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Abstract

Interesting phenomena encountered in laser-modulated colloids and recent progress in understanding them using
density functional theory and simulational studies are reviewed. Modulation of colloids by confinement, and other
open questions are briefly touched on.
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1. Intreduction

Colloidal suspensions' are systems of particies in solvents, with sizes much larger than
atomic dimensions but still small enough that Brownian motion prevents their sedimen-
tation due to gravity. Laser-modulated colloids are obtained by subjecting colloidal sus-
pensions to standing wave patterns of an electromagnetic field obtained by interfering
laser beams™,

The specific colloidal system' that I will consider in this talk consists of polyballs,
which are spheres of entangled polystyrene chains, with a typical diameter 2R in the
range 0.1-1 u. When suspended in water, the —KSO, end groups sticking out at the sur-
face dissociate, leaving each polyball with a large negative charge Z*e (~1000 ¢). The
cations released from the polyball and other (for example, salt) ions present in the sol-
vent screen the Coulomb interaction between the polyballs, leading to an effective inter-
action, called the DLVO potential, given by'

(zre) ( exp(k:R)j2 exp(—kr)
Vir) = ) 1
D= Toak r ®
Here x, the inverse (Debye) screening length, is given by:
2. 4n #),2 Ry
IS T (n,},Z Je* + ag ng{zqe) 2)

where 2, is the number density of the polyballs, and n,, the number density of ions of
type o with charge z, which contributes to screening in addition to counterions.

*Text of lecture delivered at the Annual Faculty Meeting of the Jawaharlal Nehru Centre for Advanced Scientific
Research at Bangalore ois November 11, 1995.
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Fic. 1. Schematic diagram of the experimental sctup used for studies of laser-modulated cofloids (after Burns er
al’).

The crucial feature of the polyball system which makes it a wonderful experimental
system is the fact that x can be tuned easily by changing the salt concentration in the
solvent or the volume fraction of the polyballs: thus one can drive the system from a
weakly interacting (xu, >> I, where a, in the interparticle spacing) regime to a strongly
interacting (small ka,) regime. It is known' that in this process one can get phase tran-
sitions between liquid and crystalline (both bee and fec) phases of the colloidal system.
One can even produce glassy phases with mixtures of polybails of different sizes'. Sub-
jecting the system to laser modulations with wavelength about a, leads to fascinating
ordered structures of the polyballs, dubbed® ‘optical matter’.

The typical experimental setup for generating optical matter is shown® in Fig.1. The
dielectric susceptibility ) of the polyballs, given by the expression’ [(nzz ——n%) /
(1112 /ng +2>}R3, where n and ny are, respectively, the refractive indices of the polyballs

(~1.38) and water (1.33), is large. The electric field of the laser modulation hence in-
duces large dipole moments on the polyballs, leading to an effective potential

2
V.(n)=—% Z[E(rl)] on the ball (with its centre) at 1, -V, is easily tuned to be compara-
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ble to or larger than the thermal or interaction energies. The ordered structures of opti-
cal matter® then arise because the colloidal particles prefer to sit at the maxima of

[EC )] . At the simplest level, for a potential of the form
V)= 3 [ expi"-1] ®

one will have an induced linear response in the density of the colloid given by
9p(n)= ngfnﬁ[gf Nexo i 7] )

where S, is the structure factor of the polyball liquid. Thus, the polyball liquid deveiops
modulations that mimic the potential. But more interesting is the nonlinear response that
one can generate in the presence of a strong V., strong correlations in the lignid, and a
tuning of (g, (") to the first peak of S, so that § o is large. A typical example of such a

response is the phenomenon of laser-induced freezing which I discuss next.

2. Laser-induced freezing (LIF)

The phenomenon of LIF was first demonstrated by Chowdhury ez al.’ They subjected
a 2-D polyball system (obtained by constraining the polyball system between glass
plates such that only one layer of polyballs can be accommodated) to a 1-D laser modu-
lation, with wave vectors gf/ V=% 40(0, 1), with g, tuned to be at the first peak of the
structure factor S, for the 2-D polyball liquid. They were able to demonstrate that turn-
ing on the 1-D modulated V, generated a freezing of the polyball liquid into a 2-D trian-
gular lattice.

It is not hard to understand this phenomenon as a nonlinear response in the context
of a Landau~Alexander—Mctague theory™®. In this theory the difference between the free
energies of the liquid and the crystalline phases is expressed as a truncated power series
in terms of the Fourier components of the order parameters at the smallest six recipro-
cal-lattice vectors of the triangular lattice (see inset of Fig. 2). One has, by symmetry,

P1= P, P2 =p3 = ps =ps. Hence,
2 ~
4F = A{p}+2p3)+ Bp,p} + C (p} +2p3) +D (pf +203)-20ip, ®

where the tuning of the wave vector of V, to ¢, makes it couple directly to the order pa-
rameter(s) o, (and pq). For a typical set of parameters, B = -1, C =1/2, D =3/2, when
V. =0, as 4 decreases there is a first-order transition from the liquid phase (with p; = 0)
to the crystalline phase (with p; = p; # 0) at A = 0.04. The full phase diagram obtained
by minimising AF is shown in Fig. 2. The transition is continuous for large V., which
makes for a very interesting phase transition. However, while later studies by Loudiyi
and Ackerson’ using direct observation and Monte Carlo simulations confirmed LIF, the
nature of the transition was not explored carefully.
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3. Density functional theory (DFT) of laser-induced freezing

The DFT of freezing, pioneered by Ramakrishnan and Yussouft’, has been extensively
used® to study a variety of phenomena associated with the freezing of liquids, including
defects in crystalsg, solid~solid interfaces'?, phonons“, etc, It has also been used, with
considerable success, to understand/predict the phase diagram of the colloidal system
from first principles'>'?. So it is natural to attempt to describe LIF using this framework.
Earlier work in this direction'*", using DFT plus the nonoverlapping Guassian ap-
proximation for describing the periodic density modulations in the crystal, reached
wrong conclusions about the continuous liguid — crystal transition suggested by the
work of Chowdhury ef al.> The conclusion was that “the symmetry gap between the fluid
and the solid can never be bridged completely by the external constraint unless,”
(trivially,) “the external potential has the full symmetry of the solid.”

We have developed'®'” recently a DFT of LIF without uncontrolled approximations.
We have shown definitively that, in the presence of an external potential V, of lower
symmetry than the crystal, the transition from the modulated lquid to the (modulated)
crystal can be made to change from first order to continuous with increasing V, via a
tricritical point (TCP); but this happens only when a certain criterion (see later part) is
satisfied by the wave vectors of V,. The wrong conclusion in the earlier work'® !* was
reached because the choice of the wave vectors of V, used did not satisfy this criterion.
Our DFT is not bound by the limitations of the Landau-Alexander—Mctague theory
(which, furthermore, as is clear from Fig. 2, has no stable crystalline phase for Jarge V,).
In addition, our DFT is a first principles theory. We have used it (see later part) to pre-
dict the parameters for the TCP and for obtaining continuous modulated liquid — bee

crystal trapsitions in the context of a 3-D colloid, subject to a carefully chosen 2-D
modulation.

To get a flavour of our DFT, it is enough to consider a simple version, where the
order parameters &g, given by the Fourier components of the ‘molecular field’®
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Hry= ln[p(l')/pl] where p(r) is the pericdic density in the modulated liquid or the crys-
tal, are determined by minimising the free energy given (in the incompressible limit)
by7. 8

BlF - f,)——mcm}zz(,, 256[% ®)
G

G#0 G0
where

cell

o=l cx;{zé(,# }EL [[eelze] @

Here {G} are the reciprocal lattice vectors (rlv) of the crystal, and cm is the direct cor-
relation function of the liquid at G. The self-consistent equations for the order parame-
ters obtained by minimising F, namely,

[gc +ﬁ‘70]/¢.(62> =Jrelc.re§<r)/-a'reé(r)! ®

can be solved essentially exactly numerically for any finite set of order parameters, even
if large, using a technique developed by us'™'7. Note that even if {CG} is a finite set, all

the Fourier components pg of p(r), namely, p,, = ¢! %" are nonzero.

For purposes of understanding the essential physics of LIF in 2-D it is enough

R ; e
o , Le., tetain the order para-

meters only for the smallest set of riv. As is known'?, the 2-D lquid freezes into a trian-
gular lattice when V,=0 with the smallest set of rlv given by { (O)}z{ O,il qo,

to further simplify the theory by keeping only ¢

(+ s 2%) Now, consider a 1-D modalated ¥V, with wave vectors { (f’} {01}
Then the order parameters /fgm, assume, by symmeiry, only two values, &, for the n;(=2)
vectors of the set {gff’}. and &, for the ny(=4) vectors of the complementary set

{gfd)} = {g}o)}~{gf/]}‘ The free energy becomes

i nbp e
BF =—In[®] + rel [nfz;,+ndz;—d] ﬁZ[.ﬁvc )
)
with

D=vy Jexp[éfqﬁ, (r)+r§d¢,,(r)] (10)

where, ¢;(r) = %, cxp[zgﬁf’ ;—E and ) = 2_, exp[igt,d),r}_ Minimising this and solving

the resulting seif-consistent equations, one gets the phase diagram'®'" shown in Fig. 3.

There are two phases: (i) the modulated liquid with & #0 but &;=0, and (i) the
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(modulated) crystalline phase with &= & # 0. As is known', for ¥, =0, the liquid —
crystal transition is first order and takes place at (:}2) = 0.857 (which corresponds to the
first peak height of the liquid structure factor S,,q, = 7.14). When V, is turned on, the
transition remains first order, but moves to smaller values of cfj’, as indicated by the
solid line in Fig. 3. Thus V, facilitates the liquid~crystal transition, which is the phe-
nomenon of laser-induced freezing. This transition is characterized by a discontinuous
change in & as well as by a discontinuous development of £,. However, the jumps in &;
and & decrease with increasing V, and finally vanish at the TCP given by fV, = 0.106
and cf?) = 0.748. Thereafter, one has a continuous transition from the modulated liquid
to the (modulated) crystalline phase across the dashed line in Fig. 3. Qualitatively simi-
lar results are predicted by our theory for a 3-D colloid, where, when V, = 0, the liquid
freezes into a bec crystal with the smallest 1lv given by {g{m}:{(il,il, 0)go /V2.

(0,£1,£1) g /v2.(21,0£1) qo/ﬁ}A Now, if one turns on a 2-D modulation with wave
vectors chosen to be {gff)}: {(il, t1,0)g, /ﬁ}, one gels a phase diagram qualitatively
similar to Fig. 3 with the TCP at BV, = 0.22, ¢ = 0.55.

The general criterion for obtaining a TCP, and a phase diagram similar to that in
Fig. 3 is that'™" the wave vectors of V, must be so chosen that any odd combination of

vectors of the set {gfdl} = {g,“’)}—{g}f)} cannot be written as an integer combination of

vectors of the set {ggf)}.

For, if this criterion is satisfied, it can be verified easily by expanding the In® term
in (9) that the Landau expansion for BF in powers of &, given & # 0 (with & treated
nonperturbatively), has only even powers of £,; the coefficients, which we can compute



LASER-MODULATED COLLOIDS 471

numerically, are functions of BV, and ¢, As ¢® and BV, increase, the coefficient of
the second-order term in this Landau expansion, T, changes sign and becomes negative,
leading to an instability with respect 1o the formation of &, In the region of the parame-
ter space where the fourth-order coefficient, Ty, is negative (but Ty is positive), the con-
tinuous transition is preempted by a first-order transition. The TCP thus arises when
both T, and T, become zero. In the 2-D case, corresponding to Fig. 3, we also show in
the figure the lines along which T2 = 0 (marked by dashes) and T; = 0 (marked by small
squares). To the left of the Ty = 0 line, where T, is negative, the first-order transition
(solid line) preempts the continuous transition. The T, =  line meets the 75 =0 line at
the tricritical point. In this way we obtain the precise location of the tricritical points
quoted earlier. It is easy to verify that the above criterion is satisfied in the context of the
modulations that we use. Note in particular that in the 3-D bee case, a 1-D set or any
arbitrary 2-D set for {g,f/ ’} picked out from {gfo’} would not satisfy the above criterion.

It is interesting at this point to compare the above phase diagram with that obtainable
in the Landau-Alexander-Mctague theory™*®, For this purpose we expanded the con-
ventional Ramakrishnan~Yussouff™® density functional free energy in powers of the
Fourier components of p(r)/p, for the wave vectors {g/’} and {g!”} in the 2-D con-

text. We truncated the power series at different powers and found the phase diagram by
minimizing the resulting free energy. We studied truncations up to the 12th order with
the results shown in the inset of Fig. 3. In each of these cases we obtain a TCP as
marked; however, the numbers are very different from, and converge very slowly to,
those of the full density functional theory. More importantly, the continuous transition
line eventually bends upwards for large enough V,, indicating that there is no stable
crystal phase for large V, in these truncated Landau theories, as is also clear from Fig, 2.

This is in contrast to the DFT result, where the critical line asymptotes to 01(2) =0.5 for
large BV,.

We have also shown that if the above-stated criterion on the wave vectors of V, is
satisfied, the TCP and the phase diagram are then robust with respect to the inclusion of
more order parameters and of the effects of compressibility. For a more detailed discus-
sion refer to Chakrabarti ef al.'® and Chakrabarti'”.

Finally, I would like to draw attention to our DFT calculation of laser-induced
freezing in a real colloidal. For this purpose, we considered the same experimental sys-
tem as Monovoukas and Gast®® for which the DFT phase diagram is known' in the ab-
sence of V,. The liquid-state DCF for this system of charged colloidal particles with di-
ameter 1334 A and surface charge 880 e was obtained using the rescaled mean spherical
approximation of Hansen and Hayter’"'? for the model DLVO potential in eqn (1). We
focused our attention on the portion of the phase diagram where there is a first-order
transition from the liquid to a bee phase in the absence of V,. We took the modulation

wave vectors {g/} of the external potential to be along (£1,%1, 0)go/v2 as stated

above. We did calculations retaining order parameters corresponding to 10, 20, and 50
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FiG. 4. (a) Schematic phase diagram of a realistic polyball suspension i the presence of an external potential (b)
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shells of the RLVs of the bee lattice. We retained the three-body terms”® in the DFT in

l.12

the same spirit of Sengupta et al.'? with ¢ =0.23. In the 3-D parameter space of im-

purity concentration n,, volume fraction ¢, and V., the first-order and continuous tran-
sitions between the modulated liquid and the crystal now take place across surfaces,
which meet in a line of TCP, as indicated schematically in Fig. 4a. We find that in the n,

range of (1.8-2.6) x 107 mole/cm®, BV, is almost a constant ~0.198 along the tricritical
line, as shown in Fig. 4b (compared with BV, = 0.22 obtained in the simplest theory).

4, Monte Carlo (MC) simulations of laser-modulated colloids

‘We have verified many of our conclusions discussed above using MC simulation studies
of laser-modulated colloids, but also obtained some surprising and interesting differ-
ences'”"®. The simulations were conventional equilibrium MC simulations of 2-D poly-

balls with 2R = 1.07 g, n, = 1.81 x 107/cm®. The inter-ball potential was of the DLVO
form with £=78, Z* = 7800 ¢. The laser-modulation potential was chosen to be

V. cos(g,x) with g, = 27/ (a,+/372). The simulations were done in a -gkaf x{La,) cell

with periodic boundary conditions for L = 6, 8, 10, 12 and 20, i.e., for N = 36, 64, 100,
144 and 400 particles, with a (randomly distorted) triangular lattice as the starting con-
figuration.

The results obtained'"*® for the phase diagram in the (xz,)™', BV, plane are shown in
Fig. 5. For 3V, < 0.2, the modulated liquid-to-crystal transition is first order, and takes
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place at a higher &a, [lower (ka,)™'] for increasing fV,. This is clearly the phenomenon
of LIF. For higher values of §V,, however, the trapsition line bends back to lower (xu,)
[higher (xa,)”'] values, i.e., to farger interaction strengths eventually saturating around
(xa,)"' ~ 0.11. The transition is also continuous for BV, > 0.25. The existence of a cross-
over from first order to continuous transition with increasing 5V, and the stability of the

crystalline phase for large (xu;)™, no matter how large V. is, are clearly consistent with
our DFT results.

However, there are two novel aspects to the simulational phase diagram (Fig. 5) as
compared to the DFT phase diagram (Fig. 3). First, for .11 > (Kag)™" > .092, as BV, in-
creases one gets a laser-induced melting (LIM) transition! Second, for 0.066 < (xug)™ <
.072, LIF is followed by an LIM transition to a reentrant-modulated liquid phase! These
very interesting features deserve to be further explored using experimental, simulational
and theoretical studies. :

5. Modulation of colloids by confinement

There are other interesting ways to modulate colloids than by using lasers; for example,
by confining it between two glass plates with repulsive charges on them. This leads to a
layering phenomenon®® as the separation between the glass plates is decreased. The ten-
dency is especially strong when the separation is a (small) integral multiple of the mean
interparticle spacing a,, as sketched schematically in Fig. 6. But each layer can be liquid
like within the layer for large ka, (weak correlations between the particles.) For small
Kd,, i.¢., strong correlations, by analogy with what we have discussed, it seems clear that
layering should be able to induce crystalline order within the layers. This should result
in a complicated and fascinating interplay between various competing ordering tenden-
cies. Some glimpses of the possibilities are already clear in the work of Pieranski ez al?
where, in a wedge geomeiry, as a function of the separation the layers show alternately
triangular and square ordering: 0 » 14>2 0524 - .. =24 > @+ D O> 1+ 1)
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FIG. 6. Schematic diagram depicting the layering effects in & colloidal system confined between two glass plates.

A—» ... These phenomena need to be explored in much greater detail both experimen-
tally and theoretically.

6. Cencluding remarks

I conclude by mentioning other interesting issues in this area which I think are worth
exploring in future research projects. The first obvious set of questions are about the
critical phenomena associated with the continuous modulated liquid ~» crystal transi-
tion, in particular, its universality class. Of particular interest is light scattering from
modulated colloids, especially the nature of the critical opalescence that will occur near
the continuous transition from the modulated liquid to the crystal. Also for the 2-D case,
complications arising from the two-dimensionality and the role of topological defects in
this transition should be of interest. Another, largely unexplored class of phenomena has
to do with quasiperiodic, incommensurate or random modulations. For example, can one
get LIF (i.e., using laser modulations of lower dimensionality) into a quasicrystal?
Specifically, can 2 1-D modulation with gt/ = {(21,0)q,7(+1, 0)g, /7}, where ral—,ggl,
induce LIF into a pentagenal quasicrystal? Preliminary results from a Landau-
Alexander-Mctague theory suggest that the answer is yes™; clearly this needs further
exploring. Finally, there would be many interesting dynamical effects associated with
the continuous liquid > crystal transition that would be worth exploring.
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