
J .  Indron Inrr. Sci., Mar.-Apc. 1996. 76. 213-221 
0 lndlan institute of Science 

NAREN NAIK', A. SELVARAJAN~ AND R. M. VASU' 
'Department of lnstrumentation and 'Department of Electrical Cornmumcation Engineering, Indian Institute of 
Sczence, Bangalare 560 012, lnd~a .  

Received on October, 1994 : Rewsed on August 11, 1995 

Abstract 

In this study, a perturbation serles solut~on to the scalar wave equa tm has been presented, solving for the total 
fieids propagatmg through an arbitrary refractive Index datribut~on. Results are presented for the case of straight 
step-mdcx tntegrated optics waveguides for modal excitation. Equivalence of the presented solutions to those 
derived from the Green's function formalmm of saiving the scalar wave equatlon for same special cases has been 
shown. 
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1. Introduction 

Electromagnetic wave propagation through source-free lsotropic dielectric media is 
modeiled in the scalar approximation by the scalar wave equation. It serves as a fairly 
accurate model for electromagnetic wave propagation for many classes of practical 
problems encountered in science and engineering. 

We have presented a perturbation-series solution (PSS)'.~, in closed series form, to 
the scalar wave equation for the total fields propagating through arbitrary refractive in- 
dex variations. The first-order solution has been explicitly shown and basic validation of 
the theory has been performed for the cases of straight integrated optics (10) 
waveguides. Further validation of the above developed perturbation solution has been 
carried out by demonstrating its equivalence to the Born approximation to the solution of 
the scalar wave equation. 

Longitudinally varying waveguides form a very important class of optical 
waveguides. Previous research in the analysis of such waveguiding structures has re- 
sulted in the development of computational methods such as the beam propagation 
method (BPM)~, the generalized propagation techniques (GPTS)~, collocation methods5, 
or analytical methods like path integration6, all of which solve the paraxial approxima- 
tion to the scalar wave equation. Another analytical approach for I 0  tapered waveguides 
has been the local normal mode theory2.', which, however, is on!y viable for waveguides 
with known modal solutions. 

The present approach differs from these previous approaches to the problem in the 
f@llowing ways: 



214 NAREN NALK el ol 

1. Thc scalar wave equation itself is solved, not its paraxial/exiended Fresnei q. 
proximation. 

2. There is no conceptual difficulty of non-commutation of operators in the propaga- 
tor as in the case of the BPM or the GPTs. and as a rewli  we can write out a closed se- 
ries form solution, which is not possible in rbe above methods. 

The outline ot the paper is as follows. The form of solutions obtained for the total 
fields is given in Section 2. In Section 3, the PSS is applied to the problem of evaluation 
of fields propagating through 10 waveguides. Further analytical validation of the PSS is 
presented in Section 4. Conclusions are presented in Section 5. 

2. Form of solutions obtained for the total fields 

The scalar wave equation (also called the Helmholtz equation) in a source-free, isotropic 
medium i s  

v2 '4 '+k~n2( .~ ,y , z )~  = O  (1) 

where V' is the Laplacian operator, Y(x, .y ,  z )  is the complex amplitude of a monochro- 
matic wave propagating through a medium characterised by a r e h c t i v e  index, n(x, y, I). 
and ko is the bee space wave number. 

The refractive index can be written as 

n2(,qy,z) = n i  +dn2(x,y,z)  (2) 

where no is the amhient refractive index, and An(x, y, 2 )  represents the spatially depend- 
ent part of the refractive index. 

Thus the complex amplitude of Lhe propagating monochromatic wave at any space 
point, called the total ficld, can be considered to be the sum of two components, an inci- 
dent component and a scattered component corresponding to the propagation of the inci- 
dent field through the ambient medium and through the space-dependenr part of the re- 
fractive index, respectively. 

If Y(x, y, z )  denotes the total field, and defining @(x, y,  z) as, O(x, y. z) 5 $. we can 

write, 

whcre U l  is an operator representing the propagator tor the fields and is aplii as  

where UO is the propagator for the reference z-independent problem (i.e.,  propagation of 
the Fields tlirough the ambient refractive index), and is given by2 

U - r S ~ ~  
0 - (5) 

where 
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with H, = V: +kin:, where V$ is the transverse iapiacian 

The operator P represents a perturbation to Uo and has been found to be2, 

where + denotes a space ordered product, and 

Q = U,'S,U, 

where again 

where HI = ki  ~ n ~ ( x ,  y,  z) 

Denoting operator cosHf2z by A, and operator H;"~ s i n ~ A / ~ z  by B ,  operator Q is found 
to be2 

B HI A B H , B  

Q = ( - A H ~ A  A X B  (10) 

When &n2(x, y, z) <in:, considering a first-order evaluation of the operator P, we get 

P  = Po + P! (11) 
where Po = I, the identity operator, and, 

It is seen that all the terms composing the propagator are series of integral powers of 
the operator No. Hence, in order to evaluate eqn(1) analytically, we decompose the func- 
tions Y and Q in terms of the eigenfunction basis of Ho, i.e., plane waves in Cartesian 
coordinates. 

3. Application of the PSS to integrated optics 

The validity of the above-presented perturbation solution to the Helmholtz equation i s  
demonstrated by applying it to the problem of evaluation of the total fields propagating 
through an integrated optics waveguiding structure. 

Considering the case of planar waveguides, designating the x-axis as the transverse 
coordinate and the z-axis as the longitudinal coordinate along the axis of the waveguide, 
the field solutions at the output section z = z,,,, are obtained on evaluating eqn (3) as 
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where Yo(x, z,,,) is the incident component of the total field at the output line z =z,,, 
and is given by 

where 

1. f(u,  2) = gi (u, z = 0) COS (r Z) + g2 (u, z = 0) sin (i z)/r 

2. -konO < 2x14 < keno, u being a spatial frequency coordinate corresponding to the 

transverse coordinate, and r = d w .  
3. g, (u, z = 0) and g2 (u, z = 0) are Fourier transforms of the total field and its z- 

derivative, respectively, with respect to the transverse x-coordinate at the input section, 
z = 0, of the waveguide. 

The field Y, (x, z,,,) is the scattered component of the total field, and is given by 

where 

1. 0 5 z 5 z,,,, where z = 0 and z = z,,, are the input and output cross-sections, re- 
spectively, of the waveguide section considered. 

2. - knnn < 21iv < keno, v being a spatial frequency coordinate corresponding to the 
transverse coordinate. 

4. g(u, z )  = F(An2(x, 2): x + u),  Frepresenting the Fourier transform operator. 

The first-order solutions for the total fields are found to have nice computational 
properties in that they reduce to the forms of a convolution and an inverse Fourier 
transform along with a z-integral so that we can utilize the rapid evaluation properties of 
the FFT algorithm. 

The above solutions for the total fields are validated for the case of straight step- 
index I0 waveguides with fundamental mode excitation through comparison with exact 
modal solutions. 

The plots of electric field intensity, E vs transverse coordinate x (whose origin is at 
the cenrre of the waveguide) are shown in Figs 1-4, that compare the PSS (solid curve) 
with the modal solution (dotted curve) for different refractive index profiles and various 
propagation distances. Here 11, and n, are film and substrate refractive indices, respec- 
tively, d is the width of the waveguide, ;l, the wavelength of light used, z,,,, the propa- 
gation distance. 
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no I. Plot o i  E vs  x. n,= 1.503, n, = ! 500, d = FIG 2. Plot of E vs x. a,= 1.503, n,= 1.500, d = 
4 pm, A = 1.0 pm propagarion d~stance, z ,,,., = 10 pm 4 pin, = 1.0 ;rm propsgatlon distance, z,., = 20 pm. 

it is seen from the ligures that the agreement of the PSS with the exact modal solu- 
tion is quite good, the correspondence being better when ( n f -  n ,  ) is smaller than when 
larger, which is due to thc pcrturhation nature of the solution to the problem. 

4. Further analytical validation of the PSS 

The above demonstrated first-order perturbation solution has been further val~dated 
analyticdlly in the following ways. 

1. It is shown that the closed-form solution for scattered fields obtained from ~t ibr 
the special case of a constant ambient refractive index and scattering from an object due 
to plane wave incidence is the same as the solution (called the Fourier diffraction theo- 
rem (FDT)) obtained using the Born or Rytov approximations to the scalar wave equa- 
tlon. 

2. in addition, it is shown that for the case of constant ambient refractive index, the 
Green's function formalism of solving the scalar wave equation is the same as the above 
devcloped perturbation solution. 
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The above validations are carried out for the two-dimensional scattering problem, the 
corresponding three-dimensional versions being their straightforward extensions. 

4.1. Obtaining the Fourier diffraction theorem from the first-order perturbation soh- 
tion developed 

The scattered component of the total field, Y,(x, z), when only solutions in terms of 
plane waves propagating in the positive z-direction are considered, can be written from 
e(n (14) (considering z = z,, to be the input cross-section) as 

where the terms of the integrand and the limits d integration have been defined in the 
previous section. 

Define the Fourier transform of the scattered field, Yl(x, z )  with respect to the trans- 
verse coordinate, x, as 

Assuming incident illumination to be a plane wave travelling along the z-axis, i.e., 
Y(x,z,,)=ejb""",z,, = -L12 ,  we obtain T(v, but = W 2 )  to be, 

where 

1 .  N(v, W )  = F ( A ~ ' ( x ,  Z) : x, z -+ v ,  w), where Frepresents a Fourier transform opera- 
tor and (v, w) are the spatial frequency coordinates corresponding to the spatial coordi- 
nates (x, z); -hno < 2m i keno. 

This relation that relates the onedimensional Fourier transform of the forward scattered 
field at a spatial frequency to a point on a semi-circular arc in the Fourier transform of 
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tile object refractive index is called :he Fourier difiraction theorem, and is also obtained 
from the Born or Rytov solutions to the scalar wave equation for scattered 

4.2. Ohraining the first-oder pertnr-hution sohtion fi-urn the first-order Born approxi- 
mation 

The scattered component, yi(*, y,  i), of the iota: field, %'(A y,  z), is a solution of thc 
equation, - 

(v' + k:)yl = -k;8n2(x, y, z)Y (18) 

where the ambient refractive index is considered as unity without any loss of generality. 

In two dimensions, the firct-order Born approximation qolution to rhc above equa- 
[iong is 

where 

1. G(x, zlx', i') is the free-space Green's iunction co~icsponding to the two-dimen- 
sional scalar wave equation, a ~ ~ d  is given by 

where N;) denotes the Hanke! (unction of the zcroth order and the first kind, and 

R = J (X  - X'12 -k (: - 

2. tl,(x, Z )  = kiAn2(.r, 2). 

3. 'f'dx, 3) 1s the total field that would have existed at (x, 2) if the refractive index 
inhomogeniety were absent. 

4. The integration is over the e n t m  two-diinensiona: space 

Consider a field propagating towards increasing z. For a given 2, considering the 
field only due to sources (inhomogcneities) in the region i' < i, we can write the first- 
order Born scattered field ar 

where the lower 11mil for I' has been chosen without any loss of generality. 

The two-dimensional free-space Green's function has the following plane wave de- 
composition for z > 2" 

where 
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1. -ko < 2nv < ko, if the contribution from the evanascent waves is neglected, and 

2.  q = Y & i 7 V ? .  

Defining Th (v ,  z) s g('f!,(x, z) : x + v ) ,  we have, on substituting the above plane 
wave expansion into eqn (21), and recalling from Section 3 the definition of g(u, z) and 
suitably interpreting f ( u ,  z) as g(Yo(x, 2);  x u) ,  we have, 

where 0 S z' 2 z and -ko 4 ~ B U  i kg. 

The above equation can be seen to be the same as the transverse Fourier transform of 
eqn (15) when the substitutions z,,, = 0, no= 1.0 are made in the integrand of eqn (15). 
Hence the equivalence of the first-order Born and perturbation solutions has been dem- 
onstrated for the present special case of constant unperturbed refractive index. 

5. Conclusions 

In this paper we have presented and validated a perturbation series solution to the Helm- 
holtz equation for the total fields propagating through an arbitrary refractive index dis- 
tribution. The above developed solution has been applied to the problem of solving for 
the total fields propagating through an I 0  waveguiding structure. The  field solutions 
developed show convenient computational properties, permitting evaluation using FFTs. 
Validating results have been presented for the case of straight step-index I 0  waveguides. 

Further it has been analytically shown that the perturbation solution obtained is 
equivalent to the Born approximation to the solution of the Helmholtz equation for the 
case of constant unperturbed refractive index. 
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