
j . lndian Insr. Sci., May-June 1996.76.337-361
@ Indian Institute of Science

D. NAYDA KISHORE' LID S. K. GHOSHAL*
Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India
email: ghosh~@cadl.iisc.emet.in

Received on March 1, 1993; Revised on December 28, 1994 and September 12, 1995

Abstract

A parallel computer with hypercube topology, constructed with 16 Intel 80386ATZ motherboards, is described.
They are interconnected using bi-directional fuli-duplex first-in first-out byte-wide links. The hardware. system
software and application programming methodologies are given. Example programs are listed and explained.

Keywords: Parallel processing, hardware implementation, hypercube, 1ogic prognmming, many-body problem,
message passing.

1. Introduction

With limitations on speed and performance in a single CPU, parallel processing has be-
come a necessity to get the required performance for many applications. Parallel comput-
ing offers many other advantages like more memory and better quality of solution, etcl.
With advances made in VLSI and boardlevel system integration technology, the cost of a
single processing element has come down considerably over a short period of time.
Hence, building parallel computing hardware has become practical. We have developed
a technology to realize parallel computers which use IBM PC motherbards as process-
ing elements. This is done because

e they are available locally; - are relatively inexpensive;
have an acceptable pricelperformance ratio;
relevant software is widely available;
they keep on improving in performance and capability with time.

We have developed the hardware for interconnecting motherboards or full-fledged
personal computers within a short geographical distance so that an inexpensive but
efficient parallel computer is developed for education and research in parallel computa-
tion. We have assembled a 164% machine as a prototype, deveioped software (both sys-
tem and application) on that platform and used the machine effectively for teaching and

'present address: W O R E Technology Pui Ltd, Leo Cornpiex, 44 & 45, Residency (Cross) Road. Bangalore 560
025, India. email;kishor@ncore.soft.net

*For correspondence.

338 D. NANDA KISHORE AND S . K. GHOSHAL

research in parallel computation. This paper describes the architecture and programming
of the machine.

Parallel programming remains difficult despite many years of research and a few
implementations of parallel programming languages having been made on commercially
available parallel computers. The situation is really bad in cases of imperative pro-
gramming languages like Fortran which have been extended to parallel programming3.
Thus, while designing the programming model, we have taken care to introduce as little
implementation-specific features as we could. That makes teaching also easy. We also
have developed a paradigm which we call dimension-independent parallel programming
which enables one to write scalable programs without even having to recompile the pro-
grams for different target implementations of the same architecture. We demonstrate in
this paper how that works.

The rest of the paper is organized as follows. Section 2 describes the design consid-
eration of the architecture. Section 3 describes the hardware mechanism of interproces-
sor communication. The software that runs on this architecture is introduced in Section
4. The application programming model is developed from broad-based fundamental
considerations (Section 5). After a brief survey, in Section 6, of the topological issues
relevant to multicomputing, we recapitulate those properties of the hypercube that are
used for user programming on this machine (Section 7). After that the actual description
of the application programming environment follows on a language-by-language basis.
First the assembly language implementation of the primitive operations is described in
Section 8. Then the extensions made to Fortran are mentioned in Section 9 and elabo-
rated in Appendix D. Extensions made to C are discussed in Section 10 and the routines
are described in Appendix F. Description of an example application, coded in C, from
the area of image processing, completes Section 10. Writing parallel applications in Pas-
cal is discussed in Section 11 with the list of procedures added to Pascal given in Ap-
pendix G. A benchmark application program in Pascal, that exposes potential deficien-
cies in message-passing parallel computers, is run on our machine and described in con-
tinuation of Section 11. Prolog programming is described in Section 12 with implemen-
tation details in Appendix I. An application program in parallel Prolog completes Sec-
tion 12 with program segments listed in Appendix J. We conclude the paper in Section
13.

2. Design considerations of architecture

Once we have decided to use IBM PC motherboards as processing elements, and want to
support MSDOS' as one of the operating systems as it is the most common operating
system for the IBM personal computer, we have to decide on a suitable architecture to
interconnect them. We can have either of the following:

o A shared bus/memory architecture
e A message-passing architecture

About shared huslmemory, we observe the following:

e There is a limitation on the maximum number of processors.

MESSAGE-PASSING MULTICOMPUTER 339

The size of the memory that can be configured as shared memory (necessarily by
designing and implementing extra hardware) cannot be large enough (considering
the IBM PC architecture and the limitation of the MSDOS operating system) for
most large and practical application programs.
The latency of the shared memory may be different from that of the local memory
at each processor, requiring synchronization primitives in software and arbitration
mechanisms in hardware which are difficult to design and implement for large
systems.
Loading the executable code may not place the shared object in the shared memory
area as MSDOS compilers would not normally accept such directives and we do
not have their source codes.

Thus we decided to have a messags-passing hardware architecture and programming
environment.

A good way of visualizing and representing parallel computation in a distributed
memory multicomputing system is to think of many asynchronous processes which inter-
change intermediate data during the progress of computation. Hoare's C S P ~
(communicating sequential processes) is a good way of representing such computation.
We adopt the general guidelines5 for designing the hardware of the communication iink
and for programming the multicomputing system from CSP. We improve the perform-
ance of the system by relaxing the strict requirement of handshaking during each mes-
sage transfer. This we do by buffering the message in a special memory which enforces a
strict first-in first-out protocol in hardware. This results in permitting asynchronisrn
between two processes and in improving performance. If the writer process comes to the
point where it wants to write in CSP protocol, it has to wait until the reader process
comes to its counterpart. In our FIFO protocol, if there is room in the FIFO, the writer
can write and proceed. The reader, when it comes to the corresponding place, just takes
the data and proceeds. So none of them have to wait for a communication to take place.
Of course, if the reader comes to this place first, it has to wait and we implement that
protocol to preserve the correctness of the program. So just like CSP, we require no as-
sumption on the relative speeds of the processes in order to produce correct results. The
FIFO is managed by a special-purpose on-chip controller. This relieves the CPU(s) of
any overheads. The control logic of the FIFO chip is.given in Fig. 1.

Logic Pointer RAM Pointer Logic

FIG. 1 . IDT7203 FIFO chip.

MESSAGE-PASSING MULTICOMPUTER 341

3. Hardware architecture of commnslicatlon link

PCs are linked using add-on cards (developed by us and descrihed in Appendix A) in
their empty I/O expansion slots. Each card has three bi-directional full-duplex F3FO
iinks. The block diagram of one such card is shown in Fig. 2. One such link between two
computers is shown in Fig. 3. Each link has a storage capacity of 2 kilobytes. It is built
around the IDT 7203 FIFO chip6.

The link7 transfers unformatted streams of data over a byte-wide path between PCs
using a first-in first-out queueing discipline. The link can be as long as 10 m and has
been verified for proper operations at CPU clock speeds up to 40 MHz. The raw speed of
the link is limited by the flow-through time of the FIFO chip and other propagation
delays involved. It is estimated to be around 10 Mbytesls. In practice, it is dictated
by parallel program execution behavior and CPU speed used on the PC. The link works
for different PC/XT and AT386 motherboards. Different topologies can be realized with
PCs already existing in a laboratory by plugging a card into each PC and interconnecting
the cards by 40-core flat ribbon cables. The architecture of the interprocessor communi-
cation mechanism provides hardware support for synchronization using instruction retry.
Alternatively, it also allows polling of the links to support non-blocking communication.
The physical addresses of the FIFO links range from OBOOOOH to OBO007H, which
ensure multicasting between the PC and its three neighbors. The next card, if used, has
an address ranging between OB0008H and OBOOOFH, and so on. The card has an
EPROM to hold the low-level drivers of the iinks and other programs needed by the
parallel processing system. This EPROM is of size 16 kbytes and has an address span-
ning from ODOOOOH to OD3FFFH. In case of a clash with existing devices at those
addresses, the addresses of the communication card links and EPROM can be changed
easily by reprogramming a PAL. The system software can be easily modified to accom-
modate such changes. Except the F'IFO chip, all other components are easily available
in the local market. The component cost of each card is about Rs 5,000. Versatile diag-
nostics and continuous torture-testing software of the links have been developed and will
be made available. Except the FIFO chips and the EPROM, the card has only SSI com-
ponents and 16L8 PALS. It is not difficult to diagnose and service the cards, in case
of failure.

r _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ r - 7

I I I I
I I I

Logic

FIG. 3. FIFO link between two computers.

342 D. NANDA XISHORE AND S. K. GHOSHAL

4. S~fdware

The software that works on this multicomputer can be classified into two categories.

1. Operating systems. They are described in Section 4.1.

2. High-level application programming languages and the extensions made to them
for supporting parallel computation. They are described in Section 4.2.

4.1. Operating systems

The multicomputer at present supports the MSDOS Operating system (Versions 3, 4 and
5) from Microsoft. It also runs an efficient Unix microkernel? particularly suitable for
parallel programming, developed by us. Using these two operating systems, only a single
user can he supported at a time. Using a VM86 mode m i c r ~ k e m e l ' ~ developed by us,
multiple users can use the machine.

4.2. Languages available for parallel programming

One can program the machine using any of the following high-level languages:

1. Turbo C
2. Turbo Pascal
3. Turbo Prolog
4. Microsoft Fortran

Utilities written in 80x86 assembly language and making system calls to IBM PC
BIOS" and MSDOS* can also be executed in parallel.

In addition, if any language can make external subroutine calls to subroutines
(written in any of the above languages or 80x86 assembly language), then programs
written in such languages can also be made to execute in parallel.

Before we discuss the syntax and semantics of parallel programs on this machine, a
few observations about the programming model recommended for message-passing mul-
ticomputing systems and the requirements of a parallel programming environment are in
order. These are considered in the next section.

5. Programming model

Communicating sequential processes4 is a way of representing parallel computing in
progress on message-passing architectures. This model is augmented with the notion of
message buffering at each link to reduce synchronization delays. The resulting model is
used as a guideline to program this machine. The practical aspects of developing a paral-
lel Program on a physical platform are given in Section 5.1. Essential requirements of
that platform are discussed in Section 5.2. We will see how our implementation meets
these requirements in Section 8.

5.1. Design of parallel programs

From a parallel algorithm one arrives at a parallel program by doing the following:

MESSAGE-PASSING MULTICOMPUTER 343

c Break up the computation task into subtasks which do not have to wait for one
another.

a Allocate subtasks to different processors.

e ldentify intermediate results that have to be sent across links during the execution
of the parallel program.

e Determine and visualize the schedule of computation and communication.

One gets the maximum performance out of the machine if he can schedule the computa-
tion and communication in such a way that no processor ever waits for intermediate re-
suits. This may not be possible for all parallel algorithms and problem sizes.

5.2. Operations relevanr to nulticompuring

Anyone having designed a parallel algorithm would like to be able to do the following
on a given hardware platform on which he is to implement it:

Create processes across links

Terminate them after the work is done

Find out the identity of a process

Send a message to another process

Receive a message from another process

Examine the state of a process at any time

He would like to express these operations in the language familiar to him.

6. Topological issnes

The way a multicomputing system is interconnected with message-passing links is called
its topology. Examples of topologies are hypercubes, trees, meshes, rings, toroids, etc.
The more well understood and regular a topology is the more usable it is for the purpose
of application programming. The hypercube8 is one such topology. We have used it as it
is well known and has nice mathematical properties that help one develop systems al-
gorithms for parallel computing on it and facilitate teaching. Hypercubes of different
dimensions are shown in Fig. 4. The multicomputer we built is a four-dimensional hy-
percube.

Mask is the address of a link. It distinguishes a link from other links emanating from
a computer.

In any regular topology, there is a reiationsbip between the label of each node (we
call it Nodeid in this paper), the mask of the links that emanate from that node and the
Nodeids of the other end of the links. There is also a parameter that characterizes the
size of the mu!ticomputer. For hypercubes, this parameter is calied the dimension.

It appears to us, in general, that on all regular topologies, for some problems, parallel
programs can be written in such a way that the program will run without any modlfica-

344 D. NANDA KISKORE A N 3 S. KD.NANDAKISKOREAN3S.K.GHoSHAL GHOSHAL

RG. 4. Hypercubes of dmensions 0, 1, 2 . 3 and 4

tion, on any multiprocessor whose nodes are interconnected according to the rules gov-
erning that t~~o!ogy '~ . We have shown how to do it with hypercubes, by way of this im-
plementation. For our machine, not even a recompi!ation is needed, for correct execu-
tion, wher, the size of the multicomputer is changed while retainiilg the topology. Such
programs are written for our machine; we cali them 'dimension-icdependent' pasaiiel
programs.

MESSAGE-PASSING MULTICOMPUTER

7. Hypercubes

We summarize the properties of a hypercube in the next two paragraphs

An A'-dimensional hypercube has 2" computers. Each computer is called a node.
Computers are labelled as binary numbers. This number is called the Nodeid. An N-
dimensional hypercube needs N-bits to label each node. The nodeids range from O to
2" - 1. Two nodes are connected if and only if the Hamming distance between their la-
bels is one. They are connected in the dimension where their labels differ in bit-position.
Such nodes are directly connected and their distance is one. The mask of the link that
connects these two nodes has a value equal to the difference of their nodeids. This value
should be used at either end of the link. Messages transit in one 'Hop' between two di-
rectly connected nodes.

Other node pairs are not directly connected. Messages need multiple hops to transit
between these pairs. This routing can be done by making system calls or the application
program might prefer to do this itself. The maximum number of hops is N for an N-
dimensional hypercube.

8. Primitive inuIticomputing operations

This section describes the firmware that implements primitive operations of multicom-
puting. All other high-level languages, in turn, invoke the firmware to get these opera-
tions done.

The routines that implement the primitive operations, i . e . , drive the hardware to
create and terminate processes, send and receive messages, etc., are written in assembly
language and kept in EPROMs at each node. Just as one can make BIOS system calls"
to drive the JBM PC hardware in order to perform low-level services, one can execute
the software instruction whose mnemonic is INT 6OH and trap to the appropriate routine
stored in the EPROM in order to get FIFO-link-related services performed. The details
of the assembly language calls are given in Appendix B. Notice their correspondence
with the requirements indicated in Section 5.2. How process states are examined is given
in Appendix C.

A high-level language is augmented by adding some library subprograms in assembly
language. These subprograms accept parameters from the high-fevel caller, set up the
context for invoking a software trap to INT 60H and then invoke the trap. On return
from the trap they go back to the caller. The only exception is TERMINATE, which as
such does not return. m e n the next parailel program is executed, TERMINATE hands
over control to the caller of the corresponding RFORK.

9. Writing Fortran application programs

The extensions made to Fortran to facilitate parallel computing are given in Appendix
D. The source code of the subprograms in assembly language is in a file. This file is as-
sembled by the implementor of parallel Fortran using Borland's Turbo assembler and the
resulting object fiie is kept in a commonly accessib;e path as a library. Application pro-
grammers use the Microsoft Fortran linker utility FL to link this library with the object

346 6. NANDA KISNORE AND S. K. GNOSHAL

of their Fortran source. Tbe resultmg execurabk file 1s ready to run on the multi-
computer.

9.1. An example of parallel Fortran program

Appendix E describes a parallel program to compute n which is the theme of Karp and
19abb3. The same algorithm of Karp and 13abb3 has been used by us. One can see that our
code size is small compared to most parallel Fortran implementations given in Karp and
19abb3. It is larger than only the codes of Alliant FX/8 and Sequent Balance. It should be
noted here that both these are shared memory machines with common memory bus and
so their code sizes are expected to be smaller. Our code which is listed in Fig. 5 runs
wilhout recompilation on hypercubes of any dimension, including zero-dimension (i .e. , a
sequential personal computer). Note that the code size is much smaller than that of Intel
IPSC/2 which is also a hypercube architecture.

10. Writing C application programs

Appendix F describes the routines that extend C to facilitate parallel computation on our
machine. These routines are implemented in C itself. Turbo C has an in-built mecha-
nism to invoke software traps. Using that the implementor invokes INT 60H with the
code for the intended operation in the AH register. All these functions which are essen-
tial for multicomputing are stored in an EPROM as described in Section 8. A header file
containmg the definitions of the C-callable functions is kept in the INCLUDE sub-
directory. It is included by the user program while compiling. The executable file gen-
erated by Turbo C runs on our machine. We iflustrate with an application described in
the sub-sections that follow.

10.1. The problem

The problem of two-dimensional image recognition12 can be posed as follows:

Input: Two images A, and A2-

* Output: Rotation 8, Translation 2 , and scaling s done to A , so that the two images

match 0 E 3'2 6 W2s E W+

REAL ERR,F,PI,SUM,W,PSUM; INTEGER I.INTRVL.ITIME,MYNODE
F(X)=4.01(1.0+X"X): PI = I.O*ATAN(I .O); READ(*,*)lNTRVL
ITIME=ITIMER(); CALL FORKHYP()
MYNODE = NODEID(). W=lBIINTRVL; SUMS-0 0
DO 10 I=MYNODE+l, INTRVL, NPROC
SUM=SUM+F((16.5) *W)

10 CONTINUR
SUM = SUM*W
CALL liATHREAL(SUMj
ERR = SUM-PI; ITIME = :TIMER() - ITIME
WRITE(*.*)'SUM,ERR.TLME=',SUM,ERR,ITIME
STOP; END

FIG. 5. A dimension-independent parallel Fortran program to compute ri

MESSAGE-PASSING MULTICOMPUTER 347

In this study, we have reduced the probEem to one of optimization. That, in turn, can
be described as follows:

e Apply 8, 2 and s to map A, -+ 4.
e Count the number of mismatches between A2 and 4

Define this to be f (8, 2 , s)

e Minimize f (0, 2 , s)

10.2. Algorithm

The following algorithm was used:

1. Find centroids x,, and xA20fAl and At.

2. Find areas a,, and aA2 of A, and A2.

3. Estimate for displacement 2 is taken as Z,, - iA2.

I. Estimate for scaling s is taken as $$.
5. Over 8 optimize f at fixed .? and s using simulated annealing and get B

6 . Optimize f over a small neighbourhood of (6 ,.?, s) such that:

e ~ [& - 1 0 ~ , 6 + 1 0 ~]
L

x, €[i: - 2, Xi +2]

X2 E [x2 - 2, Xz f Z]

s E [S - 0.05, s + 0.051

For optimizing, a variant of the simulated annealing algorithm'3 was used. The de-
tails of this variant are described using proper mathematical notations in Appendix K.

10.3. Implementation

A dimension-independent program was written in Turbo C to implement the image-
recognition algorithm. The program starts executing on one of the processors with Node-
id = 0. This is the master processor. The main program reads in the image file of the
object to be recognized and the library object image file from the disk. Then it finds
out the dimension of the hypercube on which the program is running. It computes the
number of processors present in the system. Then it brings all other processors up. Each
one finds our its own Nodeid. Then the computation proceeds in SPMD mode, with the
matrix of the image files being partitioned by the rows among the PEs. The centroids of
the two images are computed and the necessary scaling, transiation and rotation are
done in parallel. The number of mismatches is counted as cost and minimized. If the
cost is less than a limit, then the two images are declared to be identical. After that both

348 D. NANDA KISHORE AND S. K. GHOSHAL

Table I
Speedup on a 16-PE machine For image recognition

Nnmber of Imop.e size Sequentrol Poraliei time Speedup
rows (~zxeis) (bytes) iime (seconds) (seconds) (rorioj

the pictures are displayed on PEo and the program terminates. The slaves get ready to
execute another parallel program while the master returns to MSDOS.

The speedup for different problem sizes is given in Table I. The number of rows is
always taken as a multiple of 16 to facilitate task-partitioning on a 16-processor ma-
chine. For small images the fork overhead dominates and so the speedup is low.

11. Parallel programming in Pascal

The procedures that extend Pascal for parallel programming are given in Appendix G.
These have similar semantics to their C equivalents described earlier. Turbo Pascal can
directly invoke software traps. This feature has been used to call the EPROM firmware
and exchange parameters with it. The definitions and implementation of these functions
and procedures are in a file that is included in the user program during compilation. The
resulting executables run on our machines. We illustrate with an example that follows.

11.1. The problem

The many-body problem'4 can be posed as follows:

Let there be a system of ili, particles that interact via a pair potential. The total po-
tential energy of a system of such particles is given by

where the pair potential @(?,, Zj) between two particles i and j is given by

G m m -
+ (% , ? j) = -m

?, being the position of particle i and mi, its mass.

The problem is to compute the total potential energy of the system.

MESSAOE-PASSING WULTICOMPUTEQ 349

in analyzing the performance of any parallel Lomputer, two parameters are paht~culariy
moortant.

e I,,,,: The typical time required to perform 2 generic calculation. For scientific
probiems, this can be taken as a floating point calculation.
a = b * c
or

s t,,,,: The typical time taken to communicnle a single word between two nodes

As the many-body problem requires the updated positions of each particle to be com-
municated to all the processors, it serves as a good benchmark to estimate r,.,,,/t,,,,,,, of a
parallel computer. In particular, if a message-passing multiprocessor is comparatively
slow in interprocessor communication, that fact comes out when one runs the many-body
problem on that machine.

Appendlx N lists a dimension-independent parallel program for solving a many-body
problem in Figs 6 and 7. Table I1 gives the speedup for d~fferent problem sizes. At low
sizes the fork overheads dominate

program parpoten.
user Dos:
(I PARPAS INC)
cons: ARRAYSIZE = ! 100;
(- pdrt~cle description ')
type pamcle =record

a:real. h rezl: cieal: mrea l .
esd;

lyps oned =array[? ARRAYSIZE] of partsck:
const G = 6 .671~- i I:
('Calculate po ten ld cncrpy Sctwceo rhc Lao par:ic!es ")
runctlon oot 2arr(x1,nj:parl~cle):~cal. I . - 1 var

t!, 13, t3, rempl, temp2:real;
begm

t l - = XL.Z-X~ a; t2: = x~b-xj.b, t3: = xi c-xj c,
temp2: = sqr(tl) + sqr!t?) + sqr(t3);
tern@: = sqrt(lemp2 1: ternpi. = r 1 m'xj m:
potL2ari: = -tcmpl/lemp2:

u, te~p,pu:rcal ;
~.~,np,lini.lfia.cl~u~k~~~e:inieger;
d~m,msrk,~unk,mv:d~~h~ni~in:epe~;
li!nrl. itin-2. time?, r:li.nginl;

Fro 6. A pcrol!el program to r d v e tbc mnny-body problem.

Table I1
Speedup on n 16-PE machin? for man)-body
problem

350 D. NANDA KISHORE AND S. K. GHOSNAL

main I)
:el"

limel:=Q time2:=0: time3:=0: t:=Q
write('Enter No. of particles in the system:'); read@);
rimel :=pastime;
(*Determine dimension of the hypercube *)
Dimhyp(dim);
(* Fork all *I
forkall;
("Find out node id *)
myid:=Ncdeid:
timeZ:=pastime;

(*Assign Boundaries of each processor *)
chunk:=np div numpro; lini:=chunk * myid;
Itin:=chunk * (myid + 1): lfin:=lfin -I;

(*Initialise particle description *)
for i:=iini to 1Rn do
begin

p[i].a:=(i+l) *4.0/10.0: pIi1.b: = (i+l)*Z.O/IO.O;
p[i].c:=(i+l) *5.0/10.0; p[i].m: = (i+1)/10.0

end;
u:=0.0; pu:=O; chunksire:=chunk * Size of (particle);
(*Broadcast u *)
for i:=O to IS do fromany(p[tl*i].t2.i);
(*Calculate total potential energy of the system *)
for i:= lrni to Ifin do for j:= 0 to (np-1) do

if (i o j j then u:= u+pot~2arr(p[i],p~l:

(* Gather the panial energy value from all
and accumulate it in id 0 *)
gathreal(u,pu); u:=pu*G/2.0; time3:=pastime;
writein('Tota1 potential energy of the system is', u);
if (myid o 0) then terminate;
t:=time3 - timel;
writeln('Time including fork overhead', 1. 'sec'j:
t:=time3 - timel:
writelnCTime exclud~ng fork overhead', t,, 'sec'j;

nd.

Fro. 7. A parallel program ta solve the many-body problem.

12. Application programming in parallel Prolog

The strict type-checking enforced by Prdog and the fact that Prolog has no notion of the
address of a DOMAIN in the physical memory of the computer, necessitate many more
predicates for parallel programming in Prolog than the minimum of subprograms needed
for a typical imperative programming language. The predicates that have been added to
Prolog and their implementation details are given in Appendix I. The subsections that
follow describe an interesting application of parallel Prolog.

12.1. The problem

Let %be the set of natural numbers (0, 1, 2 ,... 1, and Si, i = 1, 2, 3 . A be k subsets of %!

whose elements are chosen at random. Let S = S, xS,x ... S,. Let S" be a subset of de-
fined as:

MESSAGE-PASSING MiLTlCOMPUTER

where p~ is a k-ary Diophantlne pedicatei5

We arc looking for I:/, where the symbol 1.1 stands for the cerdinality of a se:

The implementation of this problem il1ostra:es how a CSP-like parallelism can be effi-
ciently supported in a logic programming system. The presence of data-parallelism
within the probiem has been effectively exploited while relaining the logic programming

style. Now to dynamically partition the data-set can also be understood. This program
can be used to soive linear and non!inear integer inequalities. Note that, in a way, what
Prolog does in a domain of symbols, this problem does it in 94

12.3. Implementation

The program needs no extra domain than what is already defined in Turbo Prolog. Ap-
pendix I gives the implementation details of this problem.

12.4. Speedup

To solve the following set of linear inequalities

3x1 + 4x, + 5x3 - 22, = RHS

2x, - 3x, + 4x, - 6x, < 500

x! + 21, 3 x , - 3 .1~ > 50

-4x, c5.x: - x3 + 51, > 100

a program was written in parallel Prolog.

The program was run both on a sequential machine and a 16-processor paraliel ma-

chine. lSil was taken to be 256. lSll = 160, ISi! = 32. and !S,l = 32.

Table PI1
Speedup on a 16-PE machine far Diophantine predicztes

352 D NANDA KISHORE AND S . K. GNOSHAL

The speedups for different RHS values are given in Tabte 111.

13. Conclusion

We have demonstrated that it is possible to build efficient muiticomputers using inex-
pensive technology. We have designed and built such a moderate-sized multicomputer
and have programmed it in a number of programming languages. Various application
programs have also been developed on this machine. The programs can be developed
both in MSDOS and Unix environments. Satisfactory speedups have been obtained on
this machine for different benchmark problems. The machine and the programming en-
vironment have been used successfully for teaching and research in parallel computa-
tion.

The machine has a few drawbacks. The firmware is not intelligent enough to recover
from all possible types of deadlocks. Operations like routing and packetizing of mes-
sages consume enormous processor overheads which makes the machine unsuitable for
fine-grained task-partitioning. Debugging is extremely difficult due to lack of proper
tools. The interprocessor communication speed is low on systems with slow clocks and
bus speeds. The hardware and system software are being redesigned and upgraded in
order to alleviate some of these difficulties.

The machine is currently being used extensively by five people round the clock for
their own research. A parallel file system particularly suitable for hpercubes has just
been developed on this machine. Benchmarking is being conducted on this PFS, as of
now.

Acknowledgements

We thank the KBCS project, with whose support this work was done. We thank Mr A. R.
Gnanakumar, SERC, for drawing Fig. 2 and MI A. D. Desai of Nelsis Project for proof-
reading the revised draft.

References

1. RUARAMAN, V

2.

7. GHOSHAL, S . K., GUHA, S.,
ARIFF, S. M. AND RAJARAMAN, V.

Elements ofpamllei computing, 1990, Prentice-Hall.

Microsoft MSDOS user's guide and rqfercnce, 1991, M~crosoft
Press.

A comparison of 12 parallel Fonran dialects, IEEE Softw~are,
September, 1988.52-67.

Communicating sequential processes, 1987, Prentice-Ha!l

The numerical integration of ordinary dif irential equations on
mvitiprocesshg systems, Ph. D. Thesis, Indian Institute of Sci-
ence, Bangalore, 1988.

CMOS parallel first-mifirrr-out FIFO, Data sheet, Integrated
Device Technology. Inc., Feb. 1986.

Simple low-col multiprocessor based on message passing FIFO
links, Microprocessors Microsysterns, 1990, 14.297-300.

MESSAGE-PASSING MULTICOMPUTER 353

8. S E ~ , C. L. The cosmic cube, Comrnrm. ACM, 1985.28.22-33,

9. GHOSHAL. S. K. AND KALAI SELVI, S. MUSIX-A simple microkernel for para!lel computing in Unix,
Proc Southern Regional Convention-94. June 27-30, Hyderabad,
pp. 65-71.

10. GHOSHAL, S. K.. KALAI SELVI, S., A multimode operating system for distributed computing in
YOUREN, Z. AND MSDOS, Proc. Southern Regional Convention-94, June 27-30,
NAGENDRA PRASAD, P. S. Wyderabad. pp. 19-25

!I. PCIAT Technical reference manual, 1985. IBM

i2. SANCHETI. N. K. 4ND Two-dimensional object recognition using simulated annealing, I.
VENKATEEH, Y. V. IndianInst. Sci., 1990,70, 197-212.

13. KmKPAlRrcKs, S., GELAT, C. D. Optimization by simulated annealing, Science, 1983, 220, 671-
AND VECCB!, M. P. 679.

I?. Fox, G., JOHNSON, M., LYZENOA, G., Solving problems on concurrent processors, Vol. IGenera l
Orro, S., SALMON, I. AND WALKER. D. rechniques on regulnrproblems, 1988, Prentice-Hall.

15. GaREY, M. R. ANDJOHNSON, D. S. Computers ond mtmctabzltfy: A guide to the theory of NP-comp-
letenerr, 1975, W . H . Freeman.

What every computer scientist should know about floating point
arithmetic, ACMCompnr. Surv., 1991, 23, 5-48.

Appendices

A. Details of eonmunicatioa csrd

Each card (See Fig. 2) can be sub-divided into the following blocks: - C~mmunzeation lmk with FlFO storage: There are three such links on each card. The FlFO chip 1s writ-
ten into by the host PC. The neighbor reads it from the other end (see Fig. 3). The data, status and control
sienals are buffered and terminated at both ends of the flat ribbon cable iransmisslon line whose alternate
cables are grounded.

e Decoders and local bus: The links and the EPROM are memory mapped by the decoder implemented by
PALS. The loca! bus is isolated from the host-PC bus by a 74LS245 transceiver which is enabled only
when the card is accessed.

e EPROM for storing firmwvzre: This EPROM contains the firmware described in Sectron 8 and Appendix
B. The EPROM also captures control of the host-PC during power-on self test (POST) ~hase" and per-
forms diagnosis and initialization of the links and the host-PC.

a lnierrupt generation logic: Attempts to read from an empty link or write into a full link generates an NMI
(non-maskable intenupt). This causes the defaulticg instruction to be re-tried. Details are given in Ghos-
hal'. - Status ports and LEDs: The status of all the links can be ready by the host-PC from a memory mapped
port. They are also displayed by a number of LEDs on the w d .

B. Assembly language calls to firmware

The firmware initialims and tests the links at oower uo and drives the links during omretion. The source code of . . - .
tblc firmwnrc 1% !n a dtrk file whtch also has some documenla!ion of the usage of t h e roullres l'hm file 1s as-
rcmb!:l, licked urd 1s made 3 b.r.ary tile which is uiilten rnta an EPROV whxh 15 pldgged tkrcaflcr m u thc
respective communication card at every node when the system is assembled

The INT 6 0 8 1s invoked with different values in AH register to mdicate which kind of service is being re-
quested. The more important services are listed below:

AH = 0 is to resex the interrupt vectors uscd for muhiwmputing.

AH = 1 is to do a blmking write. The writer will get blacked if the FIFO is full.

5. NANDA KISHORE AND S. K. GHOSHAL

AH = 2 is to do a blocking read. The reader will get blocked if the FIFO is empty.

AH = 5 is to spawn a process.

AH = 6 is to terminate a process.

AH = 7 is to find on2 the Nodeid.

AH= 8 is to find out the dimension of the hypercube.

C. Examining process states

The dimlay adaotor outouts of 16 processors are multiplexed and fed to one video monitor. The proerammer can
iec tn) .crcen at auy nmc bv pre,;ls.p a Hol k r ! uhtrh actrknrq [he firmuare lu drue the muh.p!exer. For t1.c
ron\i.n enrc of dcbuggmg, me dlgml &play mdt,plexrr has ilrv b-en made sn t ro l l ab :~ from h@-lev?! lan-
~ ~ h d e ~ The programmer can firel? u,z there ~2.19 31 An! stage d u n g prJprrm cAccurmL :br d c o ~ w n g or icr
any-other p@ose. In a specially progiammed made, the controller of the multiplexer can traverse a hypercube's
roannine tree in order to uack a eiven messaee in translt. That r e lwes the overhead from the processor and en- , -
\>r<, that C . W ~ ~ h c n there ti a fatvl Aidlack the pmgmmmcr cJn i!dl ,tc the scrccrs 31 hlr In1ere.t rnr. A i ? l l y
multlpltxzr curttrcile: tr -J rpe:!a.-purpoce ASIC c n y whtch IF implemented on d Fteld Programmable Gate a m)

Controlling the display muitlplexer does not affcct the state of any process in any processor in any way. So
' there is no probe effect while debugging.

D. Fortran language routines for parallel computing

The followmg Fortran-callable library subroutines have been added to implement operations reievant to parallel
computing:

SUBROUTINE RFDRK(MASK) spawns a process in a processor at the other end of the iink identified by
MASK.

SUBROUTINE TERMIN termmates a process. After this is executed, the processor is ready far another
process to be spawned on ~t again.

NNCTION NODEID returns the Nodeid.

FUNCTION NDIMHYP returns the dimension of the hypercube.

SUBROUTINE INTSEN(MASK. INTVAL) writes an integer value INTVAL on the lmk identified by
MASK.

SUBROUTINE INTRCV(MASK, INTVAR) reads an integer from the FIFO link and places it in the inte-
ger vanable INTVAR.

SUBROUTINE RELSEN(MASK, RELVAL) writes a real value RELVAL on the Imk ~dentified by
MASK.

SUBROUTINE RELRCV(MASK, RELVAR) reads a real number from the FIFO link and places it in the
real vanable RELVAR.

SUBROUTlNE DPRSEN(MASK, DPRVAL) writes a double precwon value DPRVAL on the link iden-
tified by MASK.

SUBROUTINE DPRRCV(MASK, DPRVAR) reads a double precision number from the FIFO lmk and
places it in the double prec~sion variable DPRVAR.

SUBROUTINE ANYSEN(MASK, ANYADR, LEN) writes LEN bytes of data starting from ANYADR on
the link identified by MASK. It can be used to send arrays. The way Fortran orders muliidimenrionul or-
ray elements in memory has ro be kepr m mind when sending subarroys ojmulridimensionol arrays.

SWROUTINE ANYRCVCMASK, ANYADR, LEN) oserwrrtes LEN bytes of data starting from
ANYADR with cansecutive bytes read from the link identified by MASK. It can be used to receive arrays.
The way Fortran orders mn!tidimensional array elements in memory hos to be Pepr rn mrnd when get-
ting subarroys ofmulridimensionnl ormys from other processors.

NNCTION $TIMER() returns the timer ticks elapsed since power up. This is used for timing programs.

MESSAGE-PASSING MULTICOMPUTER 355

. SUBROWTINE SNOW(NSCREEN) displays the screen of the processor whose PE-ID equals NSCREEN.
See Appendix C.
SCBROUTINE iOR.YS$? b-mp, up 311 proceicmg ?I<mcnt\ oi r hywrci bc Th: 2h.ld threads exec-te
tire ~nstrud:oos f ~ l l o * . i i g t!u, ; d l In para:ltl Itr ;il:n$ 5)ctix :r CALL b3RKHYP 11 ihr no pa-am:;cr

SUBROUTINE TERMHYP terminates all threads at nodes. The processing elements are ready to execute
another parallel program. Its calling syntax is CALL TERMHYP. It has no parameter.

e FUNCTION NUMPRO returns the number of processors in the multicomputing system. Its calling syntax
is:
NPR = NUMPRO

e SUBROUTINE SCATINT scatters an lnteger INTPAR from PE 0 to all other processors. Its syntax is
CALL SCATINT(1NTPAR).

SUBROUTINE OATHINT sums up the values of an integer parameter INTPAR at all nodes, and returns
that value at node 0. Its syntax is: CALL GATHINT(1NTPAR).

SUBROUTINE SCATFLT scatters a floating point number FLTPAR from PE 0 to all other processors. Its
syntax IS CALL SCATFLT(FLTPAR1. . SUBROUTINE GATHREAL sums up the values of a floating point parameter FLTPAR at all nodes, and
returns that value at node 0. Its syntax is:

CALL GATHREAL(FLTPAR).

SUBROUTlNE SCATDBL scatters a double precision floating point number DBLPAR from PE 0 to all
. other pracessors. Its syntax is CALL SCATDBL(DBLPAR1.

SUBROUTINE GATHDOUB sums up the values of a floating point parameter DBLPAR at all nodes, and
returns that value at node 0. Its syntax is:
CALL GATHREAL(D5LPAR).

r SUBROUTINE SCATANY scatters any data object with name ANYVAR and occupying NUMBYT bytes
of storage from PE 0 to all other processor. Its syntax is:

CALL SCATANY(ANYVAR, NUMBYT)

procedure fromany(var varany; numbyt:integer: srcpe:integer);
var mask, dim, myid, indx, virtid : integer:
begin

dimhyp(din0:
myid := nodeid:
virtid := (nodeid xoi srcpe):
mask :=I:
for indx:= 1 to dim do

begin
if (vmid>=mask) then

beein
if (virtid c (mask shl I)) then

begin
bread(mask,varany,numbytj;

end;
end

else
begin

bwrite(mask,varany.numbyt);
end;

mask := mask shl I ,
end;

end:
(* fromany *)

Frc. 8. A rouline to scatter bytes from any processor

356 D. NANWA KISHORE AND S. X. GHOSHAl

SUBROUTINE PROMANY scatters any data object with name ANYVAR and occupying NUMBYT
bytes of storage from PE with Nadeid equal to NSRCPE to all other processors. It uses an algortthm which
is developed by us and 1s enplamed in Pig. 8. Its syntax is:
CALL FROMANY(ANYVAR, NUMBYT, NSRCPE).

E. An example of application program in parallel Fortran

The program lrsted in Fig. 5 reads the number of partitions (called INTRVL In the program) that the interval of
integration ranging between [0, I] is to be divided into. Then it spawns a thread in each available processor. The
processors handle sub-intervals in a round-robbin fashion. The parttal sums are gathered from each processor and
summed at PE 0 to yield the value of R. Thrs value and the error incurred are pnnted and the program terminates.

As INTRVL increases, the speedup approaches the number of processors present asymptot~cally. The enor
decreases with increasing INTRVL initially, but eventually gets dominated by the cumulat~ve roundoff error.

F. Routines in C for parallel computing

The following functions have been implemented to facilitate parallel programming:

1. int fork(int mask) spawns a process in a processor at the other end of the link identified by mask.
2. void teminate(void) terminates a process. After this 1s executed, the processor is ready for another proc-

ess to be spawned on it again.
3. int nodeid(void) returns the Nodeld.
4. void dimhyp(int *dim) assigns to dim the d~mension of the hypercube.
5. void bwrite(int mask, char far *addr, int size) writes size bytes of data starting from addr on the link

identified by mask.
6. void bread(int mask, char far *addr, int size) overwrites size bytes of data starting from addr with con-

secutive bytes read from the link identified by mask.
7. int timetick(void) returns the time-tscks elapsed since power-up. It is used for measuring the time taken

by different paflions of programs.
8. void scatint(int in, int *out) scatters an integer value, onginally in PEo, to the integer variable out in all

the processors.
9. void gathint(mt psum, int *sum) gathers an integer from values psum at all processors and sums it up in

sum.
10. void M i n t *out) scatters the integer variable out from P& to all other processors.
11. void gpi(int *sum) gathers sum overwriting its prevmus value at all processors.
12. void gathdoub(doub1e psum, double *sum) gathers an l E E ~ 7 5 4 ' ~ double-precision floating point number

from values psum at all processors and sums it up in sum.
13. void gpr(noat *sum) gathers sum overwriting previous value.
14. void gprd(doub1e *sum) gathers as IEEE754'I6 double a precision floating point number sum overwntiug

previous values.
15. void scatany(int "varany, int numbyt) scatters anything that begm at address varany at PEo and occupies

numbyt bytes of storage into all other processors.

16. void fromany(char far 'value, int numbyt, int srcpe); scatters anything occupying numbyt bytes af stor-
age from any processing element with nodeid = srcpe to all other processors. It uses an algorithm which is
developed by us and is explained m Fig. 8.

17. void show(int rmum); displays the screen of the processqr whose nodeid equals scrnurn by controlling
the display multiplexer. See Appendix C.

G. Extensions to Pascal for parallel computing

The following procedures and functions have been added to Turbo Pascal: . function Pork(Mask: integer1:integer:

procedure Terminate;

MESSAGE-PASSING MULTICOMPUTER

o procedure Bwrite(Mask:integer; var b u f h ; 1en:integer);

a procedure Bread(Mask:integer; var buffer; len.inleger);

r procedure forkall; brings up all the ava~lable processors in the hypercube. . procedure gathint(inint: integer: var0utinr:integer); gathers an integer from values mint at all processors
and sums it in outint. . procedure gpi(var vann1:integer); gathers varm ovenvrittng the prewous value.

r procedure gathreal (inreal:real: var outrea!:real); gathers s real from values Inreal at ail processors and
sums it in outreal.

o procedure gpr(var varrea1:real);

e functmn numprminteger; returns the number of available processors.

pracedure acatint(inint: integer: uar outlnl:integer); scatters an integer value inlnt originally in PEo to the
integer vartable outint to all processors.

procedure SCI (var varint:integer); scatters the integer variable varint from PEo to all other processors. . procedure scdtany(vai varany;numbyt:~nteger): scaxters anything that begins at address varang in PEo and
occupies numbyt bytes of storage into all other processors.

e procedure fromany(var varany: numbyt:meger: srcpe:mteger): Scdtters onyfk1n.p occupying numbyt of
storage from any processing element with Nodeid = srcpe to all other processors.

procedure show (numscr:integer) shows the screen of the processor whose pecid equals numrcr. See Ap-
pendix C.

The implementat~on of fromany 1s given in Fig. 8. It 1s important to understand how if works Note that the
hypercube is a symmetric topology. Any PE can be labelled with a Noderd = 0. Once that is done, the Noderd of
all othei PEs becomes fixed. So any parallel program object code w l l execute correctly on such a relabelled hy-
percube. So a scatter routine will work, provided the Nodeids used in comparison are as per the relabelling
scheme. The scheme is relatwe to the srcpe being zero. fromany is crucial to drmenrion-independent program-
ming. Section 11 and Appendix H describe an application of fromany.

W. Code of many-body problem

Figure 6 has the declaratrons and the Pascal function computing the potential energy between iwo particles. Figure
7 contains the main program.

I. Implementation of parallel Prolog

The predicates are implemented partly In assembly language (the source code is kept m PARPRO.ASM and is
assembled by the Turbo assembler) and partly in C (the source code is kept in CPR0.C and is compiled by the
Turbo C compiler). T'neenecutable module is linked by the Turbo Prolog hnker, according to the directives given
in the .PRJ file by the user. The linker can be run from the Turbo Prolog integrated environment. Alternatively,
!he TLINK utlltty can be used to hnk the modules. TLINK 1s invoked from the command line.

The following global predicates have been added to Turbo Prolog

* FORK(MASK1 spawns a parallel process down MASK. Thereafter, both the parent and ch~ld processes
evaluate the predicates on !he right-hand side of FORK from Ieh to right as in normal Prolog.

NODEID(PE1D) returns the Nodeid in PEID.

0 DIMHYP(DIMENS1ON) returns the dimension of the hypercube in DIMENSION.

TERMlKATE(PE1D) terminates a process. i t has to be supplred PEID, which is the Nodeld.

TIMER(TICKS) returns the time elapsed since power-up in TICKS.

!NTSEN(MASK, INTEGER) sends an integer.

358 D. NANDA KISHORE AXD S. K. GHOSHAL

predicates
d i a p h a n o u s (i n t e g e r , ~ n t e g e r i i S t . f ~ t e g e ~ ~ r ~ ~ ~ t ~
i ~ l i s t (integer. ~niegerlist)
eq.l(integer, mteger, integer, integer)
eq.Z(integer, mtegcr, Integer. integer)
eq.3(integer, integer, Integer, integer)
eqA(mteger, mteger, integer, integer)
poly-true (integer.integer, integer, integer, integer)
wntelist(integcrlirt)
make-list(integer.integerlist)
make-partlmreger.integeriinteger11st)
cartprod(integer,integerlisf.lntegerl~st,integeriist,integerl1st)
query(intcgerlist.integer1~st,integerllst,1nteger~ist)
further(lnteger,integerlist,integerlist,intcgerlist,integerlist)

I

Fro. 9. The predicates used.

s INTRCV(MASK, INTEGER) gets an integer. . CHRSENCMASK, CHRVALI sends a character.

CHRRCV(MASK, CHRVAR) gets a character.

RELSEN(MASK, RELVAL) sends a real value. . RELRCV(MASK, RELVAR) gets a real variable.

STRSEN(MASK. STRVAL) sends a string

STRRCWMASK, STRVAR) gets a string.

0 SYMSEN(MASK. SYMVAL) sends a symbol.

SYMRCV(MASK. SYMVAR) gets a symbol. . INLSEN(MASK. INLVAL. LENGTH) sends a list of integers.

INLRCV(MASK, INLVAR, LENGTH) gets a list of integers.

CHLSEN(MASK. CHLVAL. LENGTH) sends a list of characters. - CHLRCWMASK, CHLVAR, LENGTH) gets a Itst of characters.

RLLSENCMASK. RLLVAL. LENGTH) sends a list of reals.

RLLRCV(MASK, RLLVAR, LENGTH) gets a list of reals.

0 STLSEN(MASK, STLVAL, LENGTH) sends a list of strings.

0 STLRCV(MASK, STLVAR, LENGTH) gets a list of strings.

a SMLSEN(MASK. SMLVAL, LENGTH) sends a list of symbols.

SMLRCWMASK, SMLVAR, LENGTH) gets a list of symbols.

INITCOUNT(1NTEGER) initialires an internal counter.

TERMCOUNT(1NTEGER) returns the final value of the counter.

INCRCOUNT(1NTEGER) increments the counter.

w ISUBLIST(integerliS, STILST. LNILST, integerlist) returns a sublist of an integer list. . SCATINT(1NTEGER. INTEGER) scatters an integer from PEo.

GATHINTUNTEGER, INTEGER) gathers an integer.

TEMPLATE(1NTEGER. INTEGER) is a C program that just copies the input parameter into the output
parameter. What is easy in C is hard in Rolog and vice versa. So at times when something that can easily
be done in C needs to be done in Prolog, one can use this procedure, aftcr replacing the body with his own
code. This allows one to continue programming the prolog application without having to bother with pa-
ramcter-passing conventions between C and Prolog. Of course, after any change, CPR0.C has to be re-
compiled by running the Turbo C compiler.

MESSAGE-PASSING MULTICOMPUTER

r
j clauses
1 poiy-tme(RHS.X1. X?, X3) :
I eq i(RHS, XI , XZ, X3, X41
: cq.Z(X1. X2, X3, x41,
1 eu XX!. X2, X3. Xa).

' eq.3(X1, XZ, X3, X9) .- / XI + 2*X2 - 3*X3 - 3*X4 >50
1 cq.d(x1, X2, X3 ,X4j -
i A*X1 + 5*X2*X2 - X3 + 5*XI >loo . 1 in.i~sllInl, I1ntLII.

~n.llst(Int, [.ITa~lj) .- i~ l i s t (In t , Tall).

F;c 10. Some clauses crcd m this problem.

- FORKALL Rnnga up all the avatlablc processors in the hypercube

NPROCS(1NTEGER) rcturns the number of processors.

SHOW(1NTEGERj controls the display mult~plexer ro show a pamcular processor's screen. The Nod&
of that pioccaral is grven as an lnput l n t c p painlllerei

In Prolog one ?a i lo br pantcular about the directlor> of pal.rneter passing bctween rhe predlcstes. A parallel
Prolog program must be cxecured only from the command h e In order La iomplle mto an EXE tile', a program
musi have a god!

J. lmpiementation of Diophantine predicates

Ftgurr 9 shows the predscatea ~ s e d tor this problem. Plgures 10-i2 show the clauscs F~gure I3 shobs the gudi of
the parallel program. The program 1s dlmenston-indepsndert. It runs on a hypercube ul any dmxnsion. includzng
zero (i e . a uniprocessor:.

!' makes a list of numbers where each list
contains N numbers *!

maKe~iist(o.ll, - I.
rnske .~~s t lN ,~XiKl i ; :-N1 = N - I , S!=N,
v:,,!ke li<t(N: ,TI),I.
!* makes 1 !,st of numbcrs. The cerdinu!ity is N d m NPROCS *I

360 D. NANQA KiSHORB AND S. K. GNOSHAL

/*prompts the user for query *I
query(O,SI,S2,S3,S4):- wnte('Spcc~fy the rhs."), rcrdml(L),
.scatint(L. LOUT). funhei(O.L.Sl.S2.SW).
qtlery(P.SI ,SZ,S3.S4):- L=O. .scalint(L. LOUT).
further(P. LOUT, S1, S2, S3, S4).
I* detcrmnca whether more qucrie, are to be aolmted */
f~ r the r (N .~ ,-.-.-):- N<O,clearwtndow, terminate(0).!.
further(N.L!.L2,L3.L4):- t!mer(TI). .lods(NSI), .~nitcount(O).
not(csrtprod(N,Ll.L2,L3.L4)), termcount(Z),
-gathint(Z. ZOUT), _tadr(NSZ), -tlmer(TZ), NS = NS2 - MSI,
T = T2-TI. not(wnteans(P, ZOUT. T)). query(P,Ll.L2.L3.L4).
wntcanr(P,Z.T) :- P=O.
wnte("No. of Solut~ona=",Z.". Time=".T),nl, fail.

FIG. 12. Note the handling of mput-outpur.

K. Simulated annealing algorithm

The original algorithm 8s described in Kirkpatnck er ol l3 T h i ~ is a variant of rhe algorithm, specially developed
for two-dmenaonal image recogmlion.

Aim: To minimize f(r.7) wherc 1 e l m varies continuously and 7 t QI aasumes discrete values

Given: i,,,Yo BS initial valuer. TO as initlnl temperature, T, aa 6nal remperiiture, f i as the temperature con

trolling factor, and br, A), the typical netghbourhood sue.

Method:

I . S e t l = T ~ , i = i , , ~ = y , , f , - f (r , , y ,) .

2. Generate (m i k) uniformly dmributcd rrndom numbers
u, . UL.. . L$"+k €[-0.5,0.51

3. Compute the Euclidean narm:

v=lui=im
4. Normalize the random numbers:

Vi.ia[l,m], Make u, = u, /q

and
Vi,i€[l.k]. Make u,+,=u,+,iq

5. Penurb i and j :
Vi,r~[L,m],M&e i , = x , + u , * & ,

and

Vt,~~[l .k] .Make j, =[Y,+U,+,*A~,~

6. Compute j= f(.t,j.).4= j- f.
I

_forkall, .NODEID(NlD).
NPROCS(NPR), CARD1 = 256. CARD2 = 160. CARD3 = 64. CARD4 = 64,
STARTVAL = CARD1 + NID
make.parL(NPK.STARTVAL.Sl),
make.li~t(CARD2.S?), make-list(CARD3.S3), / rnake.lisi<CARD4, S4), query(NID,SI,SZ,S3,S4).

FIG. I3. Goal of paralle! program.

MBSSACE-PASSING MULTICOMPWER

7. if A j< 0 then r = 2, j = j (Accept).
Goto Step 9

else set pa, = enp(-&?ln.

8 . Generate r E u [O,l].

If r < p,, then x = iy = j (Accept).

9. Make T = f l If T < 7, then Stop.

10. Goto Step 2.

