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Abstract 

In integrated optics, tapered optical waveguide-based dewces are In need, especmlly as end-to-end couplers be- 
ween different devices and optical fibres. Light propagation m tapered waveguides 1s characterized by mode per- 
turbation and lass arismg due to coupling of guldad mode power into radiat~on modes. In this paper, coupled mode 
theory of dielectric optical waveguides is developed specially to include couplmg between guided and radiation 
modes. A two-d~mensronal tapered structure wlth a quadratic taper function along propagation axis and a para- 
bahc refractwe index profile for transverse cross-section is solved analytically. Numerical calculations In the case 
of LrNb03-based device, for the power vanadon of the gulded mode, reveal a loss in the range 1-5 dB within a 
propagation distance of 100 &m. 

1. Introduction 

Optical integrated circuits based on light propagation in dielectric and semiconductor 
waveguides have gained importance in recent times'. Applications of integrated optics 
include optical communications, optical signal processing and sensing, and optical com- 
puting. 

Tapered optical waveguides2 structurally consist of optical fibre components and a 
dielectric or semiconductor material, possibly fabricated on the same substrate as other 
integrated optic circuits, and gradually taper according to input-output and efficiency 
criteria. They find many applications in fibre and integrated optics. Coupling a channel 
waveguide having a rectangular beam cross-section to an optical fibre supporting a cir- 
cular shape is a typical example. Further, the dimensions of semiconductor integrated 
optic circuit waveguides are typically 1-3 pm compared to standard single-mode optical 
fibres used for communications that are typically 6-10 pm, necessitating tapered optical 
waveguides for input and output coupling. 

Analysis of light propagation in tapered optical waveguides is complicated due to the 
varying nature of waveguide cross-section along the direction of !ight propagation. 
Hence, the analysis of tapered waveguides without resorting to numerical methods is 
d i E c u ~ t ~ - ~ .  Recently, numerical methods like beam propagation method4 and approxi- 
mate analytical methods like conformal mapping6 are attempted to solve the problein of 
light propagation in tapered optical waveguides. Simpler and more general methods are 
still necessary to investigaie the problem. 



202 TALABATIULA SRLNIVAS AND YASiJMLTSlJ MIYAZAXI 

Coupled mode analysis has long becn used for many applications in fibre end inte- 
op~cs7.  Recently, it i s  being improved to include hght propagation in nonparallel 

waveguidesY. In coupled mode theory, deviation from a standard waveguide is supposed 
to bring about a coupling among its normal modes. The idea presented in this paper is 
that, locally along (he propagation axis, the tapered waveguide may hc supposed to be a 
deviation to straight waveguide. This helps in investigating light propagation in tapered 
waveguides. Coupled mode theory appears to provide a simpler and approximately ana- 
lytical solution to tapered waveguide problem. In this papcr, coupled local mode rela- 
tions are derived between forward propagating guided and radiation modes. This method 
is applicable to any waveguide cross-section and to any taper function. 

2. Coupled mode theory 

In this section, a brief outlme of the coupled mode theory as applicable to dielectric opti- 
cal waveguide problems is given7. 

Coupled mode theory is based on eigenmodc expansion principle. The problcm is to 
determine the field associated with light propagation along a given waveguide ctructure. 
In coupled mode approach, the given waveguide structure in terms of its refractive index 
profilc n2(x,y,z) is decomposed into a standard known structure like a straight waveguide 
n,t(x, y) and its deviation bnZ(x,y,z). 

We suppose Yp (x,y) to be the rigenmodes for straight waveguide with the refractive 
index profile ni(.r,y). Then the total field in the given structure, Y'(x,y,z) is considered 
as a superposition of the orthonormal modes 'Y,, (x,y) exp(-i%z) of the standard struc- 
ture. 

The functions Up(@ are the normal mode field weightages and consitute the coupled 
mode spectrum. The relations hetween them are the coupled mode equations. They can 
be derived by various methods like wave equation or reciprocity theorem7. In the case of 
uniform waveguide they result in Up = UP exp(-i%z) where U," is the mode spectrum at 
z = 0. The general form of the coupled mode equations is as follows: 

where K,, are the coupling coefficients and contam perturbation terms, and hence the 
various parameters of the given structure. They are given by 

Here, y, are the propagation constants of the normal modes and ko = Znih. By know- 
ing she mitial mode spectrum U:, the set of coupled mode equations (2) can be solved 
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for U,(z) giving the interaction among the modes due to perturbatton. Power calculations 
can be done once the field patteras are determined. 

The existing coupled mode theory of parallel waveguides is not applicable to tapered 
waveguides as it is because it uses an unperturbed straight waveguide as standard struc- 
ture throughout the propagation distance. In the case of tapered waveguide the local 
normal mode patterns and their number vary. In addition, radiation modes may play an 
important role. In the next section, a set of coupled mode equations are derived as appli- 
cable to tapered type of optical waveguides. 

3. Tapered waveguide analysis 

A tapered waveguide is described in terms of the taper function S(z) denoting its cross- 
sectional geometry along the propagation axis, z. A typical tapered waveguide structure 
is shown in Fig. 1. Of special interest are the initial and final cross-sections. n2(x, y ;  5 )  
describes the transverse refractive index profile at 2 = 5. The local normal modes at any 
5 are those of a uniform waveguide with the same cross-sectional features. The mode 
fields E ( x , y , t )  exp(-iyt) satisfy the corresponding wave equation 

where V: is the transverse Laplacian and y(t) represents the local propagation constant. 

The domain of y consists of a discrete set of values for guided modes and a continuous 
set for radiation modes. 

I 
Fa. 1. Tapered waveguide structure 
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Here, assume that the fields vary slowly with taper, i .e . ,  

as can be noted from the following equation for r-variation of E ,  

If the local guided and radiation modes E, and E,. at any point on propagation axis 
z = 5 are known, the total field E, can be expressed as their sum owing to their or- 
thogonality. Considering a single guided mode and a spectrum of radiation modes, the 
total field is given by 

where T, when loss also is included, is a complex contour for radiation mode propaga- 
tion constants x, and the dependence of E fields on x,y coordinates is implied. 

The variables u,(Q and u, ( 4 , ) ~ )  represent the interaction between modes and the re- 
lation between them is to be determined now. As the wave propagates to another point 

z = 5' = 5 + A(, the new functions u, (5') and u , ( ( ,  x) can be determined by decompos- 

ing the total field E , ( c )  as 

Here the integrals extend over the entire x-y space A ,  and indicates complex conjugate. 

The local normal modes satisfy the following orthornormal equations 

where 6,,. is the Kronecker delta function and 6(r-1') is the Dirac delta function. In the 

limit as A{ + 0, the functions u,, u,, Eg and E, at 5 and 5' can be related as follows: 

The total field E d y )  at z =5 can be approximated by the field obtained by propagat- 
ing the individual modes from 5 to 5' 
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Substituting (13) in (8) and using (12); we ge: 

JE* 
u8 + ~ < % = j j , ~ u ~ ~ ~  d< + ,E,~Y,IIE~ + A t  A l d S .  $6 (14) 

Simplifying this and making A< -t 0, we get 

Simplifying and making A5 -t 0, we get 

= ~ ~ < , ~ ( < + t  Y - I Y  (17) 
cy . . 

Equations (15) and (17) constitute the coupled mode equations, where the coupling co- 
eflicients are given by 

4. Parabolic index taper 

As an illustrative example consider the two-dimensional taper waveguide shown in Fig. 
1 and 2. The waveguide supports a single-guided mode and a continuum of radiation 
modes. In this paper, our aim is to choose an appropriate structure such that the local 
normal modes have Gaussian and sinusoidal profiles for guided and radiation modes, 
respectively. Consider the refractive index profile given by 
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where A = (nz-ni)/n,. n, and na are the refractive indlces at the centre of core and in the 
cladding, respectively, and a(z) is the width of the waveguide. 

i 
I 
1 

For such a profile the guided modes can be approximated by Hermite Gauss functions 
inslde the core and exponentially decaying functions in the cladding1' 

I 

1 

I 

where a2 = m x  and A ' =  A exp(-al)Hm(a) exp (-a2/4w'). For the dominant 

mode Hotx) = 1 and so the guided mode has a Gaussian field distribution. The propaga- 
tion constant & and the normalization factor ,4 may be given as follows: 

P- 
1 

RG 2. Refractive index profile. 

The beam width function is related to the actuai waveguide width as 
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In contrast to guided modes, the radiation modes are oscillatory in nature both in core 
and cladding. They may be represented i n  the following form: 

H ~ ~ ~ ,  y l  = d m ,  y =  d m ,  and the radiation mode propagation constant 

varies from 0 to konz. The constants A ,  and A1 are velaled by matching thc fields at the 
boundaries 

B is obtained by not-malizing the radiation mode field, while noting that the fields ex- 
tend to infinity1' 

B = (yi2n)'". (30) 

Now, for the selection of a suiiabie taper function, we consider the relation between 
the guided mode width (beam width w(z)) and the actual waveguide width a(?) (26). So a 
quadratic taper profile would result in a linear heam width profile. Thus, the taper pro- 
file 1s chosen as 

so that the beam width is linear 

w(z) = W' + s. z (32 )  

Here, a. and wo are the initial waveguide width and the initial beam width, respectively, 
and s is the slope of the beam width taper function. 

To evaluate the coupling coefficients for the tapered structure we need to substilute 
the expressions for the mode fields (23, 27) into (18-21) and simplify. Thus, the evalua- 
tion is simplified as outlined helow 
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where 6(y,,y,') is the Dirac delta function which vanishes when the radiation mode 
propagation constants are different. 

To obtain the variation of guided and radiation mode fields by solving (15,17) using 
(33-36) we note the phase variation of uK and u, and seek the solution in the form 

d z )  = G(z) exp(illpz) (37) 

uXz) = R(z) exp(iy,z). (38) 

Substituting (15,17) and changing the independent variable t o w  = wo + sz, we get 

dR - =(iy,) K'(w)G 
dw 

(40) 

where 

K(w) =(I /  2?0'14fi~y, - 3s12w f s ~ ~ ~ / 2 )  exP(-wZY2/4) (41) 
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Morn these we can get a second-order differentia? equation for the variation of guided 
field by differentiating (39) with respect to wand using (40). Thus, we get 

where the factor p(w) is as follows: 

(iy, -3s/2w + w Z y 2 / 2 )  e ~ ~ ( - w ~ ~ ~ / 2 ) ~ d ~ ,  . (44) 

We note that this contains factors of the fol-m exp(-w2y2/4) and so represents a small 
perturbation to the guided mode fields due to coupling to radiation modes. So this may 
be approximated by a constant average perturbation defined as follows: 

where L is the length of the taper 

Equation (43) may be solved for G ( z )  either directly or numerically or rhrough a 
perturbation method subject to thc initial condition that G(0) = 1. Thus, we get 

The solution of coupled mode equation for the radiation mode fields R(z) can be readily 
obtained using the solution for guided mode fields, 

5. Results and $liscanssion 

The derivation is general except that the wavegaide supports only one guided mode. 
Many modes can be easily included resulting in their coupled mode equations. The na- 
lure of the taper function is indirectly involved in the expression for the coupling coef- 
ficients. In solving for a particular taper geometry the coupling coefficients may be 
simplified to include the derivatives of refractive index profile along the propagation 
direction. The results of coupled mode rhecry for tapered optical waveguides derived 
here may be contrasted with that of straight  waveguide^'.'^. 

The coupled mode equations (15,17i relate a, and u,, the guided and normal m d c  
spectra. In the anaiysis whilc only one guided mode is considered, ail the radiation 
modes arc teken into acconnt. The radiarion mode speclrum is represented by r r , ( c ,  y,). 
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Hence, eqn (15) relates a single component u, to many radiation modes u, In contrast, 
eqn (17) relates each radiation mode Lo the guided mode and all radiation modes. So, the 
coupled mode equations are not symmetric in this sense. Thls is also apparent when thc 
coupled mode equations are rewritten with the radiation mode spectrum discretized. 

Similar arguments apply to the expressions for coupling coefficients (!8-21). For ex- 
ample, I,, represents the coupling coefficient between the guided mode y, and each of 
the radiation modes y,, and is a funct~on of 1/,. In contrast, K,, represents coupling be- 
tween two rad~ation modes, say x l  and y,,, and is a function of both. 

The coupling cocfficients and the coupled mode equations are z-dependent, show~ng 
that they are inhomogeneous. Thus, it can be inferred that the coupling is not a period~c 
process in the case of tapered waveguides. 

The theory may be extended and improved in many ways; for example, by ~ncloding 
abrupt tapers. One important inclusion that may prove necessary is that of reflected 
modes, both guided as well as reflected. Comparisons may be made with other methods, 
notably beam propagation method which is well known to attack nonparallel waveguide 
problems. 

In the example, only a single-moded taper is considered to give importance to radia- 
tion modes. To an approximation we note that the gu~ded mode power decays recipro- 
cally along the propagation axis. Calculations have been made using the parameters cor- 
responding to LiNb03 waveguide devices: A = 1.3 pm, n? = 2.2, A = I% and uo = 3 ym. 
We assume a radiation perturbation of j3 = 1%. In the graph of Fig. 3, 8 =  lo ,  0.5". 0.1" 
corrcspond to slope of the beam width variation (w(, = 2 p n ~ )  ( s  = tan(@)). We Find that 
the power falls to over - 5dE within a propagation distance of 100 Frn for 0 = I", but 
less than 1 dB for 8 =  lo. 

6.  Conclusion 

In t h ~ s  paper, a new slmple and general method to analyse tapered optical waveguide is 
suggested. An important feature of it is that the parameters K ~ ,  are functions of z.  The 
coupled mode equations can he solved for simple problems like tapered fibres and ra- 
pered slab waveguides. In addition, the analysis becomes even simpler in such problems 
where only the dimensions change and not cross-sectional shape. The method can be 
easily extenaed to tapers with many guided modes, including reflected modes. As an 
example, a two-dimensional graded index tapered waveguide is solved analytically. In 
future studies, we hope to compare the method using the results from a standard numeri- 
cal metlrod like the beam propagation method. 
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