J. Indian Inst. Sci., May-June 1996, 76, 337-361.
© Indian Institute of Science

Design, programming environment and applications
of a simple low-cost message-passing multicomputer

D. NANDA KISHORE' AND 8. K. GHOSHAL*
Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India.
email: ghoshal@cadl.iisc.ernet.in

Received on March 1, 1993; Revised on D ber 28, 1594 and S 12, 1995,

Abstract

A parallel computer with hypercube topology, constructed with 16 Intel 80386ATZ motherboards, is described.
They are interconnected using bi-directional full-duplex first-in first-out byte-wide links. The hardware, system
software and application programming methodologies are given. Example programs are listed and explained.

Keywords: Paralle]l p ing, hardware impl ion, hypercube, logic programming, many-body problem,
message passing.

1. Imtroduction

‘With limitations on speed and performance in a single CPU, parallel processing has be-
come a necessity to get the required performance for many applications. Parallel comput-
ing offers many other advantages like more memory and better quality of solution, etc'.
‘With advances made in VLSI and boardleve] system integration technology, the cost of a
single processing element has come down considerably over a short period of time.
Hence, building parallel computing hardware has become practical. We have developed
a technology to realize parallel computers which use IBM PC motherboards as process-
ing elements. This is done because

they are available locally;

are relatively inexpensive;

have an acceptable price/performance ratio;

relevant software is widely available;

they keep on improving in performance and capability with time.

e @ ¢ @ @

We have developed the hardware for interconmecting motherboards or full-fledged
personal computers within a short geographical distance so that an inexpensive but
efficient parallel computer is developed for education and research in parallel computa-
tion. We have assembled a 16-PE machine as a prototype, developed software (both sys-
tem and application) on that piatform and used the machine effectively for teaching and

*Present address: NCORE Technology Pvi Lid, Leo Compilex, 44 & 45, Residency (Cross} Road, Bangalore 560
025, India. email;kishor@ncore.soft.net

*For correspondence,

338 D. NANDA KISHORE AND S. K. GHOSHAL

research in parailel computation. This paper describes the architecture and programming
of the machine.

Parallel programming remains difficult despite many years of research and a few
implementations of parallel programming languages having been made on commercially
available parallel computers. The situation is really bad in cases of imperative pro-
gramming languages like Fortran which have been extended to parallel programming’.
Thus, while designing the programming model, we have taken care to introduce as little
implementation-specific features as we could. That makes teaching also easy. We also
have developed a paradigm which we call dimension-independent parallel programming
which enables one to write scalable programs without even having to recompile the pro-
grams for different target implementations of the same architecture. We demonstrate in
this paper how that works.

The rest of the paper is organized as follows. Section 2 describes the design consid-
eration of the architecture. Section 3 describes the hardware mechanism of interproces-
sor communication. The software that runs on this architecture is introduced in Section
4. The application programming model is developed from broad-based fundamental
considerations (Section 5). After a brief survey, in Section 6, of the topological issues
relevant to multicomputing, we recapitulate those properties of the hypercube that are
used for user programming on this machine (Section 7). After that the actual description
of the application programming environment follows on a language-by-language basis.
First the assembly language implementation of the primitive operations is described in
Section 8. Then the extensions made to Fortran are mentioned in Section 9 and elabo-
rated in Appendix D. Extensions made to C are discussed in Section 10 and the routines
are described in Appendix F. Description of an example application, coded in C, from
the area of image processing, cotnpletes Section 10. Writing parallel applications in Pas-
cal is discussed in Section 11 with the list of procedures added to Pascal given in Ap-
pendix G. A benchmark application program in Pascal, that exposes potential deficien-
cies in message-passing parallel computers, is run on our machine and described in con-
tinuation of Section 11. Prolog programming is described in Section 12 with implemen-
tation details in Appendix I. An application program in parallel Prolog completes Sec-

tion 12 with program segments listed in Appendix J. We conclude the paper in Section
13.

2. Design considerations of architecture

Once we have decided to use IBM PC motherboards as processing elements, and want to
support MSDOS? as one of the operating systems as it is the most common operating
system for the IBM personal computer, we have to decide on a suitable architecture to
interconnect them. We can have either of the following:

e A shared bus/memory architecture
s A message-passing architecture

About shared bus/memory, we observe the following:

» There is a limitation on the maximum number of processors.

MESSAGE-PASSING MULTICOMPUTER 339

o The size of the memory that can be configured as shared memory (necessarily by

designing and implementing extra hardware) cannot be large enough (considering

the IBM PC architecture and the limitation of the MSDOS operating system) for

most large and practical application programs.

The latency of the shared memory may be different from that of the local memory

at sach processor, requiring synchronization primitives in software and arbitration

mechanisms in hardware which are difficult to design and implement for large

systems.

e Loading the executable code may not place the shared object in the shared memory
area as MSDOS compilers would not normally accept such directives and we do
not have their source codes.

Thus we decided to have a message-passing hardware architecture and programming
environment.

A good way of visualizing and representing parallel computation in a distributed
memory multicomputing system is to think of many asynchronous processes which inter-
change intermediate data during the progress of computation. Hoare’s Cspt
(communicating sequential processes) is a good way of representing such computation.
We adopt the general guidelines5 for designing the hardware of the communication link
and for programming the multicomputing system from CSP. We improve the perform-
ance of the system by relaxing the strict requirement of handshaking during each mes-
sage transfer. This we do by buffering the message in a special memory which enforces a
strict first-in first-out protocol in hardware. This results in permitting asynchronism
between two processes and in improving performance. If the writer process comes to the
point where it wants to write in CSP protocol, it has to wait until the reader process
comes to its counterpart. In our FIFO protecol, if there is room in the FIFO, the writer
can write and proceed. The reader, when it comes to the corresponding place, just takes
the data and proceeds. So none of them have to wait for a communication to take place.
Of course, if the reader comes to this place first, it has to wait and we implement that
protocol to preserve the correctness of the program. So just like CSP, we require no as-
sumption on the relative speeds of the processes in order to produce correct results. The
FIFO is managed by a special-purpose on-chip controller. This relieves the CPU(s) of
any overheads. The control logic of the FIFO chip is given in Fig. 1.

Control FIFO Full
I FIFO Empty

1

Write N Write 2Kx9 Read Read
Logic Pointer RAM Pointer | Logic

Y

x

Flg. 1. IDT7203 FIFO chip.

D. NANDA KISHORE AND S. K. GHOSHAL

340

*pIed GONEIUNWWOD ¥ T "OL]

3 3 Odld A»h o) | iH
offory P 01t m oo g Lm a18o] g | | A Z
g m
1 1 1
1 e CI T CR R T

\j \ \

©Am) gmoqugpy 30) gmoqyipN ©5e0) pmoqufeN

MESSAGE-PASSING MULTICOMPUTER 341

3. Hardware architecture of communication link

PCs are linked using add-on cards (developed by us and described in Appendix A) in
their empty [/O expansion slots. Each card has three bi-directional full-duplex FIFO
links. The block diagram of one such card is shown in Fig. 2. One such link between two
computers is shown in Fig. 3. Bach link has a storage capacity of 2 kilobytes. It is built
around the IDT 7203 FIFO chip®.

The link’ transfers unformatted streams of data over a byte-wide path between PCs
using a first-in first-out queweing discipline. The link can be as long as 10 m and has
been verified for proper operations at CPU clock speeds up to 40 MHz. The raw speed of
the link is limited by the flow-through time of the FIFO chip and other propagation
delays involved. It is estimated to be around 10 Mbytes/s. In practice, it is dictated
by parallel program execution behavior and CPU speed used on the PC. The link works
for different PC/XT and AT386 motherboards. Different topologies can be realized with
PCs already existing in a laboratory by plugging a card into each PC and interconnecting
the cards by 40-core flat ribbon cables. The architecture of the interprocessor communi-
cation mechanism provides hardware support for synchronization using instruction retry.
Alternatively, it also allows polling of the links to support non-blocking communication.
The physical addresses of the FIFO links range from OBOOOOH to OBOOO7H, which
ensure multicasting between the PC and its three neighbors. The next card, if used, has
an address ranging between OBOOO8H and OBOOOFH, and so on. The card has an
EPROM to hold the low-level drivers of the links and other programs needed by the
parallel processing system. This EPROM is of size 16 kbytes and has an address span-
ning from O0DOOOOH to OD3FFFH. In case of a clash with existing devices at those
addresses, the addresses of the communication card links and EPROM can be changed
easily by reprogramming a PAL. The system software can be easily modified to accom-
modate such changes. Except the FIFO chip, all other components are easily available
in the local market. The component cost of each card is about Rs 5,000. Versatile diag-
nostics and continuous torture-testing software of the links have been developed and will
be made available. Except the FIFO chips and the EPROM, the card has only SSI com-
ponents and 16L8 PALs. It is not difficult to diagnose and service the cards, in case
of failure.

Computer Computer

Fie. 3. FIFQ link between two computers.

342 D. NANDA KISHORE AND 8. K. GHOSHAL

4. Software
The software that works on this multicomputer can be classified into two categories.

1. Operating systems. They are described in Section 4.1.

2. High-level application programming languages and the extensions made to them
for supporting parallel computation. They are described in Section 4.2.

4.1. Operating systems

The multicomputer at present supports the MSDOS Operating system (Versions 3, 4 and
5) from Microsoft. It also runs an efficient Unix microkernel,” particularly suitable for
parallel programming, developed by us. Using these two operating systems, only 2 single
user can be supported at a time. Using a VM86 mode microkernel'® developed by us,
multiple users can use the machine.

4.2. Languages available for parallel programming
One can program the machine using any of the following high-level languages:

1. Turbo C

2. Turbo Pascal

3. Turbo Prolog

4. Microsoft Fortran

Utilities written in 80X86 assemnbly language and making system calls to IBM PC
BIOS'' and MSDOS? can also be executed in parallel.

In addition, if any language can make external subroutine calls to subroutines
(written in any of the above languages or 80X86 assembly language), then programs
written in such languages can also be made to execute in parallel.

Before we discuss the syntax and semantics of parallel programs on this machine, a
few observations about the programming model recommended for message-passing mul-
ticomputing systems and the requirements of a parallel programming environment are in
order. These are considered in the next section.

5. Pregramming model

Communicating sequential processes* is a way of representirig parallel computing in
progress on message-passing architectures. This model is augmented with the notion of
message buffering at each link to reduce synchronization delays. The resulting model is
used as a guideline to program this machine. The practical aspects of developing a paral-
lel program on a physical platform are given in Section 5.1. Essential requirements of

that platform are discussed in Section 5.2. We will see how our implementation meets
these requirements in Section 8.

5.1. Design of parallel programs

From a parallel algorithm one arrives at a parallel program by doing the following:

MESSAGE-PASSING MULTICOMPUTER 343

e Break up the computation task intc subtasks which do not have to wait for one
another.

e Allocate subtasks to different processors.

s Identify intermediate results that have to be sent across links during the execution
of the parallel program.

e Determine and visnalize the schedule of computation and communication.
One gets the maximum performance out of the machine if he can schedule the computa-

tion and communication in such a way that no processor ever waits for intermediate re-
sults. This may not be possible for all parallel algorithms and problem sizes.

5.2. Operations relevant to multicomputing

Anyone having designed a parallel algorithm would like to be able to do the following
on a given hardware platform on which he is to implement it:

s Create processes across links

e Terminate them after the work is done

e Find out the identity of a process

e Send a message to another process

e Receive a message from another process

e Examine the state of a process at any time

He would like to express these operations in the language familiar to him.

&. Topological issues

The way a multicomputing system is interconnected with message-passing links is called
its topology. Examples of topologies are hypercubes, trees, meshes, rings, toroids, etc.
The more well understood and regular a topology is the more usable it is for the purpose
of application programming. The hypercube® is one such topology. We have used it as it
is well known and has nice mathematical properties that help one develop systems al-
gorithms for parallel computing on it and facilitate teaching. Hypercubes of different
dimensions are shown in Fig. 4. The multicomputer we built is a four-dimensional hy-
percube,

Mask is the address of a link. It distinguishes a link from other links emanating from
a computer.

In any reguiar topology, there is a reiationship between the label of each node (we
call it Nodeid in this paper), the mask of the links that emanate from that node and the
Nodeids of the other end of the links. There is also a parameter that characterizes the
size of the multicomputer. For hypercubes, this parameter is called the dimension.

It appears to us, in general, that on all regular topologies, for some problems, parallel
programs can be written in such a way that the program will run without any modifica-

344 D. NANDA KISHORE AND §. K. GHOSHAL

d=0 d=1 d=2 d=3

Fic. 4. Hypercubes of dimensions 0, 1, 2, 3 and 4.

tion, on any multxprocessor whose nodes are interconnected according to the rules gov-
erning that topology'*. We have shown how to do it with hypercubes, by way of this im-
plementation. For our machine, not even a recompilation is needed, for correct execu-
tion, when the size of the multicomputer is changed while retaining the topology. Such
programs are written for our machine; we call them ‘dimension-independent’ parallel
Drograms.

MESSAGE-PASSING MULTICOMPUTER 345

7. Hypercubes
We summarize the properties of a hypercube in the next two paragraphs.

An N-dimensional hypercube has 2N computers. Each computer is called a node.
Computers are labelled as binary numbers. This number is called the Nodeid. An N-
dimensional hypercube needs N-bits to label each node. The nodeids range from 0 to
2¥ — 1. Two nodes are connected if and only if the Hamming distance between their la-
bels is one. They are connected in the dimension where their labels differ in bit-position.
Such nodes are directly connected and their distance is one. The mask of the link that
connects these two nodes has a value equal to the difference of their nodeids. This value
should be used at either end of the link. Messages transit in one ‘Hop® between two di-
rectly connected nodes.

Other node pairs are not directly connected. Messages need multiple hops to transit
between these pairs. This routing can be done by making system calls or the application
program might prefer to do this itself. The maximum number of hops is N for an N-
dimensional hypercube.

8. Primitive multicomputing operations

This section describes the firmware that implements primitive operations of multicom-
puting. All other high-level languages, in turn, invoke the firmware to get these opera-
tions done.

The routines that implement the primitive operations, i.e., drive the hardware to
create and terminate processes, send and receive messages, etc., are written in assembly
language and kept in EPROMs at each node. Just as one can make BIOS system calls''
to drive the IBM PC hardware in order to perform low-level services, one can execute
the software instruction whose mnemonic is INT 60H and trap to the appropriate routine
stored in the EPROM in order to get FIFO-link-related services performed. The details
of the assembly language calls are given in Appendix B. Notice their correspondence
with the requirements indicated in Section 5.2. How process states are examined is given
in Appendix C.

A high-level language is augmented by adding some library subprograms in assembly
language. These subprograms accept parameters from the high-level caller, set up the
context for invoking a software trap to INT 60H and then invoke the trap. On return
from the trap they go back to the caller. The only exception is TERMINATE, which as
such does not return. When the next parallel program is executed, TERMINATE hands
over control to the caller of the corresponding RFORK.,

9. Writing Fortran application programs

The extensions made to Fortran to facilitate parallel computing are given in Appendix
D. The source code of the subprograms in assembly language is in a file. This file is as-
sembled by the implementor of paraliel Fortran using Borland’s Turbo assembler and the
resulting object file is kept in a commonly accessibie path as a library. Application pro-
grammers use the Microsoft Fortran linker utility FL to link this library with the object

346 D. NANDA KISHORE AND 8. K. GHOSHAL

code of their Fortran source. The resulting executable fiie is ready to run on the mualii.
computer.

9.1. An example of parallel Fortran program

Appendix E describes a parallel program to compute 1t which is the theme of Karp and
Babb’. The same algorithm of Karp and Babb® has been used by us. One can see that our
code size is small compared to most parallel Fortran implementations given in Karp and
Babb®, It is larger than only the codes of Alliant FX/8 and Sequent Balance. It should be
noted here that both these are shared memory machines with common memory bus and
so their code sizes are expected to be smaller. Qur code which is listed in Fig. 5 runs
without recompilation on hypercubes of any dimension, including zero-dimension (i.e., a
sequential personal computer). Note that the code size is much smaller than that of Intel
IPSC/2 which is also a hypercube architecture.

10. Writing C application programs

Appendix F describes the routines that extend C to facilitate parallel computation on our
machine. These routines are implemented in C itself. Turbo C has an in-built mecha-
nism to invoke software traps. Using that the implementor invokes INT 60H with the
code for the intended operation in the AH register. All these functions which are essen-
tial for multicomputing are stored in an EPROM as described in Section 8. A header file
containing the definitions of the C-callable functions is kept in the INCLUDE sub-
ditectory. It is included by the user program while compiling. The executable file gen-
erated by Turbo C runs on our machine. We illustrate with an application described in
the sub-sections that follow.

10.1. The problem
The problem of two-dimensional image recognition'? can be posed as follows:
e Input: Two images A, and A,.

e Output: Rotation 6, Translation X, and scaling s done to 4, so that the two images
match 8 eR'F eRs e R,

PROGRAM PARPI16
REAL ERR,FPLSUM,W.PSUM; INTEGER LINTRVL,ITIME,MYNODE
F(X)=4.0/(1.0+X*X); PI = 4.0+ATAN(!.0); READ(*,%)INTRVL
ITIME=ITIMER(); CALL FORKHYP()
MYNODE = NODEID(); W=1.0/INTRVL; SUM=0.0
DO 10 I=MYNODE+1, INTRVL, NPROC
SUM=SUM+E((1-0.5) ¥W)
10 CONTINUE
SUM = SUM*W
CALL GATHREAL(SUM)
ERR = SUM-PI; ITIME = ITIMER() - ITIME
WRITE(*,*)’SUM,ERR, TIME=",SUM,ERR, ITIME 'J

STOP; END

F16. 5. A dimension-independent parallel Fortran program te compute 7.

MESSAGE-PASSING MULTICOMPUTER 347

in this study, we have reduced the problem to one of optimization. That, in turn, can
be described as follows:

e Apply 6, ¥ and s to map A, — 4,.

« Count the number of mismatches between A, and A;.

e Define this tobe f(6, X, 5)

e Minimize f(8, X, s)

10.2. Algorithm

The following algorithm was used:
1. Find centroids T4 and Xy, of A; and A,.
2. Find areas a4 and g4, of A; and A,.

3. Estimate for displacement X is taken as X, A‘—i Ay
. . - a
4. Estimate for scaling s is taken as , ;:—‘—
o

5. Over 6 optimize f at fixed ¥ and s using simulated annealing and get é.

6. Optimize f over a small neighbourhood of (é , X, s) such that:

ge[f-10°,8+107
X e[zcl =2, +2]
Xy e[xz -2, X +2]
se [x —0.05, s+0.05]

For optimizing, 2 variant of the simulated annealing algorithm'® was used. The de-
tails of this variant are described using proper mathematical notations in Appendix X.

10.3. Implementation

A dimension-independent program was written in Turbo C to implement the image-
recognition algorithm. The program starts executing on one of the processors with Node-
id = 0. This is the master processor. The main program reads in the image file of the
object to be recognized and the library object image file from the disk. Then it finds
out the dimension of the hypercube on which the program is running. It computes the
number of processors present in the system. Then it brings all other processors up. Each
one finds out its own Nodeid. Then the computation proceeds in SPMD mode, with the
matrix of the image files being partitioned by the rows among the PEs. The centroids of
the two images are computed and the necessary scaling, translation and rotation are
done in parallel. The number of mismatches is counted as cost and minimized. If the
cost is less than a limit, then the two images are declared to be identical. After that both

348 D. NANDA KISHORE AND S. XK. GHOSHAL

Table

Speedup on 2 16-PE machine for image recognition

Number of Image size Sequential Parallel time Speedup

rows (pixels) (bytes) time (seconds) {seconds) (ratio)

160 25600 1029 68 15.13

144 20736 845 34 15

128 16384 666 43 15.48
122 12544 515 33 15.606
96 9216 379 25 15.16
80 6400 264 18 14.667
64 4096 114 12 9.5

the pictures are displayed on PEy and the program terminates. The slaves get ready to
execute another parallel program while the master returns to MSDOS,

The speedup for different problem sizes is given in Table I. The number of rows is
always taken as a multiple of 16 to facilitate task-partitioning on a 16-processor ma-
chine. For small images the fork overhead dominates and so the speedup is low.

11. Paraliel programming in Pascal

The procedures that extend Pascal for parallel programming are given in Appendix G.
These have similar semantics to their C equivalents described earlier. Turbo Pascal can
directly invoke software traps. This feature has been used to call the EPROM firmware
and exchange parameters with it. The definitions and implementation of these functions
and procedures are in a file that is included in the user program during compilation. The
resulting executables run on our machines. We illustrate with an example that follows.

11.1. The problem
The many-body problem'® can be posed as follows:

Let there be a system of N, particles that interact via a pair potential, The total po-
tential energy of a system of such particles is given by

N, N,

U=1/2%3 6(%.7,) m
=1 =]

where the pair potential ¢(E,, E/) between two particles { and f is given by

Gmm; @
% -%)]
X, being the position of particle i and m;, its mass.

The problem is to compute the total potential energy of the system.

MESSAGE-PASSING MULTICOMPUTER

11.2. Morivation
in analyzing the performance of any parallel computer, two parameters are particularly
important.

@ t..: The typical time required to perform a generic calculation. For scientific
problems, this can be taken as a floating point calculation.

a=b*c
or
a=b+c

® f.omm: The typical time taken to communicate a single word between two nodes.

As the many-body problem requires the updated positions of each particle to be com-
municated to all the processors, it serves as a good benchmark to estimate ¢,.,1./f pmm 0f @
paraliel computer. In particular, if a message-passing multiprocessor is comparatively
slow in interprocessor communication, that fact comes out when one runs the many-body

problem on that machine.

11.3. Implementation

Appendix H lists a dimension-independent parallel program for solving a many-body
problem in Figs 6 and 7. Table II gives the speedup for different problem sizes. At low

sizes the fork overheads dominate.

program parpotern;
uses Dos;
{$1I$ PARPAS.INC}
const ARRAYSIZE = 1100;
(* particle description *)
type particle = record
acreal; b real; cireal; mereal,
end; Table 11
lype oned = array[¢. ARRAYSIZE] of particle; Speedup on a 16-PE machine for many-body
const G = 6.671e-11; problem
(* Calculate potenlial energy between the two particles #)
function pot_2arr(xi,xj:particle)real; Number of Seguential Speed up
var bodies time (seconds) {rato)
1,12, t3, teropl, temp2:real;
begin 16 0.38 0.034
xj a; 121 = x1b—xj.b; 3: = xicexj ¢ 32 2 0.1818
sqr{tl) + sqr(t2) + sqr(t3); 64 6 0.5
2: = sqri(temp2); templ: = x1.m*xj.m; 128 22 1.6923
pot_2arr: = —templ /temp2; 256 90 5.0
end: 320 139 6.95
var 384 201 8.04
; 480 314 98125
proned; b p
u.temp.pusreal; 512 358 !0.2286
N . N . 640 558 10.7308
vinp,lingfin chunksize:meger; " 26
dem,mask junk,my1d.chank-integer; 223 1%7,;:'} :’lzgz;g
» 9. Gmel. t-lonoint 2
timel, tunel, 8me3, tlonging 928 1176 52
1624 1440 12.8571

FiG. 6. A parallel program to sojve the many-body problem.

350 D. NANDA KISHORE AND §. K. GHOSHAL

{* main *)

begin
timel:=0; time2:=0; time3:=0; t:
write(‘Enter No. of particles in the systcm *); read(np);
time}:=pastime;
(* Determine dimension of the hypercube *)
Dimhyp(dim);
(* Fork all *)
forkall;
* Fmd out node ™

(*Assign Boundaries of each processor ¥)
chunk:=np div numpro; lini:=chunk * myid;
fin:=chunk * (myid + 1): ifin:=Ifin -1;
(*Initialise particle description *)

i+1) *4.0/10.0; pli].
+1) %5.0710.0; plil.

(1+1)*2.0/10.0;
(i+1)/10.0

wi=0.0; pu:=0; chunksize:=chunk * Size of (particle);
{* Broadcast u *)
for :=0 to 15 do fromany(p[tl¥i},12,1);
(* Calculate total potential energy of the system *)
for it= Lini to Hin do for ji= 0 to (ap-1) do

if (i<>j) then u:= u+pot_2arr(pfi},p(ik
(* Gather the partial energy value from all
and accumulate it in id 0 *)
gathreal(u,pu); u:=pu*G/2.0; time3:=pastime;
writein(*Total potential energy of the system is’, u);
if (myid <> 0) then terminate;
t=time3 ~ timel;
writeln(“Time including fork overhead’, t, ‘sec’);
tr=time3 ~ time2;
L writeln(‘Time exciuding fork overhead’, t, *sec’);

en

F1a. 7. A parallel program to solve the many-body problem.
12. Application programming in parallel Proleg

The strict type-checking enforced by Prolog and the fact that Prolog has no notion of the
address of a DOMAIN in the physical memory of the computer, necessitate many more
predicates for parallel programming in Prolog than the minimum of subprograms needed
for a typical imperative programming language. The predicates that have been added to
Prolog and their implementation details are given in Appendix I. The subsections that
follow describe an interesting application of parailel Prolog.

12.1. The problem

Let % be the set of natural aumbers {0, 1, 2,...}, and §;, i = 1, 2, 3...k be & subsets of &

whose elements are chosen at random. Let § = 8§ x§y%...S,. Let § be a subset of § de-
fined as:

MESSAGE-PASSING MULTICOMPUTER 351

§={(@na202) € SpL{01,0201e 4) OMGS) @)
where p; is a k-ary Diophantine predicate'®.

We are looking for §§[, where the symbol | stands for the cardinality of 2 set.

12.2. Motivation

The implementation of this problem illustrates how a CSP-like parallelism can be effi-
ciently supported in a logic programming system. The presence of data-parallelism
within the problem has been effectively exploited while retaining the logic programming
style. How to dynamically partition the data-set can also be understood. This program
can be used to soive linear and nonlinear integer inequalities. Note that, in a way, what
Prolog does in a domain of symbols, this problem does it in %

12.3. Implementation

The program needs no extra domain than what is already defined in Turbo Prolog. Ap-
pendix I gives the implementation details of this problem.

12.4. Speedup

To solve the following set of linear inequalities

3x, +4x, +5x; ~2x, = RHS %)
2x, —3x, +4x3 —6x, <500 (5)
x, +2x, —3x; ~3x, > 50 (6)
—4x; +5x; —x3 +5x, >100)

a program was written in parallel Prolog.

The program was run both on a sequential machine and a 16-processor parailel ma-
chine. IS, was taken to be 256. 1S5 = 160, 1S3 = 32, and 15,41 = 32.

Table [EY

Speednp on 2 16-PE muchine for Diophantine predicates

RHS (User No. of solutions Sequennal Parallel ume Speedup

gives) (computer repites) time {seconds) (seconds) (ratio)
100 4] 2596 174 14.91
200 672 2595 174 14.91
300 5198 2598 175 14.85
400 11492 2593 173 15
500 18477 2598 173 15
600 27678 2592 174 14.9]
700 31893 2595 175 14.81
800 31952 2598 172 15.1
90C 30459 2591 175 14.81

1008 24181 2595 175 14.83

352 D. NANDA KISHORE AND S. K. GHOSHAL

The speedups for different RHS values are given in Table IIL.

13. Conclusion

We have demonstrated that it is possible to build efficient multicomputers using inex-
pensive technology. We have designed and built such a moederate-sized multicomputer
and have programmed it in a number of programming languages. Various application
programs have also been developed on this machine. The programs can be developed
both in MSDOS and Unix environments. Satisfactory speedups have been obtained on
this machine for different benchmark problems. The machine and the programming en-
vironment have been used successfully for teaching and research in parallel computa-
tion.

The machine has a few drawbacks. The firmware is not intelligent enough to recover
from all possible types of deadlocks. Operations like routing and packetizing of mes-
sages consume enormous processor overheads which makes the machine unsuitable for
fine-grained task-partitioning. Debugging is extremely difficult due to lack of proper
tools. The interprocessor communication speed is low on systems with slow clocks and
bus speeds. The hardware and system software are being redesigned and upgraded in
order to alleviate some of these difficulties.

The machine is currently being used extensively by five people round the clock for
their own research. A parallel file system particularly suitable for hypercubes has just

been developed on this machine. Benchmarking is being conducted on this PFS, as of
now.

Acknowledgements

We thank the KBCS project, with whose support this work was done. We thank Mr A. R,
Gnanakumar, SERC, for drawing Fig. 2 and Mr A. D. Desai of Nelsis Project for proof-
reading the revised draft.

References
L. RAJARAMAN, V. Elements of parallel compuring, 1990, Prentice-Hall.
2. Microsoft MSDOS user’'s guide and reference, 1991, Microsoft
Press.
3. Karp, A. H. aND BABB, R. G. A comparison of 12 parallel Foriran dialects, /EEE Software,

Septemnber, 1988, 52-67.

4. Hoarg,C. A.R. Communicating sequential processes, 1987, Prentice-Hall.

5. GHOSHAL, S. K. The numerical integration of ordinary differential equations on

multiprocessing systems, Ph. . Thesis, Indian Institute of Sci-
ence, Bangalore, 1988,

CMOS paralle! first-inlfirst-out FIFO, Data sheet, Integrated
Device Technology, Inc., Feb. 1986.

7. GHOSHAL, S. K., GUHA, 8., Simple low-cost maltiprocessor based on message passing FIFO
ARIFF, 5. M. AND RAJARAMAN, V. links, Microprocessors Microsystems, 1990, 14, 297-300.

MESSAGE-PASSING MULTICOMPUTER 353

8. Smirz, C. L. The cosmic cube, Commun. ACM, 1983, 28, 22-33,

9. GHOSHAL, S. K. AND KALAI SELVL, S. MUSEX—A simple microkernel for parallel computing in Unix,
Proc Southern Regional Convention-94, June 27-30, Hyderabad,
pp. 65-71.

10. GHOSHAL, $. K., KALAI SELVL, S., A multimode operating system for distributed computing in
YOUREN, Z. AND MSDOS, Proc. Southern Regioncl Convention-94, June 27-30,
NAGENDRA PRASAD, P. S. Hyderabad, pp. 19-25

i1 PC/AT Technical reference manual, 1985, IBM

12. SaNcHET], N. K. AND Two-dimensional object recognition using simulated annealing, J.
VENKATESH, Y. V. Indian Inst. Sci,, 1999, 70, 197-212.

13. KIRKPATRICKS, S., GELATT, C. D, Optimization by simulated annealing, Science, 1983, 220, 6§71~
AND VECCHI, M. P.

14. Fox, G., JORNSON, M., LYZENGA, G., Solving problems on concurrent processors, Vol. I-General
OTT0, S., SALMON, J. AND WALKER, D. fechniques on regular problems, 1988, Prentice-Hall.

15. GAREY, M. R. AND JOHNSON, D. . Computers and wntractability: A guide to the theory of NP-comp-

leteness, 1975, W. H. Freeman,

16. GOLDBERG, D. What every computer scientist should know about floating point

arithmetic, ACM Comput. Surv., 1991, 23, 5-48.

Appendices

A. Details of communication card

Each card (See Fig. 2) can be sub-divided into the fellowing blocks:

Communication link with FIFQ storage: There are three such links on each card. The FIFO chip 1s writ-
ten nto by the host PC. The neighbor reads it from the other end (see Fig. 3). The data, status and control
signals are buffered and terminated at both ends of the flat ribbon cable transmission line whose aiternate
cables are grounded.

Decoders and local bus: The links and the EPROM are memory mapped by the decoder implemented by
PALSs. The local bus is isolated from the host-PC bus by a 7415245 transceiver which is enabled only
when the card is accessed.

EPROM for storing firmware: This EPROM countains the firmware described in Section 8 and Appendix
B. The EPROM also captures control of the host-PC during power-on self test (POST) phase'' and per-
forms diagnosis and initialization of the links and the host-PC.

Interrupt generation logic: Attempts to read from an empty link or write intc a full link generates an NMI
(no;l-maskable interrupt). This causes the defaulting instruction to be re-tried. Details are given in Ghos-
hal’.

Status ports and LEDs: The status of all the links can be ready by the host-PC from a memory mapped
port. They are also displayed by a number of LEDs on the card.

B. Assembly language cails to firmware

The firmware initializes and tests the links at power up and drives the links during operation. The source code of
this firmware is in a disk file which also has some documentation of the usage of these routines. This file is as-
sembled, linked and is made a binary file which is written into an EPROM which is plugged thereafier into the
respective communication card at every node when the system is assembied.

The INT 60H is invoked with different values in AH register to :ndicate which kind of service is being re-
quested. The more important services are listed below:

AH = 0 is to reset the interrupt vectors used for multicomputing.
AH =1 is to do a blocking write. The writer will get blocked if the FIFO is fuil.

354 D.NANDA KISHORE AND 8§, K. GHOSHAL

s AH =2 is to do a blocking read. The reader will get blocked if the FIFC is empty.
e AH =35 isto spawn a process.

® AH =6 is to terminate a process.

¢ AW =7 is to find ont the Nodeid.

¢ AH =38 isto find out the dimension of the hypercube.

C. Examining process states

The display adaptor outputs of 16 processors are muitiplexed and fed to one video monitor. The programmer can
see any screen at any time by pressing a Hot Key which activates the firmware to drive the multiplexer. For the
convenience of debugging, the digital display multiplexer has also been made controllable from high-level lan-
guages. The programmer can freely use these calls at any stage during program execution, for debugging or for
any other purpose. In a specially programmed mode, the controller of the multiptexer can traverse a hypercube’s
spanning tree in order to track a given message in transit. That relieves the overhead from the processor and en-
sures that even when there is a fatal deadlock, the programmer can still see the screens of lus interest. The display
multiplexer controller is a special-purpose ASIC chip which is impl d on a Field Pr ble Gate array.

Controlling the display multiplexer does not affect the state of any process in any processor in any way. So
" there is no probe effect while debugging.

D. Fortran language routines for parallel computing

The following Fortran-callable library subroutines have been added to implement operations relevant to parallel
computing:

¢ SUBROUTINE RFORK(MASK) spawns a process in a processor at the other end of the link idenuified by
MASK.

SUBROUTINE TERMIN termunates a process. After this is executed, the processor is ready for another
process to be spawned on it again.

* FUNCTION NODEID returns the Nodeid.
e FUNCTION NDIMHYP returns the dimension of the hypercube.

© SUBROUTINE INTSEN(MASK, INTVAL) writes an integer value INTVAL on the hnk identified by
MASK.

= SUBROUTINE INTRCV(MASK, INTVAR) reads an integer from the FIFO link and places it in the inte-
ger vanable INTVAR.

» SUBROUTINE RELSEN(MASK, RELVAL) writes a real value RELVAL on the link identified by
MASK.

SUBROUTINE RELRCV(MASK, RELVAR) reads a real number from the FIFO link and places it in the
real varrable RELVAR.

SUBROUTINE DPRSEN(MASK, DPRVAL) writes a double preciston value DPRVAL on the link iden-
tified by MASK.

» SUBROUTINE DPRRCV(MASK, DPRVAR) reads a double precision number from the FIFO hnk and
places it in the double precision variable DPRVAR.

SUBROUTINE ANYSEN(MASK, ANYADR, LEN) writes LEN bytes of data starting from ANYADR on
the link identified by MASK. It can be used to send arrays. The way Fortran orders multidimensional ar-
ray elements in memory has to be kept in mind when sending subarrays of multidimensional arrays.

SUBROUTINE ANYRCV(MASK, ANYADR, LEN) overwrites LEN bytes of data starting from
ANYADR with consecutive bytes read from the link identified by MASK. It can be used to receive arrays.

The way Fortran orders multidi ional array elements in memory has to be kept in mund when gei-
ang subarrays of multidimensional arrays from other processors.

.

FUNCTION ITIMER() returns the timer ticks elapsed since power up. This is used for timing programs.

MESSAGE-PASSING MULTICOMPUTER 355

o SUBROUTINE SHOW(NSCREEN) displays the screen of the processor whose PE_ID equals NSCREEN.
See Appendix C.

+ SUBROUTINE FORKHYP brings up all processing elements of a hypercube. The child threads execute
the instructions following this call in parallel. Its cailing syntax is CALL FORKHYP. it has no parameter.

» SUBROUTINE TERMHYP terminates all threads at nodes. The processing elements are ready to execute
another paraliel program. Its calling syntax is CALL TERMHYP, It has no parameter.

e FUNCTION NUMPRO returns the number of processors in the multicomputing system. Its calling syntax
is: -
NFPR = NUMPRO

e SUBROUTINE SCATINT scatters an mieger INTPAR from PE 0 to all other processors. Its syntax is
CALL SCATINT(INTPAR).

» SUBROUTINE GATHINT sums up the values of an integer parameter INTPAR at all nedes, and returns
that value at node 0. Its syntax is: CALL GATHINT(INTPAR).

« SUBROUTINE SCATFLT scatters a floating point number FLTPAR from PE 0 to all cther processors. Its
syntax is CALL SCATFLT(FLTPAR).

» SUBROUTINE GATHREAL sums up the values of a floating point parameter FLTPAR at all nodes, and
returns that value at node 0. Its syntax is:
CALL GATHREAL(FLTPAR).

e SUBROUTINE SCATDBL scatters 2 double precision floating point number DBLPAR from PE 0 1o all
other processors. Its syatax 1s CALL SCATDBL(DBLPAR).

« SUBROUTINE GATHDOUB sums up the values of a floating point parameter DBLPAR at all nodes, and
returns that value at node 0. Its syntax is:
CALL GATHREAL(DBLPAR).

» SUBROUTINE SCATANY scatters any data object with name ANYVAR and occupying NUMBYT bytes
of storage from PE O to all other processor, Its syntax is:
CALL SCATANY(ANYVAR, NUMBYT).

procedure fromany(var varany; numbyt:integer; srcpeinteger);
var mask, dim, myxd, 1ndx, virtid : integer;
begin
dimhyp(dim);
myi nodexd;
nodetd xor srepe);

1 to dim do

1f (virtid>=mask) then
begin
if {virtid < {mask shl 1)) then
begin
bread(mask,varany,numbyt); -
end;
end
¢else
begin
bwrite(mask, varany,mumbyt);
end;
mask := mask shi 1,
end;
end;
{* fromany *)

Fic. 8. A routine to scatier bytes from any processor.

356 D. NANDA KISHORE AND S. X. GHOSHAL

e SUBROUTINE FROMANY scatters any data object with name ANYVAR and occupying NUMBYT
bytes of storage from PE with Nodeid equal to NSRCPE to all other processors. It uses an algorithm which
is developed by us and s explained in Fig. 8. Its syntax is:

CALL FROMANY(ANYVAR, NUMBYT, NSRCPE).

E. An example of application program in parallel Fortran

The program listed in Fig. 5 reads the number of partitions (called INTRVL in the program) that the interval of
integration ranging between {0, 1] is to be divided into. Then it spawns a thread in each available processor. The
processors handle sub-intervals ina round-robbin fashion. The partial sums are gathered from each processor and
summed at PE 0 to yield the value of 7. Thus value and the error incurred are printed and the program terminates,

As INTRVL increases, the speedup approaches the number of processors present asymptotically. The error
decreases with increasing INTRVL initially, but eventually gets dominated by the cumalative roundoff etror.

F. Routines in C for parallel computing
The following functions have been implemented to facilitate parallel programming:

1. int fork(int mask) spawns a process in a processor at the other end of the link identified by mask.

2. void terminate(void) terminates a process. After this 1s executed, the processor is ready for another proc-
ess to be spawned on it again,

3. int nodeid(void) returns the Nodeid.
void dimhyp(int *dim) assigns to dim the dimension of the hypercube.

5. void bwrite(int mask, char far *addr, int size) writes size bytes of data starting from addr on the link
identified by mask.

6. void bread(int mask, char far *addr, int size) overwrizes size bytes of data starting from addr with con-
secutive bytes read from the link identified by mask.

7. int timetick(void) returns the time-ticks elapsed since power-up. It is used for measuring the time taken
by different portions of programs.

8. void scatint(int in, int *out) scaiters an integer value, onginally in PEq, to the integer variable out m all
the Processors.

9.

void gathint(int psum, int *sum) gathers an integer from values psum at all processors and sums it up in
sum.

10. void sci(int *out) scatters the integer variable out from PE, 1o all other processors.
11. void gpi(int *sum) gathers sum overwriting its previous vajue at all processors.

. void gathdoub(double psum, double *sum) gathers an IEEE754'® double-precision floating point number
from values psum at all processors and sums it up in sum.

13. void gpr(float *sum) gathers sum overwriting previous value.

. voud gprd(double *sum} gathers as [EEE7547*¢ double 2 precision floating point number sum overwriting
previous values.

. void scatany(int *varany, int numbyt) scatters anything that begins at address varany at PEg and occupies
numbyt bytes of storage into all other processors.

. void fromany(char far *value, int numbyt, int srcpe); scatters anything occupying numbyt bytes of stor-
age from any processing element with nodeid = srepe to all other processors. It uses an algorithm which is
developed by us and is explained m Fig. 8.

- void show(int scrnum); displays the screen of the processor whose nodeid equals scrnum by controlling
the display multiplexer. See Appendix C.
G. Extensious to Pascal for paraliel computing
The following procedures and functions have been added to Turbo Pascal:
» function Fork(Mask; integer):integer;
s procedure Terminate; "

MESSAGE-PASSING MULTICOMPUTER 357

o function Noderd:integer;

e procedure Dimhyp(var d:integer);

s procedure Bwrite(Mask:integer; var buffer; len:integer);

e procedure Bread(Mask:integer; var buffer; len-integer);

e procedure forkall; brings up all the available processors in the hypercube.

o procedure gathint(inint: integer; varoutintinteger); gathers an integer from values mint at all processors
and sums it in outint.

« procedure gpi(var varint:integer); gathers varmt overwriting the previous value.

o procedure gathreal (inreal:real; var outreat:real); gathers 2 real from values inreal at all processors and
sums it in outreal.

s procedure gpr(var varreal:real);
¢ function numpro:integer; returns the number of available processors.

» procedure scatint(inint: mteger; var outint:integer); scatters an integer value inunt originally in PE, to the
integer variable outint to all processors.

« procedure sc1 (var varint:integer); scatters the integer variable varint from PEy to all other processors,

» procedure scatany{(var varany;numbyt:integer); scarters gnything that begins at address varany in PEg and
occupies numbyt bytes of storage into all other processors.

» procedure fromany(var varany; numbyt:integer; srcpennteger); scatters anyt/ung occupying numbyt of
storage from any processing element with Nodeid = srepe to all other processors.

» procedure show (numscriinteger) shows the screen of the processor whose pe_id equals numscr. See Ap-
pendix C.

The implementation of fromany 1s given in Fig. 8. It 1s important to understand how it works Note that the
hypercube is a symmetric topology. Any PE can be labelled with a Nodeid = 0. Once that is done, the Noded of
all other PEs becomes fixed. So any parallel program cbject code will execute correctly on such a relabelled hy-
percube. So a scatter routine will work, provided the Nodeids used in comparison are as per the relabelling
scheme. The scheme is relative to the srcpe being zero. fromany is crucial to dimension-independent program-
ming. Section 11 and Appendix H describe an application of fromany.

H. Code of many-body problem

Figure 6 has the declarations and the Pascal function computing the potential energy between two particles. Figure
7 contains the main program.

L. Implementation of parallel Prolog

The predicates are implemented partly i assembly language (the source code is kept in PARPRO.ASM and 15
assembled by the Turbo assembler) and partly in C (the source code 1s kept in CPRO.C and is compiled by the
Turbo C compiler). The executable module is linked by the Turbo Prolog linker, according to the directives given
in the .PRI file by the user. The linker can be run from the Turbo Prolog integrated environment. Altematively,
the TLINK utility can be used to link the modules. TLINK ts invoked from the command line.

The following global predicates have been added to Turbo Prolog.

¢ FORK(MASK) spawns a parallel process down MASK. Thereafter, both the parent and child processes
evalnate the predicates on the right-hand side of FORX from left to right as in normal Prolog,

» NODEID(PEID) returns the Nodeid in PEID.

o DIMHYP(DIMENSION) returns the dimension of the hypercube in DIMENSION.

® TERMINATE(PEID) terminates a process. It has o be supplied PEID, which is the Nodeid.

e TIMER(TICKS) returns the time elapsed since power-up in TICKS.

e INTSEN(MASK, INTEGER) sends an integer.

358 D, NANDA KISHORE AND S. K. GHOSHAL

predicates

diaphanous(integer integerlist.integerlist,integerlist, integerlist)
in_list (integer. integerlist)

eq_1(integer, integer, integer, integer)

eq.2(integer, mteger, integer, integer)

eq.3{integer, integer, integer, integer)

eq-4(integer, integer, integer, integer)

poly-true (integer,integer, integer, integer, integer)
writelist(integerlist)

make-list(integer,integerlist)

make-part(integer integer,mtegerlist)
cartprod(integer,integerlist,integerlist integerlist,integerltst)
query(integerlist.integerhst,integerlist,integerlist)
further(integer, integerlist,integerlist,integerlist.integerlist)

FiG. 9. The predicates used.

s INTRCV(MASK, INTEGER) gets an integer.

+ CHRSEN(MASK, CHRVAL) sends a character.

e« CHRRCV(MASK, CHRVAR) gets a character,

o RELSEN(MASK, RELVAL) sends a real value.

*» RELRCV(MASK, RELVAR) gets a real variable,

o STRSEN(MASK, STRVAL) sends a string

* STRRCV(MASK, STRVAR) gets a string,

o SYMSEN(MASK, SYMVAL) sends a symbol,

» SYMRCV(MASK, SYMVAR) gets a symbol.

» INLSEN(MASK, INLVAL, LENGTH) sends a list of integers.

o INLRCV(MASK, INLVAR, LENGTH) gets a list of integers.

o CHLSEN(MASK, CHLVAL, LENGTH) sends a list of characters.
¢ CHLRCV(MASK, CHLVAR, LENGTH) gets a list of characters.
RLLSEN(MASK, RLLVAL, LENGTH) sends 2 list of reals.

o RLLRCV(MASK, RLLVAR, LENGTH) gets a list of reals.
STLSEN(MASK, STLVAL, LENGTH) sends a list of strings.
STLRCV(MASK, STLVAR, LENGTH) gets a list of strings.
SMLSEN(MASK, SMLVAL, LENGTH) sends a list of symbols,
SMLRCV(MASK, SMLVAR, LENGTH) gets a list of symbols,
INITCOUNT(INTEGER) initializes an internal counter.

» TERMCOUNT(INTEGER) returns the fina! value of the counter,
» INCRCOUNT(INTEGER) increments the counter,

e« ¢ o o @ .

SCATINT(INTEGER, INTEGER) scatters an integer from PE,,
GATHINT(INTEGER, INTEGER) gathers an integer.

ISUBLIST(integerlist, STILST, LNILST, integerlist) returns a sublist of an integer list.

TEMPLATE(INTEGER, INTEGER) is a C program that just copies the input parameter into the output

parameter. What is easy in C is hard in Prolog and vice versa. So at times when something that can easily
be done in C needs to be done in Prolog, one can use this procedure, after replacing the body with fius own
code. This allows one to continue programming the Prolog application without having 1o bother with pa-
rameter-passing conventions between C and Prolog, Of course, after any change, CPRO.C has to be re-

compiled by running the Turbo C compiler.

MESSAGE-PASSING MULTICOMPUTER 359

—
clauses

poly_true(RHS, X1, X2, X3) =

eq. {RHS, X1, X2, X3, X4),

eg-2(X1, X2, X3, X4),

eq.3(X1, X2, X3, X&),

eq.4(X1, X2, X3, X4).

eq- 1(RHS, X1, X2, X3, X4) :-

3#X1 + 4*X2 + 5*X3 -2#X4 = RHS
ey 2(X1, X2, X3,X4) -

2#X1 -3*%X2 + 4*X3 -6*X4 <500.
eq.3(X1, X2, X3, X4) :-

K1+ 2¥X2 - 3*X3 - 3*%X4 >50.
eq.4(X1, X2, X3, X4) -

4¥X] + 5*X2*X2 - X3 + 5*X4 >100.
in_hst¢Int, {Intk]).

m dist(Ing, {-ITaid}) - in_list{Ing, Tail).

diaphanous(RHS, List1, List2, List3, List4) :-
in_hist{X1, Listl), in hst(X2, List2),
inlist(X3, List3), in hist(X4, Listd),
poly_true(RHS,X 1, X2, X3, X4).

writelist{[]) :- !
writelist([HIT]) :- write(“elem="H,™\n"), writelist(T).

FiG. 10. Some clauses used n this problem.

o FORKALL Brings up all the available processors in the hypercube.
o NPROCSINTEGER) returns the number of processors.
» SHOW(INTEGER) controls the display multiplexer to show a particular processor’s screen. The Noden

of that processor 1S gIVen 4s an mput 1nteges parameter

In Prolog one has (o be particular about the direction of parameter passing between the predicates. A parallel
Prolog program must be executed onfy from the command hne. In order to compile into an .EXE file”, a program
must have a goal.

J. Impi ation of Diophantine predicate

Figure 9 shows the predicates used for this problem. Frgures 10-12 show the clauses, Figure 13 shows the goal of
the parallel program. The program 1s dimension-independent. It runs on a hypercube ol any dimension, inclading
zero (i ¢, a uniprocessor}.

/* makes a list of numbers where each list
contains N numbers */
make_tist(0,[]) :- 1.
make hist(N,{X1IT1]} :-N1 =N -1, X1=N,
make Hist(N3,T1),!.
/* makes 1 list of numbers. The cardinality is N div NPROCS */
make.patt(_, X, [1) :- X<0, |
make_part(., 0, [1) :- !
make part(NPROC, N, [X1IT1]) ;- N1 = N - NPROC, X1=N,
make_part{NPROC, NI, T1), L.
/* enumerates the Cartesian product set %/
cartprod(L..$1,52,53,84):- draphanousi(1.,81,52,83,54),
_increounti 1}, fail

Fri. 11, Note the task-partitioning.

360 D. NANDA KISHORE AND S. K. GHOSHAL

/* prompts the user for query */

query(0,51,52,83,54):- write(“Specify the rhs:"), readint(L),
_scatint(L, LOUT), further(0,L,S1,52.53,54).
query(P.S1,52,53,54):- L=0, _scatint(L, LOUT),

further(P, LOUT, 81, 52, 83, 54).

/¥ determines whethes more queries are (o be solicited */
further(N,_,_,,_):- N<{,clearwindow, _terminate(0).!.
further(N,L1,.1.2,1.3,1.4):- timer(T1), _tods{NS1}, _initcount(0),
not(cartprod(N,L1,L2,L3 L4}), _termcount(Z),

~gathint(Z, ZOUT), _tods(NS2), ~timer(T2), NS = NS2 - N81,
T = T2-T1, not{wniteans(P, ZOUT, T)), query(P.L1,L2 L3,1.4).
writeans(P,2.T) :- P=0,

write(“No. of Solutions=",Z,”, Time=",T),nl, fail.

F16. 12. Note the handiing of mput-output,
K. Simulated annealing algorithm

The original algorithm is described in Kirkpatrick et al."® This is a variant of the algorithm, specially developed
for two-di 1image ition

¢ Aim: To minimize /{%,5) where ¥ ¢ %™ varies continuously and 5 e assumes discrete values.

= Given: X,,¥, as initial values, Ty as initial temperature, Ty as final temperature, § as the temperature con-

trolling factor, and Ax, Ay the typical neighbourhood size.
Method:

Lo Set I'=To, ¥ =5, = Fo, f; = fx0 %0)-

2. Generate (m + k) uniformly distributed random numbers’
By, Uppaey By g € [~0,5. ().5]

3. Compute the Euclidean norm:

m+k
n:%luﬂ:JZH 2

4. Normalize the random numbers:
¥i,i e{l,m}, Make 1, = u,/n
and
Vi,i e[l k], Make 1y, =1y p,in
5. Perturb Xand y:
Visiell,m],Make ;= x, +u*Ax,
and
Vie[lk] Make 5; <[y, +upm* 2y |
6. Compute f=f(.€.§),Af=f—f.
goal
forkall, NODEID(NID),
-NPROCS(NPR), CARD1 = 256, CARD2 = 160, CARD3 = 64, CARD4 = 64,
STARTVAL = CARD1 + NID
make.part(NPR,STARTVAL,S1), -
make list(CARD?2,52), make_list{CARD3,83),
j make.list(CARD4, $4), query(NID,S1,52,53,54).

Fi16. 13. Goal of paralle! program.

MESSAGE-PASSING MULTICOMPUTER

. IfAf<Othen x=X, y=3 (Accept),

Goto Step 2
else set pa. = exp(—-AfT).

. Generate r ex{0,1].

If 7 € Pace then x = £,y =y (Accepy).

. Make T= ST If T < T then Stop.
. Goto Step 2.

361

