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Abstract 

Steady. viscouq, mcol?~prersible fiow past a circular cylinder, placed symmetrica!!y 13 a simple shear field, has 
been ~tudlci. nutnerically using thc upwind finite-difference method a1 moderate and high Reynolds nxnbers up to 
500. Tbr present reslilrr are in goad agreement w ~ t h  the theoretical and nurnerlcal resulls w h x h  are evaiiable at 
sm,ilI and moderate Reynolds numbers. Unlike the flow at moderate Reynolds nuubrrs up to Re=70 ,  liere a 
voncx is formed near the surface ofthe cylinder which grows in size as the Reynolds number lncreascs Tne sepa- 
ratson of thc flow on rhe surface of the cylinder is aiso observed. 

Keywords Shear Bow, crrcuiar cylmder, nuincrical study, fluid dynmnics 

Two-dimensionai, steady, viscous. incompressible fiow past a circular cylinder is one of 
the classical problems in fluid dynamics. Many authors studied both uniform and non- 
ilniform flow fields at large distances from bodies like circular cylinders and spheres. 
Among these, Bretherton', who studied a cornhination of ilniforrn flow and a simple 
shear flow at large distances, and Robertson er d2, by taking a uniform shear flow at 
large distances, Rave initially theoretically investigated at small Reynolds numbers. 
Later, Kossack and kr ivos3  studied numerically the uniform shear flow past a circular 
cylinder up to Reynolds number Ke = 70. The main observations of the above investiga- 
tions are that the flow is not separated from the surface of the cylinder even at Re = 70. 
But the closed streamlines around the body which are observed for creeping flow and 
in7,iscid flow disappear as Re increases to 70. Also ihe wake region comes closer and 
closer to the surface of the body as Re increases. 

We consider the two-dmensional, steady, viscous, incompressi?le flow past a circular 
cylinder at hi& Reynolds nombers, when the velocity at large distances is described by a 
simple siear. Eerere, we assame that the cylinder is p!aced symmetrically in the shear 
field so :hat the lift and drag are identically zero. Also the cylindel- is allowed to rotate 
freely so thht f ie  dmensionless torque vanishas. 
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2. Formulation of the probiem 

The schematic picture of the problem considered is given in Fig. 1, with a circular cyl- 
inder of radius a ,  which is pla'ced rpmetr icai ly in a simple shear flow with the velocity 
curvature denoted by 6, a constant. The Repolds number Re is defined as Rc = Ga2/v, 
where v is the coefficient of kinematic viscosity, a ,  the characteristic length (radius of 
the cylinder in the present case) and Ga, the characteristic velocity. The velocity ccmpo- 
nents at sufficiently large distances for simple shear flow are given by 

where y 1s the stream function and the prime denotes the dimensional quantities. All 
quantities are nondimensionalized using 

Thcn the governing differential equafipns for the flow in stream function-vorticity 
formulation are the nonlinear Navier-Stokps equations in the nondimensional form 

which is re-written as two second-order coupled equalions in the form 

The boundnry conditions are 

Y=O.  %=iz on r = :  
07 

1 7  . 2  ~ = r s m  6' as r i m ,  
2 

o=-i as r -+ -. 
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F.G, I .  The simple shear flw and ihe locomn ol r!,e FK 2. Finite dirfcrence grid 
cyiindcr. 

where i2 is ihe dimensionless speed wlth which the cylinder rotates and w is vorticity. 

The condition For vorticity o on the surface of the cylinder is deduced using the defini- 

tion of w and %= 0. The pcriodiciiy condition is 
m 

which arises f ron  :he symmetry of the flow. Here i- end B arc the conventional cylindri- 

cal polar co-ordinates, with 8 increasing in counter clockwise direction as shown in Pig. 

3. Becau~e  of the synimetry of the flow half of the domain, i.?., 

eied In rhc numerical approx~mation. It is conuenicnt t o  consider the problem in terms 
of a perturbation from the flow at large distances from the cylinder surface by raking 

Then the governing differentid equations ( 3 )  and boundary conditions ( 4 )  will take the 
form 

where R' defines as in eqn (3:. 
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3. Numerical approximation 

The governing coupled differential equations are solved numerically using the upwind 
finite-difference scheme. The stream function @ and 6 vary rapidly near the cylinder 
surface and hence a smaller step size is essential in this region of the flow field. Far 
away irom this surface larger step sizes are permissible. To meet this requirement, the 

independent variables r and fJ are transformed as 

r = e"' and 6 = ~ q .  

With these transformations the governing differential equations (7) and the boundary 
condit~ons (8) take the form 

d2 d2 
where v2 = - + - 

at2 a2 

The condition on the surface of the cylinder for vorticity comes from the relation of 

Gldc and the definition of &. By fixing the outer boundary 5- at 5- = ,954, the bound- 

ary condition on @ at 4- is modified3 as 
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The finite-difference discretization of the 5-q doma~n is given in Fig. 2. The nodal 
points are the points of intersection of 5 = constant (circles) and =constant (lines). 
The second-order derivatives in eqn (9)  are approximated by central d~fferences of order 
AC2 or Aq2, where AT, and Aq are the step lengths in 5 and q directions, respectively. 
The nonlinear terms in the coupled equations are approximated with first-order upwind 
differences of the form 

where f is @/a{ or @/ ,3q which is approximated with central differences at any 
point (5,. 5) and F is the vorticity &. The boundary condition on the surface of the cyl- 
inder is taken as 

where j is the node number in J I  direction and 0.1 and 2 are the nodes in 5 direction. 

The Block SLOR method i s  used in the iteration process. The resulting algebraic 
equations are solved using a tridiagonal solver along each line. The basic steps in the 
iteration process are 

(i) C2 is approximated using zero torque relation3 T = 

(ii) Vorticity on the body is calculated using C2 and eqn (1 1). 

(iii) 6 and @ are calculated along q =constant lines using tridiagonal solver on each 
line. Here the two blocks q = -3 and q = .5 are solved separately using the perio- 
dicity conditions (5) for both + and &. 

The above three steps are continued until the relation IF'"' " - F'"'I 5 satisfies at 
all inner grid points, where n is the iteration number and F, one of the field variables, @ 
and &. This iteration process requires three under-relaxation parameters, respectively, 
for y, iu and 0. It is found that .3 and .4 are optimum for I) and 6, respectively. For 
Q, a very small relaxation parameter, say .05, is required in the iteration process. 

The diagonal dominance is assured because of the upwind difference approximation 
for the nonlinear terms even at high Reynolds numbers. To minimize the oscillations of 
the solution in the convergence precess it is necessary to use some initial solution in the 
iteration process. Here we used the inviscid flow solution to solve the coupled equations 
at small Reynolds numbers. say at Re = $47, and this solution is used as the starting 
solution at next higher Reynolds numbers and so on. 
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FIG. 3.a. Streamllness, b. equi-vorticity lmes (I) Re = 0.047, (11) Re = 1.0. 

The calculations were carried out on the Siemens BS2000 mainframe at the Indian 
Institute of Technology, Madras, India, and the graphs were drawn on a PC using a 
software package developed by the authors. For a typical Reynolds number, say 500 with 
51 x 5 1 grid, the present code required 250 seconds of CPU time. 

4. Discussion 

Using the numerical technique described above, eqns (9) along with boundary conditions 
are solved at Reynolds numbers of ,047, 1, 10, 70, 200 and 500. As expected, the effect 
of the dimensionless speed C2 on the surface vorticity decreases with increasing Reynolds 
number. At Re = 500 the value of R obtained in the iteration process is .05. The corres 
ponding dimensionless torque is of the order of 10". The present results are expressed in 
terms of streamlines and equi-vorticity lines. To  test the accuracy of the computer code 
developed, the results at low and moderate Reynolds numbers, i.e., the corresponding 
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FG. 4.e. Stieamliness, b. equi-vonlcity lines (7) Re = 10.0 (11) Ee = 70.0 

streamlines and equi-vorticity lines are presented at Re = .M7 and 1 in Fig. 3 and at 
Re = 10 and 70 in Fig. 4, respectively. These figures show that the present results are in 
excellent agreement with the resulrs of Kossack and ,4crivos3, particdarly the equi- 
vorlicity contours, which are drawn with the same scaling except for the minimum 
and maximum values in y-direction which are -3 to 3 instead of -2.5 to 2.5. The 
streamlines and equi-vorrici:y lines at higher Re, i.e., at 200 and 500 are given in Fig. 5. 
The main difference of these flow patterns at high Re).;lolds numbers is the separation of 
the flow on the surface of the circular cylinder, which is not seen at low Reynoids num- 
bers. This is as expected because the zero strczmline comes close to the surface of the 
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Fro. 5.a. Streamlines, b. equi-vorticlty lines: (I) Re= 200.0, (11) Re = 500.0 

body as Reynolds number increases from .047 to 70, both in literature and the present 
results. As seen from the graphs the separation angle is increasing with the Reynolds 
number. The corresponding separation angles are tabulated in Table I. 

Table I 
Separation angles as a funelionof Re 

Re 200 500 

Top sep. angle 62.5" 70' 

Buttom sep. angle - 3 8 O  -41' 
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FIG. 6 .  Pressore on the suzface ofthe cylinder. 

These flow patterns at high Reynolds numbers reveal the fo'ormaiion of a vortex, 
which starts appearing at Re = 200, near the vicinity of the circular cylinder in the open 
wake region. It is also observed that the vor?ex so obtained at Re = 200 Increases in  size 
as Reynolds number increases from 200 to 500. 

The most significant difference of the high Reynolds number flows is brought out by 
the corresponding pressure profiles on the surface of the cylinder. The dimension:ess 
pressure relacive to that an 6 = x/2 ( i .e . ,  relative pressure divided by pG'ai, p being the 
density) is plotted in Fig. 6 as a function of B. It is interesting to observe from Fig. 6 that 
the pressure distribution on the surZace of the cylinder decreases as Re increases for all B. 

The compiex problem of two-dimensional, viscous, incompresslb!e, simple shear flow 
past a circular cyiinder has been studied numerically at moderate and high Reynolds 
numbers. The main observations of the present study are: 

(ij Separation offlow on the surface of the cylinder 

(ii) Formation of vortex near the surface of the cylinder in the open wake region. 
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