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Abstract

Steady, viscous, incompressible flow past a circular cylinder, placed symmetrically in a simple shear field, has
been studied nuemerically using the upwind finite-difference method at moderate and high Reynolds numbers up to
50Q. The present results are in good agreement with the theoretical and numerical results which are available at
small and moderate Reynoids numbers. Uniike the flow at moderate Reynolds numbers up to Re =70, here a
vortex is formed near the surface of the cylinder whick grows in size as the Reynolds number increases. The sepa-
ration of the flow on the surface of the cylinder is aiso observed.
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1. Introduction

Two-dimensional, steady, viscous, incompressible flow past a circular cylinder is one of
the classical probiems in fluid dynamics. Many authors studied both uniform and non-
uniform flow fields at large distances from bodies like circular cylinders and spheres.
Among these, Bretherton', who studied a combination of uniform flow and a simple
shear flow at large distances, and Robertson e7 al.?, by taking a uniform shear flow at
large distances, have initially theoretically investigated ar small Reynolds nwmbers.
Later, Kossack and Acrivos’ studied numerically the uniform shear flow past a circular
cylinder up to Reynolds number Re = 70. The main observations of the above investiga-
tions are that the flow is not separated from the surface of the cylinder even at Re = 70.
But the closed streamlines around the body which are observed for creeping flow and
inviscid flow disappear as Re increases to 70. Also the wake region comes closer and
closer to the surface of the body as Re increases.

“We consider the two-dimensicnal, steady, viscous, incompressible flow past a circular
cylinder at high Reynolds numbers, when the velocity at large distances is described by a
simple shear, Here, we assame that the cylinder is placed symmetrically in the shear
field so that the 1ift and drag are identically zero. Also the cylinder is allowed to rotate
freely se that the dimensionless torque vanishes.
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2. Formulation of the probiem

The schematic picture of the problem considered is given in Fig. 1, with a circular cyl-
inder of radius &, which is placed symmetrically in a simple shear flow with the velocity
curvature denoted by G, a constant. The Reynolds number Re is defined as Re = Ga*fv,
where v is the coefficient of kinematic viscosity, a, the characteristic length (radios of
the cylinder in the present case) and Ga, the characteristic velocity. The velocity compo-
nents at sufficiently large distances for simple shear flow are given by

W= ?y’/ =Gy,
M
v'=L:O
&

where y is the stream function and the prime denotes the dimensional quantities. All
quantities are nondimensionalized using

[ v

Ga Ga*’

Then the governing differential equations for the flow in stream function-vorticity
formulation are the nonlinear Navier-Stokes equations in the nondimensional form

Ay, V)
oy Re VT V) @
rooor8)
which is re-written as two second-order coupled equations in the form
Viy=-0
Vip=_Re Ay, o) (3)
r or.8)
2 ~2
where V* =—{9—7+l—()~+i7 -
or* ror r* 06"
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o8t & dy) M v

The boundary conditions are

)
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#16. 1. The sumple shear flow and the location of the Fii. 2. Finite difference grid

cylinder.
where ) is the dimensionless speed with which the cylinder rotates and  is vorticity.
The condition for vorticity © on the surface of the cylinder is deduced using the defini-

tion of o and {l = Q. The periodicity condition is
o
Iy(r, 8), (r, 63} = {w(r.m+ 6} wlr, 7+ 6)} (&)

which arises from the symmetry of the flow. Here 7 and 8 arc the conventional cylindri-
cal polar co-ordinates, with 8 increasing in counter clockwise direction as shown in Fig.

N\

1. Because of the symmetry of the flow haif of the domain, iJ’»{“%x%) is only consid-

ered in the numerical approximation. It is convenient to consider the problem in teyms
of a perturhation from the flow at large distances from the cylinder surface by 1aking
- 145 ., 1
W=y-——r"sin“ 8
g 2 . (6)
d=w+l J

Then the governing differential equations (3) and boundary conditions (4) will take the
form

Vi =& ]
[ |
. re S, &) I, 9% 2 T
Vzw:~3—giﬂ-l{el sin”&7§E-~rsir.t€’cos€’?—2 '
r 3, 8) L 76 or

where V* defines as in eqn (3.
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3. Numerical approximation

The governing coupled differential equations are solved numerically using the upwind
finite-difference scheme. The stream function ¥ and @ vary rapidly near the cylinder
surface and hence a smaller step size is essential in this region of the flow field. Far
away from this surface larger step sizes are permissible. To meet this requirement, the

independent variables r and 8 are transformed as
r=¢"and 8 = mm.

With these transformations the governing differential equations (7) and the boundary
conditions (8) take the form

V3 = ~n2e™ 8

) Ap.b) A [ e 3 ®)
Ve =-Re —Reme™™ sin sinfry——— —
2Em I oy o
2 2
where V2 :79%4—;"‘2—
h)
petstm |
N [5:(}[
W _o_ o [T (10)
—=Q-sin“mm
%

Y=0,0=0aE>E, j

The condition on the surface of the cylinder for vorticity comes from the relation of
N/ JE and the definition of @&. By fixing the outer boundary &_ at & =.954, the bound-

ary condition on ¥ at &_ is modified”® as

W=A+Brt,,

where A :Afgln(l)dj—% and B:Q—%+jg(z)dz
[+ 4]
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=2
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with g(r)= = fa)(r,é’)dr.
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The finite-difference discretization of the £-n domain is given in Fig. 2. The nodal
points are the points of intersection of § = constant (circles) and m = constant (lines).
The second-order derivatives in eqn (9) are approximated by central differences of order
A&z or Anz, where Af and AN are the step lengths in & and 7 directions, respectively.
The nonlinear terms in the coupled equations are approximated with first-order upwind
differences of the form

(fF)é =.5(f—lf|)F;“J-l-!f!.‘;d—.5[f+!fl]F,_LJ
where f is oy /dE or oy /dn which is approximated with central differences at any
point (§,, n,) and F is the vorticity @. The boundary condition on the surface of the cyi-
inder is taken as

) 8§, — 15, +3.5 sin? w7~ 6AE Q7 sin”
@n, =
o 22 (A8

an

where j is the node number in 77 direction and 0,1 and 2 are the nodes in & direction.

The Block SLOR method is used in the iteration process. The resulting algebraic
equations are solved using a tridiagonal solver along each line. The basic steps in the
iteration process are

L
(i) € is approximated using zero torque relation® T = —;—ﬂ{ 2{9—%}-}@(0, n) dnt.
e
L o

(ii) Vorticity on the body is calculated using & and eqn (11).

(iiiy @ and  are calculated along 1 = constant lines using tridiagonal solver on each
line. Here the two blocks 1 =-.5 and 1 =.5 are solved separately using the perio-
dicity conditions (5) for both ¥ and &.

The above three steps are continued until the relation IF”" " — B®} < 10™ satisfies at
all inner grid points, where # is the iteration number and F, one of the field variables,
and @. This iteration process requires three under-relaxation parameters, respectively,
for ¥, & and Q. It is found that .3 and .4 are optimum for ¥ and &, respectively. For
Q, a very small relaxation parameter, say .05, is required in the iteration process.

The diagonal dominance is assured because of the upwind difference approximation
for the nonlinear terms even at high Reynolds numbers. To minimize the oscillations of
the solution in the convergence prooess it is necessary to use some initial solution in the
iteration process. Here we used the inviscid flow solution to solve the coupled equations
at small Reynolds numbers, say at Re = .047, and this solution is nsed as the starting
solution at next higher Reynolds numbers and so on.
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{a} {b)

Fic. 3.a. Streamliness, b. equi-vorticity lines (I} Re = 0.047, (1) Re = 1.0.

The calculations were carried out on the Siemens BS2000 mainframe at the Indian
Institute of Technology, Madras, India, and the graphs were drawn on a PC using a
software package developed by the authors. For a typical Reynolds number, say 500 with
51 X 51 grid, the present code required 250 seconds of CPU time.

4. Discussion

Using the numerical technique described above, eqns (9) along with boundary conditions
are solved at Reynolds numbers of .047, 1, 10, 70, 200 and 500. As expected, the effect
of the dimensioniess speed £ on the surface vorticity decreases with increasing Reynolds
number. At Re = 500 the value of Q obtained in the iteration process is .05. The corres
ponding dimensionless torque is of the order of 1073, The present results are expressed in
terms of streamlines and equi-vorticity lines. To test the accuracy of the computer code
developed, the results at low and moderate Reynolds numbers, i.e., the corresponding
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a. b.

FiG. 4.a. Streamliness, b, equi-vorticity lines (1) Re = 10.0 (II) Re = 70.0

streamlines and equi-vorticity lines are presented at Re= .047 and 1 in Fig. 3 and at
Re = 10 and 70 in Fig. 4, respectively. These figures show that the present resuits are in
excellent agreement with the results of Kossack and Acrives’, particslarly the equi-
vorticity contours, which are drawn with the same scaling except for the minimum
and maximum valwes in y-direction which are -3 to 3 instead of 2.5 to 2.5. The
streamlines and equi-vorticity lines at higher Re, i.e., at 200 and 500 are given in Fig, 5.
The main difference of these flow patterns at high Reynolds nurmbers is the separation of
the fiow on the surface of the circnlar cylinder, which is not seen at low Reynolds num-
bers. This is as expected because the zero streamline comes close to the surface of the
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F16. 5.a. Streamlines, b. equi-vorticity lines; (I} Re = 200.0, (II) Re = 500.0.

body as Reynolds number increases from .047 to 70, both in literature and the present
results. As seen from the graphs the separation angle is increasing with the Reynolds
number. The corresponding separation angles are tabulated in Table 1.

Table I

Separation angles as a functior of Re
Re 200 500

Top sep. angle 62.5° 70°

Bottom sep. angle  ~38°  ~41°
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These flow patterns at high Reynolds numbers reveal the formation of a vortex,
which starts appearing at Re = 200, near the vicinity of the circular cylinder in the open
wake region. It is also observed that the vortex so obtained at Re = 200 increases in size
as Reynolds number increases from 200 to 500,

The most significant difference of the high Reynolds number flows is brought out by
the corresponding pressure profiles on the surface of the cylinder. The dimensionless
pressure relative to that at 6 = /2 (i.e., relative pressure divided by pG°a?, p being the
density) is plotted in Fig. 6 as a function of 9. It is interesting to observe from Fig. 6 that
the pressure distribution on the surface of the cylinder decreases as Re increases for all §.

5. Conclusion

The complex problem of two-dimensional, viscous, incompressible, simple shear flow
past a circular cylinder has been studied pumerically at moderate and high Reynolds
numbers. The main observations of the present study are:

(i) Separation of flow on the surface of the cylinder.

(ii) Formation of vortex near the surface of the cylinder in the open wake region.
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