A direct vector finite-difference method' hased on the magnetic (H) 
field components with typically 20 x 20 mesh point grid in the trans 
verse cross-section. 

3. HG : The Hermite-Gauss (HG) method of Korotky et aL5 

FIG. 2. Normalized propagation constant, B,  us a 
fwnctimot the norinalv.ed frequency, V,  for a diffused 
channel wavegurdc with an crror function-Guuss~an 
profile with parameters n, = 2.203, n, = 1.0, h = 
1.3 gxn. D  = 3.35 pm and W =  3.0 m. 

v 

FIG. 3 .  Normalized propagation constant, B, as a 
fuectioo of V for a diffused channel wavegnlde 
wlth Gaussian-exponsnrid profile wth  paranleters 
n:=2.0, n , = i  0, h = 1 . 3 p m ,  D M =  i and r ; u =  

1.05 n,. 
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4. EHG : Variational method with evanescent Hermite-Gauss (EHG) 
trial field16. 

5. SH & ESA : Variational method with secant hyperbolic (SH) and evanescent 
secant hyperbolic (ESH) trial fieidsI2 

6. VCPT : The optimal variational method discussed above. Typically 200 
points are used for each one-dimensional analysis, and three or 
less iterations are required7 for each V value. 

The first numerical example is for an error function-Gaussian profile (error function 
in x-direction and Gaussian in y-direction). This profile has been studied by Korotky 
er ~ 1 . ~  Figure 2 incorporates the results of SH, ESH and Vop~ methods, and shows 
that the results of ESH are nearly coincident with the results of Vopr for the range of 
V values which are important for single mode operation. This shows that the ESH field 
is an extremely good approximation for mode of such a waveguide. The next example 
is a Gaussian exponential profile which has been studied by Schulz ez al.' using HFD 
method. The results of HFD and also of ESN methods are given in Fig. 3. This figure 
shows that the results of HFD are grossly inaccurate while those of ESN are once again 
extremely close to V o p ~  results which are close to the exact results as they represent the 
largest values of p. Another-comparison with finite-difference method is shown in Fig. 4 
in which the results of a Gaussian-Gaussian profile are given. The figure includes re- 
sults obtained using VOPT, ESH, NFD and VFD methods. This figure also shows that the 
finite-difference methods (both IIFD and VFD) give very poor accuracy whereas ESH 
continues to be extremely accurate and almost coincident with Vop~  results except for 
very small V values. The low accuracy of VFD and W D  results can be ascribed to rather 
small size, 14 x 14 and 20 x 20, respectively, of the grid for sampling the field in the 
transverse cross-section. In the case of VO~T, in which one has to consider only an one- 
dimensional sampling of the field at a time, the field is sampled, in effect, on a grid of 
size 200 x 200. In addition, in the finite-difference methods, one assumes that the field 
vanishes at the boundaries of a window whose size is kept large enough to keep the ef- 
fect of this approximation at a negligible level. However, the larger the size of the win- 

/ , , (",,:,,: , , 
FIG. 4. Normalized propagation constam, B, as a 
function of V for a diffused channel waveguide with 

0 1 2 3 4 5 6 7 Gaussian-Gaussian profile with p a r m e r s :  4 = 2.1, 
V n,=1.0,h=1.3pm,DfW= 1 andno=1.05n, .  
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i c Z s , - - 4  

,. substrate ; 

n2(x ,0 1 
Flc 5 .  Sehmarlc of the indcx profile of a directma1 mupier made of two parallel diffused cham!  waveguide% 

dow, more are the grid points required to sample the field so that these are close enough 
to approximate its variation adequately. On the other hand, in Vom, the field is assumed 
to decay exponent~ally outside the computational grid. These two aspects of finite 
difference (and also finite-element) methods limit the accuracy rather severely unless 
very large computer memory and time are at disposal. The grid sizes of 20 x 20, used in 
HFD and 14 x 14, used in VFD, are highly inadequate as shown by the above results. 

6. Directional couplers 

Directional couplers are the basis for a variety of integrated optical devices such as 
switches, moduiatoo, and power dividers. A directional coupler consists of two identical 
waveguides placed parallel to each other along the z-axis separated by a constant dis- 
tance (see Fig. 5). (In some special applications, the wveguides may be non-identical 
and/or the separation between them may not be consrani). The modes of the two 
waveguides, due to the overlap of their evanescent fields, get coupled to each other and 
exchange power between them as they propagate along the z-axis. Diffused waveguide 
directional couplers have been widely studied, both e~~er imenta l ly"~ '~  and theoreti- 
,,l~,,,*.l?,2&2Q 

The refractive index profile for a directional coupler made up of two diffused chrnnei 
waveguides can be written as (Fig. 5) 

where 2s is the separation between the centres of the two constitaent channel 
waveguides. The composite waveguiding siructure thus formed has two modes, one of 
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which is symmetric and the other antisymmetric. The propagation constant of these 
modes, p, and pa, respectively, depends on the separation parameter, s, and is such that 
p, r B t Dm ( P  being the propagation constant of the isolaied waveguide). The equaiity 
holds when the waveguides are widely separated (large values of s) so that their evanes- 
cent fields (along x) are vanishingiy small and there is no interaction between them. In 
this limit, p,, Po + p. Due to different propagation constants, the modes propagate with 
different phase velocities and hence acquire phase at different rates as they propagate 
along the length of the directional coupler, the z-axis. This leads to a z-dependent phase 
difference between them which shows up as intensity variation along the z-axis (since 
they have different field distributions). The effect of this characteri'stics is that when 
light is launched in one of the waveguides, say the one centred at 1 = -.s, the two modes 
of the directional coupler are simultaneously excited, say in phase. After propagating 
through a certain distance, the modes will be exactly out of phase and thc intensity will 
be maximum in the other waveguide (centred at x = s). Thus, in effect. the power has 
transferred from one waveguide to the other. This distance, after which the maximum 
power is transferred from one waveguide to the other, is called the coupling length, 1,. 
and is defined as 

This coupling length is the main parameter of a directional coupler and different rneth- 
ods have been used to obtain its value from the given refractive index profile. We discuss 
here the application of the VOPT and ESH methods ror obtaining the coupling length of 
diffused channcl directional couplers. 

6.1. The V,,, method 

As mentioned above, to obtain the coupling length, i,, of a directional coupler, one has 
io obtain the propagation constants of the firrt symn1etr;c and the first antisymmetric 
modcs, p, and pa, respectively. In the two-dimensional numerical methodz5, the compos- 
ite waveguiding structure, defined by eqn 25, is considcred to be one waveguide and its 
first two modes are obtained, individually, using the numerical method VOPl (described 
in Section 5). The coupling length of the coupler (eqn 26) is then computed using the 
propagation constants of these modes. 

6.2. The ESH method 

In Section 4, we have discussed the evanescent secant-hyperbolic (ESH) liiat field for 
the analysis of channel waveguides. We now extend the same method to obtain the 
coupling length of directional coupiers made of r\uo such waveguides. Various steps of 
analysis are summarized below: 

IJse the secant hyperbolic (SH) trial field (eqn 14) for a single constitueni waveguide 
to obtain p and z. 
Modify &y) to include the field in ilie cover (i r . ,  derive an ESH field; eqn 17). 
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o Use xSH(x) to construct the symmetric and the antisymmetric fields: 

Using ~ ~ ( x ) $ ~ ~ ~ ( y )  and x.(x)&~H(Y) in variational expression (eqn lo), one obtains 
a and p,, respectively, without any maxmization. 

Obtain coupling length, I , ,  using these P, and Pa in eqn 26. 

In this way, coupling length can be obtained without any maximization. This analysis 
is fairly accurate for relatively large values of s; however, for small values, when the 
waveguide modes influence each other rather strongly, a modification is necessary. In 
such cases, the peaks of the modes are no longer at the points where the index has the 
largest value. In fact, the peaks of the symmetric modes come closer to each other while 
those of antisymmetric modes become farther apart. This possibility is not taken into 
consideration in eqns 27 and 28. To take this aspect into account, we can modify the 
modes for the asymmetric and the antisymmetric mode by introducing a parameter, a, 
such that 

The values of a are such that a 5 s for the symmetric mode and a Z s for the anti- 
symmetric mode, and a 2 s for both modes for s >> W. The parameter o is treated as a 
variational parameter for maximizing the variational expression (eqn 10) for the trial 
fields X,(X;O)$ESH(Y) and ,&(X;O)'$E$H(~) to obtain P,T and PC. These values of propagation 
constant then give improved value of the coupling length, 1,. 

6.3. Numerical results and comparison 

We now present an example to show the accuracy of the methods discussed above for 
directional couplers. We consider the directional couplers fabricated by Noda et a!.'' 
The profile assumed is Gaussian-Gaussian (see eqns 5 and 6) with parameters 
n ,  = 2.152, n, = 1.0, h = 1.153 pm, W = 4.0 pm and D = 5.0 pm (Fig. 6). Two cases with 
hn = 0.004 and An = 0.006 are included. Experimental results of Noda et el." and the 
theoretical results using VopT and ESH are included in the figure. This figure shows that 
the results obtained using V o p ~  and ESH methods are in very good agreement with the 
experimental data. This again brings out the point that VOPT and ESH methods are ex- 
tremely good methods for modelling and analysis of channel waveguides and devices 
made with these waveguides. 

7. Conclusions 

We have presented in this paper analytical and numerical methods based on variational 
principle for the analysis of diffused channel waveguides and directional couplers. In 
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, A ! 1 i "  5.8 6 2 6.6 I FIG. 6. Coupling length, i,, as a knctlon of s, one half 
7.0 of the waveguide separation for a driectional coupler 

s l p m l  reported by Noda er d l s  

particular, we have presented a trial field, the secant-hyperbolic field, which is much 
rnorc accurate than the NG ficld while it retains the simplicity of the HG field. The im- 
proved version of this field, the evanescent secanl-hypxbolic field, is exti-emely accurate 
and compares well with numericai methods which require much more computational 
efiort. 

Wc have also presented a numerical mcthod (VO,,) which givcs the hcst accuracy i n  
the propagation constant under the assumption that the trial field can be separated in its 
functional dependence on the width and the depth coordinates. This assumption, oui 
results show, holds good for diffused channel waveguides. The numerical results show 
that, at least for the cascs that we havc discussed, the finite-diffcrencc (FD) methods 
give extremely poor accuracies in comparison to our method. I n  fact, even simple ap- 
proximations such as the HG and SN trial fields are better than the FD methods. This 
could be due to rather small number of field sample points taken in these methods. The 
computational effort in an FD method is orders of magnitude higher than in the methods 
that we have described. 

We have also included analysis of diffused channel waveguide directional couplers 
mainly to illustsate an application of the methods thal we have developed. Comparisons 
with experimental data again show that the CSH method and the numerical mcthod 
(VOW) perrorm extremely well in predicting the coupling length or directional eouplcrs. 
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