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Abstract

In this study, a perturbation series solution to the scalar wave equation has been presented, solving for the total
fields propagating through an arbitrary refractive index distribution. Results are presented for the case of straight
step-index integrated optics waveguides for modal excitation. Equivalence of the presented solutions to those
denived from the Green’s function formalism of solving the scalar wave equation for some special cases has been
shown.
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1. Introduction

Electromagnetic wave propagation through source-free isotropic dielectric media is
modelled in the scalar approximation by the scalar wave equation. It serves as a fairly
accurate model for electromagnetic wave propagation for many classes of practical
problems encountered in science and engineering.

We have presented a perturbation-series solution (PSS)I'Z, in closed series form, to

the scalar wave equation for the total fields propagating through arbitrary refractive in-
dex variations. The first-order solution has been explicitly shown and basic validation of
the theory has been performed for the cases of straight integrated optics (I0)
waveguides. Further validation of the above developed perturbation solution has been
carried out by demonstrating its equivalence to the Born approximation to the solution of
the scalar wave equation.

Longitudinally varying waveguides form a very important class of optical
waveguides. Previous research in the analysis of such waveguiding structures has re-
sulted in the development of computational methods such as the beam propagation
method (BPM)?, the generalized propagation techniques (GPTs)*, collocation methods®,
or analytical methods like path integration®, all of which solve the paraxial approxima-
tion to the scalar wave equation. Another analytical approach for IO tapered waveguides
has been the local normal mode theory”, which, however, is only viable for waveguides
with known modal solutions.

The present approach differs from these previous approaches to the problem in the
following ways:
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1. The scalar wave equation itself is solved, not its paraxial/extended Fresnel ap-
proximation.

2. There is no conceptual difficulty of non-commutation of operators in the propaga-
tor as in the case of the BPM or the GPTs, and as a result we can write out a closed se-
ries form solution, which is not possible in the above methods.

The outline of the paper is as follows. The form of sclutions obtained for the tolal
fields is given in Section 2. In Section 3, the PSS is applied to the problem of evaluation
of fields propagating through IO waveguides. Further analytical validation of the PSS is
presented in Section 4. Conclusions are presented in Section 5.

2. Form of solutions obtained for the total fields

The scalar wave equation (also called the Helmholtz equation) in a source-free, isotropic
medium is

V24t (x,y,2)¥ = 0 )

where V2 is the Laplacian operator, ¥(x, y, 2) is the complex amplitude of a menechro-
matic wave propagating through a medium chavacterised by a refractive index, n{x, y, z),
and kg is the free space wave number.

The refractive index can be written as
nz(x,y, zy= né + Anz(x,y, 7) 2)

where #g 1s the ambient refractive index, and An(x, y, z) represents the spatially depend-
ent part of the refractive index.

Thus the complex amplitude of the propagating monochromatic wave at any space
point, called the total field, can be considered to be the sum of two components, an inci-
dent component and a scattered component corresponding to the propagation of the inci-
dent field through the ambient medium and through the space-dependent part of the re-
fractive index, respectively.

If W(x, y, z) denotes the total ficld, and defining ®(x, y, z) as, ®(x, y, 2) = ‘ZT we can

write,
W(x,y.z Y(x,y,z=0
( y)=l/] (%,3,2=0) @)
D(x,y.z) D(x,y,z=0) ’
where U, is an operator representing the propagator for the fields and is split as
U =UsP ®

where U is the propagator for the reference z-independent problem (i.e., propagation of
the fields through the ambient refractive index), and is given by2

Uy = % 5
where
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S = 0 1
0=\ H, 0 6)

with Hy = V2 + kZn}, where v} is the transverse Laplacian.

The operator P represents a perturbation to Up and has been found to be?,

P= [e o Q(:')dJ'J o
"

where + denotes a space ordered product, and

Q=Ug'sU, (8)

s[0 0
om0 ®

Denoting operator cos Hy'?z by A, and operator Hy""? sin H}/*z by B, operator ¢ is found

to be?

where again

where H, = kg An’(x, y, 2).

[B H A BH, B]
= . (10)

“\~AHA-AH B
When An’(x, y, ) <<n§, considering a first-order evaluation of the operator P, we get
P=Py+ Py a1

where Py = [, the identity operator, and,
P = !0 Q(z"ydz".

1t is seen that all the terms composing the propagator are series of integral powers of
the operator Ho. Hence, in order to evaluate eqn(l) analytically, we decompose the func-
tions ¥ and @ in terms of the eigenfunction basis of Hy, i.e., plane waves in Cartesian
coordinates.

3. Application of the PSS to integrated optics

The validity of the above-presented perturbation solution to the Helmholtz equation is
demonstrated by applying it to the problem of evaluation of the total fields propagating
through an integrated optics waveguiding structure.

Considering the case of planar waveguides, designating the x-axis as the transverse
coordinate and the z-axis as the longitudinal coordinate along the axis of the waveguide,
the field solutions at the output section z = z,,, are obtained on evaluating eqn (3) as

WX, 250 ) = Wo (25 )+ ¥y (3,2 ) (12}



216 NAREN NAIK er al.

where Wo(x, o) is the incident component of the total field at the output line z=2,
and is given by

o5 20) = 02 ) ()

where
1 f,2)=g (u,z=0)cos(rz) + g (u, z = 0) sin (r 2)/r.

2. —kong < 2mu < kong, 1 being a spatial frequency ccordinate corresponding to the
. 22
transverse coordinate, and r =y kQ n(, ~4r*u

3. g1(u,z=0) and g, (u, z=0) are Fourier transforms of the total field and its z-
derivative, respectively, with respect to the transverse x-coordinate at the input section,
z =0, of the waveguide.

The field ¥, (¥, z,.) is the scattered component of the total field, and is given by
W (%, 25) J (~sin(g(z,y —2))/ ) § (v—16:2)e">™ > £ (u, 2)dudvdz (14)
ERIRY

where

1. 0% z< 2y, where z=0 and z=2z,, are the input and output cross-sections, re-
spectively, of the waveguide section considered.

2. — kohg < 27v < ki, v being a spatial frequency coordinate corresponding to the
transverse coordinate,

ko n[, anty?.

4. glu, z) = FAn(x, 2): x > u), F representing the Fourier transform operator.

The first-order solutions for the total fields are found to have nice computational
properties in that they reduce to the forms of a convolution and an inverse Fourier

transform along with a z-integral so that we can utilize the rapid evaluation properties of
the FFT algorithm.

The above solutions for the total fields are validated for the case of straight step-

index 10 waveguides with fundamental mode exciiation through comparison with exact
modal solutions.

The plots of electric field intensity, E vs transverse coordinate x (whose origin is at
the centre of the waveguide) are shown in Figs 1-4, that compare the PSS (solid curve)
with the modal solution (dotted curve) for different refractive index profiles and various
propagation distances. Here n; and n, are film and substrate refractive indices, respec-

tively, d is the width of the waveguide, A, the wavelength of light used, z,,,, the propa-
gation distance.
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It is seen from the figures that the agreement of the PSS with the exact modal solu-
tion is quite good, the correspondence being better when (n;— n, ) is smaller than when
larger, which is due to the perturbation nature of the solution to the problem.

4. Further analytical validation of the PSS

The above demonstrated first-order perturbation solution has been further validated
analytically in the following ways.

1. It is shown that the closed-form solution for scattered fields obtained from it for
the special case of a constant ambient refractive index and scattering from an object due
to plane wave incidence is the same as the solution {(called the Fourier diffraction theo-
rem (FDT)) obtained using the Born or Rytov approximations to the scalar wave equa-
tion.

2. In addition, it is shown that for the case of constant ambient refractive index, the
Green's function formalism of solving the scalar wave equation is the same as the above
developed perturbation solution.
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The above validations are carried out for the two-dimensional scattering problem, the
corresponding three-dimensional versions being their straightforward extensions.

4.1. Obtaining the Fourier diffraction theorem from the first-order perturbation solu-
tion developed

The scattered component of the total field, W (x, z), when only solutions in terms of
plane waves propagating in the positive z-direction are considered, can be written from
ecin (14) (considering z = z,, to be the input cross-section) as

Vi) =(12g)| Mgty —uizd )6 f, ) dudvdz (15)

v

where the terms of the integrand and the limits of integration have been defined in the
previous section.

Define the Fourier transform of the scattered field, ¥ 1(x, z) with respect to the trans-
verse coordinate, x, as

Ty, z)= FO¥ (5 2) i x> v) = j 7 Wy (x, e dr.

Assuming incident illumination to be a plane wave travelling along the z-axis, i.e.,
W(x,z,,) = "0 7 =112, we obtain T,z = L/2) to be,

T,LI2) =J'°° N, w)K (v, w, LI 2dw (16)
where

LN, wy= F(AnX(x, 2) 1 x, 23 v, w), where Frepresents a Fourier transform opera-
tor and (v, w) are the spatial frequency coordinates corresponding to the spatial coordi-
nates (x, z); —kong < 27V < kong.

2. K(v, w, L12)=k3(j | 2g)e** P F (w~— B)
where

F(w) = L sinc{wL),

g =G —4m?,
and B = (g—kone)/ (2m).
‘When the object is entirely contained in (=L/2, L/2), it follows that,

T, LI2)=k? (Zi)ef““zw(v, B). an
q

This relation that relates the one-dimensional Fourier transform of the forward scattered
field at a spatial frequency to a point on a semi-circular arc in the Fourier transform of
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the object refractive index is called the Fourier diffraction theorem, and is also obtained
from the Born or Rytov solutions to the scalar wave equation for scattered fields®?,

4.2, Obtaining the first-order perturbation solution from the first-order Born approxi-
mation

The scattered component, Wix, y, z), of the tota] field, W(x, y, z), is a solution of the
equation,

2,2 24,2 )
(V2 +kg W, = —kyAn~(x, y, 2)¥ (18)
where the ambient refractive index is considered as unity without any loss of generality.
In two dimensions, the first-order Born approximation solution to the above equa-
. 9.
tion” 18

Wn2)= [ | Gl /¥ G (8, 19

where

1. G(x, z/x', z) is the free-space Green’s function corresponding to the two-dimen-
sional scalar wave equation, and is given by

Glx, 2/ 5,2y = Glu=x', 2=2) = (I DHHE (ke R) @0
where H(()” denotes the Hankel function of the zeroth order and the first kind, and
2. Hi(x, 2) = k3an’(x, 2).

3. Wo(x, z) is the total field that would have existed at (x, z) if the refractive index
inhomogeniety were absent.

4. The integration is over the entire two-dimensional space.
2

Consider a field propagating towards increasing z. For a given z, considering the
field only due to sources (inhomogeneities) in the region 2’ <z, we can write the first-
order Born scattered field as

e

¥ (x, 2y = | Ji_f("’ 2/ V(X Y O, 2 d @n

where the lower limil for z” has been chosen without any loss of generality.

The two-dimensional free-space Green’s function has the following plane wave de-
composition for z > z”°

Clx—x, Z_Z,):j“(]./2q)e,2mv(.x—\')+(q/2nn;-:’ndv o))
N

where
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1. ~ko < 27y < ko, if the contribution from the evanascent waves is neglected, and

2. g=k; ~an*v

Defining T (v, 2) = F(Wa(x, 2) : x = v), we have, on substituting the above plane
wave expansion into eqn (21), and recalling from Section 3 the definition of g(u, z) and
sujtably interpreting f(u, z) as F(¥olx, 2); x — u), we have,

o 2=0/ 2q)J' gty - 2’ a3

where 0 € 7' < z and ~ko < 211 < kq.

The above equation can be seen to be the same as the transverse Fourier transform of
eqn (15) when the substitutions z,, = 0, #y= 1.0 are made in the integrand of eqn (15).
Hence the equivalence of the first-order Born and perturbation solutions has been dem-
onstrated for the present special case of constant unperturbed refractive index,

5. Conclusions

In this paper we have presented and validated a perturbation series solution to the Helm-
holtz equation for the total fields propagating through an arbitrary refractive index dis-
tribution. The above developed solution has been applied to the problem of solving for
the total fields propagating through an IO waveguiding struciure. The field solutions
developed show convenient computational properties, permitting evaluation using FFTs.
Validating results have been presented for the case of straight step-index 10 waveguides.

Further it has been analytically shown that the perturbation solution obtained is
equivalent to the Born approximation to the solution of the Helmholtz equation for the
case of constant unperturbed refractive index.
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