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Abstract

in mtegrated optics, tapered optical waveguide-based devices are n need, especially as end-to-end couplers be-
tween different devices and optical fibres. Light propagation in tapered waveguides 1s characterized by mode per-
turbation and loss arising due to coupling of gmided mode power into radiation modes. [n this paper, coupled mode
theory of dielectric optical waveguides is developed specially to include coupling between guided and radiation
modes. A two-dimensional tapered structure with a quadratic taper function along propagation axis and a para-
bolic refractrve index profile for transverse cross-section is solved analytically. Numerical calculations in the case
of LiNbO;-based device, for the power variation of the guided mode, reveal a loss in the range 1-5 dB within a
propagation distance of 100 um.

1. Introduction

Optical integrated circuits based on light propagation in dielectric and semiconductor
waveguides have gained importance in recent times'. Applications of integrated optics
include optical communications, optical signal processing and sensing, and optical com-
puting.

Tapered optical waveguides® structurally consist of optical fibre components and a
dielectric or semiconductor material, possibly fabricated on the same substrate as other
integrated optic circuits, and gradually taper according to input—output and efficiency
criteria. They find many applications in fibre and integrated optics. Coupling a channel
waveguide having a rectangular beam cross-section to an optical fibre supporting a cir-
cular shape is a typical example. Further, the dimensions of semiconductor integrated
optic circuit waveguides are typically 1-3 um compared to standard single-mode optical
fibres used for communications that are typically 610 um, necessitating tapered optical
waveguides for input and output coupling.

Analysis of light propagation in tapered optical waveguides is complicated due to the
varying nature of waveguide cross-section along the direction of light propagation.
Hence, the analysis of tapered waveguides without resorting to numerical methods is
difficult®™®. Recently, numerical methods like beam propagation method* and approxi-
mate analytical methods like conformal mapping® are attempted to solve the problem of
light propagation in tapered optical waveguides. Simpler and more general methods are
still necessary to investigate the problem.
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Coupled mode analysis has long been used for many applications in fibre and inte-
grated optics7. Recently, it is being improved to include light propagation in nonparallel
Waveguidcsx. In coupled mode theory, deviation from 2 standard waveguide is supposed
to bring about 2 coupling among its normal modes. The idea presented in this paper is
that, locally along the propagation axis, the tapered wavegnide may be supposed to be a
deviation to straight waveguide. This helps in investigating light propagation in tapered
waveguides. Coupled mode theory appears to provide a simpler and approximatcly ana-
Iytical sofution to tapered waveguide problem. In this paper, coupled local mode rela-
tions are derived between forward propagating guided and radiation modes. This method
is applicable to any waveguide cross-section and to any taper function.

2. Coupled mode theory

In this section, a brief outline of the coupled mode theory as applicable to dielectric opti-
cal waveguide problems is given'.

Coupled mode theory is based on eigenmode expansion principle. The problem is to
determine the field associated with light propagation along a given waveguide structure.
In coupled mode approach, the given waveguide structure in terms of its refractive index
profile n*(x,y,) is decomposed into a standard known structure like a straight waveguide
n;(x, ) and its deviation AR (x,y,2).

We suppose ¥, (x,y) to be the eigenmodes for straight waveguide with the refractive
index profile 7} (x,y). Then the total field in the given structure, W(x,y,z) is considered
as a superposition of the orthonormal modes W, (x,y) exp(-iyz) of the standard struc-
ture.

N
W, 32) = 3 U, (¥, (x5 )). n
p=l

The functions U,(z) are the normal mode field weightages and consitute the coupled
mode spectrum. The relations between them are the coupled mode equations. They can
be derived by various methods like wave equation or reciprocity theorem’. In the case of
uniform waveguide they result in U, = U; exp(~i},z) where U? is the mode spectrum at
z = 0. The general form of the coupled mode equations is as follows:

a, i
—L=—i, U, = 3 Ky U, @
=1

where K,,; are the coupling coefficients and contain perturbation terms, and hence the
various parameters of the given structure. They are given by

k2 .
K= _27;” W AR, dS. ®

) Here,» ¥ are the propagation constants of the normal modes and &, = 2n/A. By know-
ing the initial mode spectrum {?, the set of coupled mode equations (2) can be solved
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for Uy(z) giving the interaction among the modes due to perturbation. Power calculations
can be done once the field patterns are determined.

The existing coupled mode theory of parallel waveguides is not applicable to tapered
waveguides as it is because it uses an unperturbed straight waveguide as standard struc-
ture throughout the propagation distance. In the case of tapered waveguide the local
normal mode patterns and their number vary. In addition, radiation modes may play an
important role. In the next section, a set of coupled mode equations are derived as appli-
cable to tapered type of optical waveguides.

3. Tapered waveguide analysis

A tapered waveguide is described in terms of the taper function S(z) denoting its cross-
sectional geometry along the propagation axis, z. A typical tapered waveguide structure
is shown in Fig. 1. Of special interest are the initial and final cross-sections. n(x, ¥ &
describes the transverse refractive index profile at z = £ The local normal modes at any
£ are those of a uniform waveguide with the same cross-sectional features. The mode
fields E(x,y,&) exp(~iy€) satisfy the corresponding wave equation

VEE +(k§n? ~y2)E =0, 4)

where V%- is the transverse Laplacian and y({) represents the local propagation constant.

The domain of y consists of a discrete set of values for guided modes and a continuous
set for radiation modes.

L X

a0

Fi6. 1. Tapered waveguide structure.
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Here, assume that the fields vary slowly with taper, i.e.,

<< E
35 Irel. )
as can be noted from the following equation for z-variation of E,
J*E exp(~i¥) _ JE
— ( —21 =y E) exp(—iyl). 6
F azf "% ©

If the local guided and radiation modes E, and E, at any point on propagation axis
z=& are known, the total field E, can be expressed as their sum owing to their or-
thogonality. Considering a single guided mode and a spectrum of radiation modes, the
total field is given by

E§) = Q&)+ [, &7 )E G 7,)dy, o

where I', when loss also is included, is a complex contour for radiation mode propaga-
tion constants ¥, and the dependence of £ fields on x,y coordinates is implied.

The variables 1, (&) and u, (§,%) represent the interaction between modes and the re-
lation between them is to be determined now. As the wave propagates to another point

z=¢& = &+ A, the new functions u, (&) and u,(&, ¥) can be determined by decompos-
ing the total field E(&") as

u@) = [ E@EEs: ®
w7 =[ [ E@E @ s ©

Here the integrals extend over the entire x—y space 4, and + indicates complex conjugate.

The local normal modes satisty the following orthornormal equations
"
J EEy as=5,. (10)

”AE, Y, dS = 8(r~r7), (1)

where 8. is the Kronecker delta function and 3(r~r) is the Dirac delta function. In the
Timit as AE — 0, the functions u,, u,, £, and E, at £ and & can be related as follows:

fE+ap =@+ aed ‘* a2

The total field £(&’) at z =£ can be approximated by the field obtained by propagat-
ing the individual modes from £ to &
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E/(+85) =1, (OE© exp (it AD[ 1,6 7,)E, & ¥, exp =iy, A8y . (13)

Substituting (13) in (8) and using (12); we get

. JE;
+A5 j 4, +Lu,E,dy,][Eg +ag—5Es. 14
Simplifying this and making Af — 0, we get
die (£)
uj ; =g (G v —iv Iy (§)+jrt<g,(€, 8y )8Y, . as)

For radiation modes, substituting (13) in (9) and using (12), we get
u, +A§ ” [ugEngj B, dy, 1E" +AE e C 16
Simplifying and making A§ — 0, we get

du, (&,
'(5 2T o &7 g (5>+{[x,,<§ TRY-ir & ydy,. D

Equations (15) and (17) constitute the coupled mode equations, where the coupling co-
efficients are given by

K& = Eaf) (18)
K (E)= ”AEg(é) .é%éﬁds; (19)
Kp (&= LE,«:).E%‘S—)M; 20)
@[] E,@).BE—;’;‘E—)dS @1

4. Parabolic index taper

As an illustrative example consider the two-dimensional taper waveguide shown in Fig.
1 and 2. The waveguide supports a single-guided mode and a continuum of radiation
medes. In this paper, our aim is to choose an appropriate structure such that the local
normal modes have Gaussian and sinusoidal profiles for guided and radiation modes,
respectively, Consider the refractive index profile given by

n? 1-2A{3‘-2— [d<al2
n?=0 @ @2)
n} xzali2
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4 n(z)

m

Fi6.2. Refractive index profile.

where A = (n;-n;)/n;, n; and n, are the refractive indices at the centre of core and in the
cladding, respectively, and a(z) is the width of the waveguide.

For such a profile the guided modes can be approximated by Hermite Gauss functions
inside the core and exponentially decaying functions in the cladding'®

AH, (x)exp(~x" [w?) |x<af2

23)
A’exp(-a,|x/al) [x{zar2

0=
where @, =.Jy2~kn3 and A‘=A exp(-o)H.(a) exp (-a*/4w?). For the dominant
made Ho(x) = 1 and 5o the guided mode has a Gaussian field distribution. The propaga-
tion constant ¥, and the normalization factor A may be given as follows:

2
Te "hko(l‘ JTA_W ; 24)
akyy )
A=2/my 1w, (25)

The beam width function is related to the actual wavegnide width as
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2a(z)
N2Amk,

In contrast to guided modes, the radiation medes are oscillatory in nature both in core
and cladding. They may be represented in the following form:

w'(z) =

(26)

Ay exp(—iy x)+ A, exp(+yx) |x|<a/2
r{lph p(+71%) |4 27)

Bexp(+y) zar2

Here, ¥, :,/kgnlz—yf, Y= Icgn.j;—yf, and the radiation mode propagation constant

varies from O to kyn,. The constants A; and A, are related by matching the fields at the
boundaries

4 =@ Bexplicy —y,)ar2): 28
2y,

A2:(y'_y]Bexp[i(y—y[)d/Zl. 29)
2y,

B is obtained by normalizing the radiation mode field, while noting that the fields ex-
tend to infinity'’

B = (y2m)'™ (30)

Now, for the selection of a suitable taper function, we consider the rclation between
the guided mode width (beam width w(z)) and the actual waveguide width a(z) (26). So a
quadratic taper profile would result in a linear beam width profile. Thus, the taper pro-
file is chosen as

z
a(z) = a0(1+x.;v—0—)z, (€3]

so that the beam width is linear
w(z) = wp + . z. (32)

Here, ag and wy are the initial waveguide width and the initial beam width, respectively,
and s is the slope of the beam width taper function.

To evaluate the coupling coefficients for the tapered structure we need to substitute
the expressions for the mode fields (23, 27) into (18-21) and simplify. Thus, the evalua-
tion is simplified as outlined below

. £ QEg
kog(z)= j_.,.,b"' I—Jz—dx

o j:A exp(—xZ /wz) exp(—iygz)%[A exp(—xszz) exp(i)’gz)]dx
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=iy, -% 33)

OE,
%

k(2= '{:E dx
= [TBempimerst-iv 2 Berp(-imexpliy s
=ir,8(r»7,) G4
ko, (2= I:Eg 3_5;

:JWA exp(-x2/w?) exp(—iy g % [exp(=iyx)expliy,2))dx

1 174 w2,y2
=<w,>(gj T expl=—— = )expl-ilr ; ~7,)2)- 35)

JE
ky@= [ B =

=jrBexp(iyx) exp(—iy,z)gz[A exp(—lewz) exp(iy ,z)ldx

2w 2

2 2,,2
= (—;;)"ﬂ/W[m L) ] exp(- ” 47/ ] exp{-ir, =7} G6)

where 8(%,%") is the Dirac delta function which vanishes when the radiation mode
propagation constants are different.

To obtain the variation of guided and radiation mode fields by solving (15,17) using
(33-36) we note the phase variation of 1, and u, and seek the solution in the form

ug(2) = G(2) exp(iz,z) 37
ulz) = R(z) exp(iy2). (38)
Substituting (15,17) and changing the independent variable to w = wp + sz, we get
dG s kony
e d- 39
- WG+L K(w)Rdy, (39
dR .
—=(iy,) K'W)G (40)
dw

where

K(wy= (U 2m)" Jwy fiy, — 3512w + swy I 2) exp(-w?y?4) (41)
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K'(w)=(1/2m)"* Jwy expl-w?y?14). 42)

From these we can get a second-order differential equation for the variation of guided
mode field by differentiating (39) with respect to w and using (40). Thus, we get

a°G 1 4G 1

—5t—.————G = p(W)G, 4

'’ owdw Wt PG, “3)
where the factor p(w) is as follows:

kon, 5
POy = [,/ Ovy 1270

(iy, —3s/2w +sw’y*/2) exp(-w’y 1 2)Gdy, . (44)

We note that this contains factors of the form exp(—w2y2/4) and so represents a small
perturbation to the guided mode fields due to coupling to radiation modes. So this may
be approximated by a constant average perturbation defined as follows:

~ L
F=0/ L)J'Op(w)dw, (45)

where L is the length of the taper.

Equation (43) may be solved for G(z) either directly or numerically or through a
perturbation method subject to the initial condition that G(0) = 1. Thus, we get

3 +p
G(z)={ o } . 46)

Wy +sz

The solution of coupled modc equation for the radiation mode fields £(z) can be readily
obtained using the solution for guided mode fields,

Rz ) = [ Ky Y03 “7)

5. Results and discussion

The derivation is general except that the waveguide supports only one guided mode.
Many modes can be easily included resulting in their coupled mode equations. The na-
ture of the taper function is indirectly involved in the expression for the coupling coef-
ficients. In solving for a particular taper geometry the coupling coefficients may be
simplified to include the derivatives of refractive index profile along the propagation
direction. The results of coupled mode theory for tapered optical waveguides derived
here may be contrasted with that of straight waveguides7'm.

The coupled mode equations (15,17) relate u, and u,, the guided and normal mode
spectra. In the analysis while only one guided mode is considered, all the radiation
modes are taken into account. The radiation mode spectrum is represented by (&, v,).
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Hence, eqn (15) relates a single component u, to many radiation moedes ¥, In contrast,
eqn (17) relates each radiation mode to the guided mode and all radiation medes. So, the
coupled mode equations are not symmetric in this sense. This is also apparent when the
coupled mode equations are rewritten with the radiation mode spectrum discretized.

Similar arguments apply to the expressions for coupling coefficients {18~21). For ex-
ample, &, represents the coupling coefficient between the guided mode 7, and each of
the radiation modes ¥, and is a function of %. In contrast, K|, represents coupling be-
tween two radiation modes, say %1 and ¥, and is a function of both.

The coupling cocfficients and the coupled mede equations are z-dependent, showing
that they are inhomogeneous. Thus, it can be inferred that the coupling is not a periodic
process in the case of tapered waveguides.

The theory may be extended and improved in many ways; for example, by including
abrupt tapers. One important inclusion that may prove necessary is that of reflected
modes, both guided as well as reflected. Comparisons may be made with other methods,
notably beam propagation method which is well known to attack nonparallel waveguide
problems.

In the example, only a single-moded taper is considered to give importance to radia-
tion modes. To an approximation we note that the guided mode power decays recipro-
cally along the propagation axis. Calculations have been made using the parameters cor-
responding to LiNbO; waveguide devices: A= 1.3 um, 1, =2.2, A= 1% and a5 =3 pm.
We assume a radiation perturbation of j = 1%. In the graph of Fig. 3, 8 =1°, 0.5°, 0.1°
correspond to slope of the beam width variation (ws =2 pm) (s = tan(8)). We find that
the power falls to over — 5dB within a propagation distance of 100 um for 6= 1°, but
less than 1 dB for 6= 1°.

6. Conclusion

In this paper, a new simple and general method to analyse tapered optical waveguide is
suggested. An important feature of it is that the parameters i, are functions of z. The
coupled mode equations can be solved for simple problems like tapered fibres and ta-
pered slab waveguides. In addition, the analysis becomes even simpler in such problems
where only the dimensions change and not cross-sectional shape. The method can be
easily extended to tapers with many guided modes, including reflected modes. As an
example, a two-dimensional graded index tapered waveguide is solved analytically. In
future studies, we hope to compare the method using the results from a standard numeri-
cal method like the beam propagation method.
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