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Abstract

We present some methods based on the vanational principle for modelling of diffused channel waveguides and
directional couplers. First, we present some analytical trial fields to model the mode of the channel waveguides.
These are obviously limited 1n accuracy by the choice of the form of the trial field. To improve upon this aspect,
we present a numerical method 1n which the trial field 15 avtomatically generated. This gives much better accu-
racy. Finally, we use these methods to model the characteristics of a directional coupler and compare the results
with available experimental results.
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1. Introduction

Diffused channel waveguides are basic elements in several integrated optical devices
such as directional couplers, interference filters, optical switches, etc. These waveguides
have two-dimensional graded refractive index profiles and the scalar wave equation does
not have closed-form field solutions. Therefore, to study the propagation characteristics
of such waveguides, one uses either direct numerical methods'™ or approximate meth-
ods*®, The numerical methods based on finite-difference’” or finite-element’ methods
involve extensive computations and do not lead to simple analytical forms for the modal
fields. This has led to the development of a number of approximate methods*® which are
based on the variational principle. Accuracy of the methods based on variational princi-
ple depends on the closeness of the assumed trial field to the exact modal field of the
guiding structure. The three approximate methods™® basically differ only in the form of
the trial modal field and in all these methods it has been assumed that the scalar modal
field is separable in its dependence along the width and depth. We have recently devel-
oped a numerical method’ which is based on the scalar variational principle and gives an
optimal accuracy under the assumption of separable fields.

In this paper, we discuss some of the methods for the analysis of diffused channel
waveguides that we have developed recently. These methods are based on the variational
principle and, therefore, after discussing the general characteristics of wave propagation
through channel waveguides in Section 2, we have inciuded the basic features of the
variational method in Section 3. In Section 4, we discuss the analytical approximations
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Fig. 1. Schematic of the refractive index distribution in a diffused channel waveguide.

for the modal field and Section 3 is devoted to the optimal variational numerical method.
Finally, in Section 6, we apply these methods for obtaining characteristics for directional
couplers consisting of diffused channel waveguides.

2. Modes of channel wavegnides

To effectively analyse and design the channel waveguides, it is necessary to understand
the phenomenon of guidance through them. In the most basic form, this requires the so-
lutions of Maxwell’s equations for the boundary conditions represented by the
waveguiding structure. Fortunately, for optical waveguides, in most cases of practical
importance, the conditions are such that the vector nature of optical waves can be ig-
nored, at least 1o a very good approximation, and then, it suffices to solve the much
simpler Heimholtz equation. This ‘simpler’ Helmholtz equation, however, is still diffi-
cult to solve for integrated optical structures such as diffused channel waveguides which
provide two-dimensional confinement to optical waves. In this case, the Helmholtz
equation is a partial differential equation and one has to use approximate and/or numeri-
cal techniques to obtain its solutions.

The refractive index profile of a channel optical waveguide can be represented as (see
Fig. 1)

2
+2n,A :
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where n, is the refractive index of the substrate, #,, the index of the cover (usually air)
and An, the maximum index change from substrate to the guiding region. In fact,
ng = ,l(nf +2n,8n) = n,+ An is the maximum index of the film, generally at the central
point (x = 0) on the top surface (y = 0) of the waveguide film. The Helmholtz equation
for such a guiding structure is given by

J* ¥, 92? it d

v ayg T +hgn? (YW (Y, 2) = 0 2)

where ¥{(x,y,z) is one of the transverse Cartesian components of the electric field. The
time dependence of the field is assumed to be of the form exp(iwf) and %o = @¥/c. Since
the refractive index is independent of z, the z-dependence of ¥ can be separated out and
a solution of eqn 2 can be assumed to be of the form

Py, ) =yxy)eE ®)

where y(x,y) satisfies the two-dimensional Helmholtz equation

Py Py
XA

[kgn?‘(x,y)—ﬁz]u/(x,y):O 4y

and f is a constant referred to as the propagation constant. Equation 4 is in fact an ei-
genvalue equation with § being the eigenvalue and w(x, y) the eigenfunction of the op-
erator J°/ox’ +3°/ay* +k;n(x, y). Thus, eqn 4 admits only certain discrete solutions,
called the guided modes and a continuam of solutions called the radiation modes. It is
the guided modes that represent the confinement of waves in the waveguide whereas the
radiation modes are not ‘bound’ to the guiding region. The function y(x, y) is the field
pattern of the mode and f§, the propagation constant of the mode, with w/f being the
phase velocity of the mode inside the waveguide along the z-axis. Depending on the
value of An and the dimensions of the guiding region, and on the (vacuum) wavelength
A of the propagating wave, a waveguide may support a number of guided modes, each of
which, in general, has a different 8 and y(x, y). However, most important waveguides
are the ones which allow only one guided mode—the so-called single-mode or mono-
mode waveguides—since these are the basic elements of most integrated optical devices.
We shall confine our discussion to such waveguides in this paper.

In a channel waveguide, the refractive-index distribution is symmetric along the
surface of the waveguide (along the x-direction) and the commonly used functions to
model the index variation are

exp(~x%/ W) ’@aussian
o % :

- 5
[est {228} — ext {251 /2 exfW/D)] exor funciion ®

where W and D are constants related to the fabrication conditions. For example, in Ti-
diffused LiNbO; waveguides, 2W is the width of Ti strip before diffusion and D, the
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diffusion depth. The refractive-index distribution along the depth (the y-direction) is
highly asymmetric and the cominonty used functional forms for g(y) are

exp(—y/D)  .exponential
() = exp{— y*/D*) Gaussian (6)
erfe(y/D) icomplementary error function.

We have used these representations in our numerical examples for the normalized
propagation constant, B, as a function of the normalized frequency, V, where
2_ 2
Bk~

B=—-t, V=kyD2nAn. 7
21, An o N 7

3. The variational principle

The variational principle which has been the basis of a number of methods used in the
waveguide theory is based on the integral form of the Helmholtz equation. We have used
this principle in developing our analytical models as well as the numerical method dis-
cussed in the present paper. Therefore, we bricfly discuss here the salient features of this
principle and its application to waveguide analysis.

The integral form of the Helmholtz equation (eqn 4) for a channel waveguide can be
written as®

8= [ty ety [[ ol sty ®

where both the integrals are over —ee t0 == and it is assumed that the modal field is nor-
malised

ey axdy =1 ©
I

The right-hand side (RFS) of eqn 8 is usually referred to as the stationary expression for
the propagation constant, f, since it is stationary with respect to variations in ¥(x,y).
Since the modal field is an unknown function and, in fact, is the function that is sought
for as the solution of the propagation problem, one uses an approximation for it'as
¥, (x, y), generally referred to as the trial field. This trial field when used in eqn 8 gives
an estimate of the propagation constant, say f§;. Thus, we have

B =Hk§n2 DI FZERY |2dxdy—”|Vv1,izdxdy- (10)

Different functions for w;(x, y) would give different values of f,. An imporiant pro-
perty of this expression is that all these values of f§; would invariably be smaller than
the exact value of f and the exact value is obiained only when i, (x, y) is the same as
the exact modai field®, Thus, higher the value of B, obtained using eqn 10, closer it is
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to the exact value of 8 and better is the corresponding W, (x, y) as an approximation
for the modal field. Therefore, a value of B, obiained through the variational expres-
sion necessarily represents a better approximation for B than any other approxima-
tion whick has a smaller value. This property is extremely useful in developing simple
analytical models for the mode of a given waveguide, and the method employed is as
follows:

A trial field w, (x, y; p1, P2....r Pa) is set up which involves a number of adjustable pa-
rameters pi, Pa...., Pa- Lhe dependence on x and y is chosen in such a way that ¥, re-
sembles the actual field as far as possible. This ¥4 is then substituted in the RHS of eqn
10 which is then maximized with respect to the parameters py, pa...., p,. The maximum
value of B thus obtained is an estimate for the propagation constant and the correspond-
ing W (x, ¥; Pi, P2.-.., Pu) With the optimized values of parameters pi, ps,..., p, is an ap-
proximation for the modal field. Of various ¥, (x, y) obtained in this manner, the one
which gives the largest value of f; represents the best approximation for the modal field.
Generally, by increasing the number of parameters, in a suitable fashion, one can gen-
erate better trial fields, but a better trial field with smaller number of parameters is al-
ways sought for, since it not only simplifies the computations, but also is easier to use
for further modelling of devices involving these waveguides.

4. Amnalytical approximations for the modal fields

The Hermite—Gauss (HG) and the cosine-exponential (CE) trial fields have been devel-
oped and used mainly for channel waveguides; the former for diffused channel wave-
guides® and the latter for step-index channel waveguides’™''. The CE field has later®
been used for diffused channel waveguides also. A common feature of these methods, in
fact, of most approximate methods, is that the trial field y, (x, y) is approximated by a
product of a function of x and 2 function of y, i.e., W, (x, y) is assumed to be separable in
xand y:

i (x, ¥) = J(40). an
Various variational methods differ in their assumptions for the functional forms of x(x)
and ¢(y). For the HG field, these are’
X g ()~ exp(-x*/8% )

f(yrd —%d%) yz20
¢HG(y)"’i:)j S e i<o

(12)
where § and d are the variational parameters. The field in the cover region is again neglected.
The CB field is given by”™"’

.

Jcos(qx/W) |l

#eEC) ™ costn) expl—q tantg)Ce/W -1 1212 1
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cos(po) expl(p tan po)y/d)] y<0
Pee(y)~qcoslpl(p/dy~ol] O0sy<éd (13)
cos[ p(& ~ o) expl—p tan {(p§—~ oW yld ~E)) y=2&d

where p, ¢, 6, £ and 1 are the five variational parameters. CE results, though much bet-
ter than the HG results when applied to planar and channel waveguides, still have con-
siderable error in spite of the large number of parameters in the tria] field. (The error is
typically a few per cent in B).

We have presented recently'? a better trial field using the secant hyperbolic (SH)
functions:

Asu(x)~ sech? (x/W)
sinh(y/D)sech’(y/D) y=0
- 14
Vsn () {0 <0 (14

where p and 7 are the variational parameters with field in the cover neglected. Along the
depth (y-axis), both HG and SH fields are the first antisymmetric modes of specific pro-
files—the infinite parabolic and the sech®, respectively, with the field for y <0 sup-
pressed, and along the surface (x-axis) these are the corresponding first symmetric
modes. In both the HG and SH models, the field in the cover region (¥ < 0) has been
neglected. Although it is a fairly good approximation, it is the main cause of lower accu-
racy at lower V values. We have also developed'® a simple method to improve the HG
and SH fields on account of the field in the cover region. The improved field resembles
the mode of the given profile remarkably well both in the guiding and cover regions. The
explicit {(grm of the improved HG—the evanescent Hermite~Gauss (EHG)—field is then
given by

(1+W,y)exp(~y*/d®) y20
(V) ~ 15
Peno(2) {eXP(ch) y<0 1
with
W, = (B ~kin?). (16)

The expression for the evanescent secant-hyperbolic (ESH) field is given by12

bron ()~ [1+W, sinh(y/D)] sech®(y/D) y=0
£ exp(W.y) y<0

W, = (B> - K3n?). (18)

The function x(x) remains unchanged in the improved fields. The two variational pa-
rameters and J, are obtained by maximizing the RHS of eqn 10 using the trial field

an

with
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Table I
Results for channel waveguides

(Values of B= [(5/1(0)2 —nf]/ 2n5An)

14 Varr HG EHG SH ESH CE

202 0123 0112 0125 Q118 0130 0123
259 0.248 0233 0247 0231 0245 0234
3.00 0329 0313 0328 0313 0327 0318

2(x)¢(y). The field ¢(y} is then replaced by the improved trial field obtained using the
method described above. Thus, the EHG field is obtained by replacing ¢ue(y) in egn 12
by ¢zuc(y) of eqn 15, and xenc(x) = Yuc(x). Similarly, the ESH field is obtained by re-
placing ¢sy(y) in eqn 14 by ¢zsu(y) of eqn 17, and xesa(x) = xsa(x). We obtain yzsa(x, y)
and Weno(x, y) from Weg(x, ¥) and Wye(x, y), respectively, withour the addition of any
parameter and a single evaluation of the RHS of eqn 10 is required in each case for this
improvement. An example of numerical values of B obtained using these trial fields is
given in Table I. The index profile of the waveguide used is error function along the x-
axis (see eqn 5) and Gaussian along the y-axis (se¢ eqn 6) with W=3 um and
D =3.35 um. There are no exact values available for channel waveguides. In Table I,
Vopr refers to a numerical varjational method that we have developed and is described in
Section 5. This method gives the best estimate for 8 under the assumption of separability
(eqn 11). Since the value of B obtained using the Vopr method is the largest, these are
definitely closer to the exact values (which are still larger than, or equal to, Vopr values)
than the values of B obtained using other trial fields. Thus, the Vopr values serve as the
most accurate values for the present comparison. Table I shows that the CE method,
which now has five parameters, is in considerable error, while the EHG and ESH are
comparable.

5. The optimai numerical variational method

In the variational methods described above the accuracy is limited by the assumption of
separability (eqn 11) and by the assumption of specific field forms for y(x) and ¢(y). We
have developed a method”™* in which any specific form of g(x) and ¢(y) are not assumed
and these are automatically generated by the variational method in the process of opti-
mization. However, the separability is still assumed. Thus, under the assumption of
separability, this method generates an oprimal trial field and gives the best accuracy for
the propagation constant. The numerical results discussed later in this section show this
explicitly.

5.1. Basic equations

As mentioned above, we continue with the assumption of separability. Thus, with
wi(x, y) substituted from eqn 11 into the variational expression, eqn 10 takes the form

2
B2 = [Jn® ool oo’ dedy = [l aief e [las iy | ay (9)
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where it is assumed that both ¥{x) and ¢(y) are normalised
fav=1=[of . 20)

Our method is iterative and we assume, to start with, a planar index distribution »2(x)
(it could as well be n?(y)). We introduce this index distribution into the variational ex-
pression of eqn 19 which can be rewritten as®?

F° = [ 3 oyt e [ agrar ' a
+ j K2 |¢<y)|2[j{n2 (ny)-nt (x)}lx(x)de} dy— j1d¢>/dy Pay. @y

Equations 19 and 21 are identical since the terms containing n?(x) cancel out exactly.
However, in writing the equation in this manner, we have separated the RHS in two
terms (written on two separate lines). We will show in the following that each of these
terms is positive and can be uniquely maximized giving, thus, the maximum value of f.

The first term, [ k2n2| yI* dx—fidy/dx® dx is the variational expression for the planar
index profile, nl(x), and hence is equal to the square of the propagation constant, say
?, of its mode. It is thus positive and has a maximum value §2. This value can be ob-

tained exactly using a standard numerical method', The function x(x) is simply the cor-
responding modal field which can be normalised to satisfy the condition of eqn 20. We
have thus obtained the maximum value of the first term of eqn 21 and have generated
the function ¥(x).

The second term of eqn 21 is also in the form of the variational expression for a pla-
nar index distribution, 7} (y) which is defined as

n20)= [ {2 0u )= n o) ax @)

which can be easily evaluated using n’(x) and g(x) of the first term. Thus, the second
term is also positive and its maximum value is 82, where f, is the propagation constant
of the waveguide defined by n2(y) of eqn 22. The value of f, and the corresponding mo-

dal field ¢,(y) can be easily obtained numerically. The field ¢,(y) can then be normalised
as required by eqn 20.

Next, we use ni (y) generated above to rewrite the variational expression of eqn 19 as

B = [ oo ay- [lagray [ ay

R [{r - oeo | av-[lapraxfav. @3
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The first term on the RHS of egn 23 is exactly the same as the second term of eqn 21 and
has already been maximized. The second term, in eqn 23, is again a variational expres-
sion for the index profile #?(x) which is now defined as

n2(0=[{m2 ey -r2 o0 @ 24

where 72(y) and $(y) are obtained in the first term of eqn 23. The second term, thus, has

a maximum value ? where B, is the propagation constant of the mode of a waveguide
with the profile #?(x), now defined by eqn 24.

This completes one cycle of iteration; starting from an arbitrary #?(x), we have gen-
erated a new n’(x) through the variational expression for the given index profile
n*(x, y). This n2(x) is the starting point for the next cycle of iteration. The quantity
B+ gives an estimate of the propagation constant § of the mode of the given chan-
nel waveguide n*(x, y). At the end of each cycle of iteration, one checks for convergence
in this quantity and the iterations are stopped when the convergence to a required accu-
racy is achieved. In most cases, one requires 2-3 iterations to obtain comvergence to
about 4 digits in B.

5.2. Implementation procedure

The method described above can be implemented as an iterative procedure for obtaining
the propagation characteristics of a channel waveguide. Various steps required for this
implementation are outlined below:

STEP 1 : Choose an n2(x). A good choice is n2(x) = n%(x, y = 0).

STEP 2 : Obtain 82 and y(x) numerically. Normalize y(x).

STEP 3 : Obtain n}(y) using eqn 22.

STEP 4 : Obtain 2 and ¢(y) numerically for n2(y). Normalize ¢(y).

STEP 5 : Obtain n2(x) using eqn 24.

STEP 6 : Obtain # and x(x) numerically for n!(x). Normalize x(x).

STEF 7 : Compute 87 = % + 8. Check for convergence in f82.

If converged, GOTO STEP 8
otherwise, GOTO STEP 3

STEP 8 : 2 and wix, y) = x(x)¢(y) are the required propagation constant and modal
field.

For translation of this procedure into a computer program, one requires the following
three elements:

1. Computaticn of the propagation constant of a planar waveguide. We have used the
Ricatti transformation’® and have solved the resulting first-order differential equa-
tion using the predictor—corrector method'®,
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2. Computation of the modal field. We have used the predictor—corrector method for
the Helmholtz equation directly.

3. Integration over the field to normalize it and to obtain the index distribution i m the
orthogonal direction (egns 22 or 24). We have used Bode’s 4-point formula® for
evaluation of integrals, since the truncation error of this formula is of the same order
as that of the predictor—corrector method.

Other details for implementation are given elsewhere’.

5.3. Numerical results and comparisons

We discuss in this section some specific numerical examples to show the accuracics of
varjous methods discussed above in comparison to other available methods. In particu-
lar, we will include the following methods in our comparisons:

1. VFD: Scalar finite-difference method based on the variational principle. Nu-
merical results® have been obtained using a 14 x 14 mesh point grid in
the transverse cross-section.

2. HFD: A direct vector finite-difference method' based on the magnetic (H)
field components with typically 20 x 20 mesh point grid in the trans
Vverse cross-section.

3. HG : The Hermite—Gauss (HG) method of Korotky et al.’®

O.lsr
3r oo
0.4+
w 0-2r
0.3
©
01 o
0.1
0.0 1 1 1 \
1 2 3 0 1 2

Fic. 2. Normalized propagation constant, B, as a Fig. 3. Normalized propagation constant, 5, as a
function of the normalized frequency, V, for a diffused function of ¥ for a diffused channel waveguide
channel waveguide with an error function—Gaussian with Gaussian-exponential profile with parameters:
profile with parameters: n,=2.203, n.=1.0, A= n =20, n,=10, A=13um, D/W=1 and no=
1.3 ym, D =3.35 pm and W=3.0 pm. 1.05 n,.
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4. EHG : Variational method with evanescent Hermite-Gauss (EHG)
trial field'’.

5. SH& ESH Variational method with secant hyperbolic (SH) and evanescent
secant hyperbolic (ESH) irial fields'*

6. Vorr : The optimal variational method discussed above. Typically 200

points are used for each one-dimensional analysis, and three or
less iterations are required7 for each V value.

The first numerical example is for an error function—Gaussian profile (error function
in x-direction and Gaussian in y-direction). This profile has been studied by Korotky
et al.’ Figure 2 incorporates the results of SH, ESH and Vgpr methods, and shows
that the results of ESH are nearly coincident with the results of Vopr for the range of
V values which are important for single mode operation. This shows that the ESH field
is an extremely good approximation for mode of such a waveguide. The next example
is a Gaussian exponential profile which has been studied by Schulz ez al.' using HFD
method. The results of HFD and also of ESH methods are given in Fig. 3. This figure
shows that the results of HFD are grossly inaccurate while those of ESH are once again
extremely close to Vopr results which are close to the exact results as they represent the
Jargest values of 8. Another comparison with finite-difference method is shown in Fig. 4
in which the results of a Gaussian—Gaussian profiie are given. The figure includes re-
sults obtained using Vepr, ESH, HFD and VFD methods. This figure also shows that the
finite-difference methods (both HFD and VFD) give very poor accuracy whereas ESH
continues to be extremely accurate and almost coincident with Vopr results except for
very small V values. The low accuracy of VFD and HFD results can be ascribed to rather
small size, 14 x 14 and 20 x 20, respectively, of the grid for sampling the field in the
transverse cross-section. In the case of Vopr, in which one has to consider only an one-
dimensional sampling of the field at a time, the field is sampled, in effect, on a grid of
size 200 x 200. In addition, in the finite-difference methods, one assumes that the field
vanishes at the boundaries of a window whose size is kept large enough to keep the ef-
fect of this approximation at a negligible level. However, the larger the size of the win-

0.6
Vopr
0.4
Q =
0.2p
Fic. 4. Normalized propagation conmstant, B, as a
: 1 function of V for a diffused channel wavegnide with
0 1 2 Ganssian—Gaussian profile with parameters: r? = 2.1,

ne=1.0,A=1.3 pm, D/W=1 and no = 1.05 2.
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Fi6. 5. Schematic of the index profile of a directional coupler made of two paratlet diffused chanme! waveguides.

dow, more are the grid points required to sample the field so that these are close enough
to approximate its variation adequately. On the other hand, in Vogpr, the field is assumed
to decay exponentially outside the computational grid. These two aspects of finite-
difference (and also finite-element) methods lmit the accuracy rather severely unless
very large computer memory and time are at disposal. The grid sizes of 20 x 20, used in
HFD and 14 % 14, used in VED, are highly inadequate as shown by the above results.

6. Directional couplers

Directional couplers are the basis for a variety of integrated optical devices such as
switches, modufators, and power dividers. A directional coupler consists of two identical
waveguides placed parallel to ¢ach other along the z-axis separated by a constant dis-
tance (see Fig. 5). {In some special applications, the waveguides may be non-identical
andfor the separation between them may not be constans). The modes of the two
waveguides, due to the overlap of their evanescent fields, get coupled to each other and
exchange power between them as they propagate along the z-axis. Diffused waveguide
directional couplers have been widely studied, both experimentaily'™® and theoreti-
Cany&x&zo—z{

The refractive index profile for a directional coupler made up of twao diffused channel
waveguides can be written as (Fig. 5)
n? + 2 AR F(e-s)+ fx+5)] y>0
n? y<0

T

w(xy)= (25)

where 2s is the separation between the centres of the two constituent channel
waveguides. The site wa iding structure thus formed has two modes, one of

3y
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which is symmetric and the other antisymmetric. The propagation constant of these
modes, B; and f,, respectively, depends on the separation parameter, s, and is such that
B. 2 B= B. (B being the propagation constant of the isolated waveguide). The equality
holds when the waveguides are widely separated (large values of 5) so that their evanes-
cent fields (along x) are vanishingly small and there is no interaction between them. In
this limit, B, B, — . Due to different propagation constants, the modes propagate with
different phase velocities and hence acquire phase at different rates as they propagate
along the length of the directional coupler, the z-axis. This leads to a z-dependent phase
difference between them which shows up as intensity variation along the z-axis (since
they have different field distributions). The effect of this characteristics is that when
light is launched in one of the waveguides, say the one centred at x = —s, the two modes
of the directional coupler are simultaneously excited, say in phase. Afier propagating
through a certain distance, the modes will be exactly out of phase and the intensity will
be maximum in the other waveguide (centred at x = s5). Thus, in effect, the power has
transferred from one waveguide to the other. This distance, after which the maximum
power is transferred from one wavcguide to the other, is called the coupling length, I,
and is defined as

[ — 26

““F.-P, o
This coupling length is the main parameter of a directional coupler and different meth-
ods have been used to obtain jts value from the given refractive index profile. We discuss
here the application of the Vgpr and ESH methods for obtaining the coupling length of
diffused channel directional couplers.

6.1. The Vopr method

As mentioned above, to obtain the coupling length, /., of a directional coupler, one has
to obtain the propagation constants of the first symmetric and the first antisymmetric
modes, fi; and f,, respectively. In the two-dimensional numerical method”, the Compos-
ite waveguiding structure, defined by eqn 25, is considered to be one waveguide and its
first two modes are obtained, individually, using the numerical method Vgpy (described
in Section 5). The coupling length of the coupler (eqn 26) is then computed using the
propagation constants of these modes.

6.2. The ESH method

In Section 4, we have discussed the evanescent secant-hyperbolic (ESH) trial field for
the analysis of channel waveguides. We now extend the same method to obtain the
coupling length of directional coupliers made of two such waveguides. Various steps of
analysis are summarized below:

e Use the secant hyperbolic (SH) trial field feqn 14) for a single constituent wavegnide
to obtain p and 7.

e Modify ¢(y) to include the field in the cover (i.e., derive an ESH field; eqn 17).
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e Use ysu(x) to construct the symmetric and the antisymmetric fields:
%, (x) ~ sech?[(x— 5)/ W]+sech?[(x +5) /W] @an
%2 (%) ~ sech®[(x—5)/ W]—sech?[(x +5)/ W] (28)

o Using ¥(0@esu(y) and Yu(x)@esu(y) in variational expression (eqn 10), one obtains
B and B,, respectively, without any maximization.

e  Obtain coupling length, /, using these B, and f, in eqn 26.

In this way, coupling length can be obtained without any maximization. This analysis
is fairly accurate for relatively large values of s; however, for small values, when the
waveguide modes influence each other rather strongly, a modification is necessary. In
such cases, the peaks of the modes are no longer at the points where the index has the
largest value. In fact, the peaks of the symmetric modes come closer to each other while
those of antisymmetric modes become farther apart. This possibility is not taken into
consideration in egns 27 and 28. To take this aspect into account, we can modify the
modes for the asymmetric and the antisymmetric mode by introducing a parameter, o,
such that

%5(x:0) ~sech”[(x— 6) / W]+sech”[(x +0) /W] (29)

% 2(5:0) ~ sech’[(x—0) / W] —sech”[(x + )/ W]. 30)

The values of o are such that ¢ < s for the symmetric mode and ¢ 2 s for the anti-
symmetric mode, and o 2 s for both modes for s >> W. The parameter ¢ is treated as a
variational parameter for maximizing the variational expression (eqn 10) for the trial
fields y.(x;0)Prsn(y) and Y. (x;0)Pes(y) to obtain B; and §,. These values of propagation
constant then give improved value of the coupling length, /..

6.3. Numerical results and comparison

We now present an example to show the accuracy of the methods discussed above for
directional couplers. We consider the directional couplers fabricated by Noda er al’®
The profile assumed is Gaussian~Gaussian (see eqns 5 and 6) with parameters
e =2.152, n,= 1.0, A = 1.153 pm, W= 4.0 pm and D = 5.0 uym (Fig. 6). Two cases with
An = 0.004 and An = 0.006 are included. Experimental results of Noda er al.'® and the
theoretical results using Vopr and ESH are included in the figure. This figure shows that
the results obtained using Vopr and ESH methods are in very good agreement with the
experimental data. This again brings out the point that Vopr and ESH methods are ex-
tremely good methods for modelling and analysis of channel waveguides and devices
made with these waveguides.

7. Conclusions

W.e have presented in this paper analytical and numerical methods based on variational
principle for the analysis of diffused channe! waveguides and directional couplers. In
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0 ©  Expenmental (Noda et.al 1981)
— ESH with 0 s and Vopr
— -~ ESH witho=s

y ! I i 1 L ! Fic. 6. Coupling length, I, as a function of s, ane half
-8 62 68 .0 of the waveguide separation for a directional coupler
stpm) reported by Noda ez al.'*

particular, we have presented a trial field, the secant-hyperbolic field, which is much
more accurate than the HG ficld while it retains the simplicity of the HG field. The im-
proved version of this field, the evanescent secant-hyperbolic field, is extremely accurate
and compares well with numerical methods which require much more computational
effort.

We have also presented a numerical methed (Vopr) which gives the best accuracy in
the propagation constant under the assumption that the trial field can be separated in its
functional dependence on the width and the depth coordinates. This assumption, our
results show, holds good for diffused channel wavegnides. The numerical results show
that, at least for the cases that we have discussed, the finite-difference (FD) methods
give extremely poor accuracies in comparison to our method. In fact, even simple ap-
proximations such as the HG and SH trial fields are better than the FD methods. This
could be due to rather small number of field sample points taken in these methods. The
computational effort in an FD method is orders of magnitude higher than in the methods
that we have described.

We have also included analysis of diffused channel waveguide directional couplers
mainly to illustrate an application of the methods that we have developed. Comparisons
with experimental data again show that the ESH method and the numerical method
(Vopr) perform extremely well in predicting the coupling length of directional couplers.
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