Subject Index.

						Page.
Aerial Capacity Me	asurement					22
" Inductance M	l easurement					22
,, Measuremen	its					23
" Resistance I	feasurement				•••	26
,, Testing	•••			•••	***	21
"Wavelengt	th of loaded					28
Aerials-Directive	combinations	of				10
,, -Effective r	esistance of			•••		46
" For wireless	measurements	· · · ·	•••			40
,, -Inductance	e of		***			58
Alternators-Doub	le-synchronou	s speed	•••	•••		1
Amplifier-Resista	nce capacity t	ype of	•••			40
Anode-battery			***			41
,, -current						41
" —resistance			•••		•••	41
Armature winding-	-Effect of asy	mmetry		•••	•••	30
Bridge-High Free	quency Wheat	stone	•••			25
Calibrated mutual i	nductance for	signal me	easurement			43
Capacity of an aeri	ial		•••			21
Characteristics of I	Beam Transmi	tting Aer	ials	***		9
Circulating current	s in wave-wor	ınd armat	ures			29
Cylindrical parabol	lic reflectors					16
Dielectric resistance	e of a condens	er			•••	27
Dispersion of bean	n radiation		***			15
Double-synchronou	ıs speed altern	ators	•••			1
Double synchronou	is speed alteri	natorsV	oltage regu	lation of		5
,, ,,	,, ,	, —-V	Vave-form o	f line volta	ge	6
"	,, ,	, —S	hort-cirucit	conditions		6
,,	,, ,,	,C	ascade comi	bination of		6
"	,, ,,	, — S	elf-excitatio	n of		7
Effective capacity	and inductance	of aerials	s			23
Effective height of	Madras (Fort) Radio st	ation aerial	•••		56
Field strength of M	ladras (Fort) l	Radio sta	tion measure	d at Banga	lore	37
" "	" —Daily	variation	s in	•••	,,	53
ta ta 33	" -Week	ly average	e of			53
Flux distribution is	n a Rotary Cor	verter				33

				PAGE.
Graphical methods of analysing tests on aeri	•••	22		
Grid type aerials		***		10
,, ,, reflectors				12
High-frequency Wheatstone Bridge				25
High speed types of double-synchronous spe-	ed alternate			5
Inductance—Measurement of mutual				43
Measurement of effective self-				58
Inductance of an aerial			***	21
Induction generator			•••	4
Iron-in-hydrogen regulating resistances				42
Madras (Fort) Radio Field Intensity Measure				37, 53
Marconi type beam aerial	mones at D			17
Method of testing aerials	•••	•••		21
Oscillada - Danie de d	•••	***		48
Oscillator calibrated for signal measurements		•••	•••	48
Oscillograph records of armature current		***	•••	30
-	•••	•••	•••	
Polar diagrams and dispersion	 1- 6		• • •	10
Potentiometer method of measuring small his	-	y voitages	•••	45
Pull-out load of double-synchronous speed all	ternators	• • •	• • •	5
Radiators several wavelengths wide	***	•••	***	14
Radio field measurements	•••		•••	37
" " —Choice of apparat		***		38
,, ,, —Aerial and ampli		•••	•••	40
", " —Calibrating circui		•	•••	42
,, ,, —Procedure in wor		•••	•••	47
" " —Example of comp		•••	•••	52
,, ,, ., —Frame-coil calcul	ation		***	57
Resistance—Aerial	•••	•••		26
" —Mullard type anode …	•••		***	41
,, —Iron-in-hydrogen filament regula	iting			42
"—Measurement of effective	•••		•••	45
" -Variation of effective			• • • •	46
Ripples superimposed on fundamental waves		• • •		35
Rotary converter-Current in armature of			•••	29
Screened high-frequency bridge				25
Self-synchronising method of parallelling			***	3
Signal (Wireless) strength measurements		37		
Thermal galvanometer for high frequency brid	dge			26
"—Sensitiveness of			***	26
Unbalanced electromotive forces in armature		•••		30
Vertical concentration of radiation				16
Wave-form of current in armature		33		
Wavelength of loaded aerial	•••		•••	28
Madros (Fort) Padio Station (VI				38
Wheatstone bridge—High-frequency type		***	•••	25
* * * * * * * * * * * * * * * * * * *				