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Abstract 

Interesting phenomena encountered in laser-modulated ci~llolds and recent progress in understanding them uslng 
density functional theory and simulational s t u d ~ s  are r ev lewd  Modulatmn of colloids by confinement, and other 
open questions are briefly touched on. 
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1. Introduction 

Colloidal suspensions' are systems of particles in solvents, with sizes much larger than 
atomic dimensions hut slill small enough that Brownian motion prevents their sedimen- 
tation due to gravity. Laser-modulated colloids are obtained by subjecting colloidal sus- 
pensions to standing wave patterns of an electromagnetic field obtained by interfering 
laser 

The specific colloidal system' that I will consider in this talk consists of polyballs, 
which are spheres of entangled polystyrene chains, with a typical diameter 2R in the 
range 0.1-1 p. When suspended in water, the -KS04 end groups sticking out at the sur- 
face dissociate, leaving each polyball with a large negative charge Z*e (-1000 e ) .  The 
cations released from the polyball and other (for example, salt) ions present in the sol- 
vent screen the Coulomb interaction between the polyballs, leading to an effective inter- 
action, called the DLVO potential, given by' 

Here K, the inverse (Debye) screening length, is given by: 

( 2 )  

where n, is the number density of the polyballs, and no, the number density of ions of 
type O. with charge z, which contributes to screening in addition to counterions. 
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The crucial feature of the polyball system which makes it n wonderllrl experimental 
system is lbe fact that K can be tuned easily hy changing the salt concentration in the 
solvcnt or the volumc fraction of the polyballs: thus one can drive the system from d 

weakly interacting ( K O ,  >> 1, where a ,  in the interparticle spacing) regime to slrongly 
interacting (small ~ a , )  regime. It is known' that in this process one can get phase tran- 
sitions between liquid and crystalline (both bcc and fcc) phases of the colloidal system. 
One can even produce glassy phases with mixtures of polyhalls of difkrunt sizes'. Sub- 
jecting the system to laser modula~ions with wavelength about a,  lcads to fascinating 
ordered structures of the polyballs, dubbed2 'optical matter'. 

The typical experimental setup for generating optical matter is show11~ in Fig. I .  The 

dielectric susceptibility x of the poiyballs, given by the expression2 [(,I:-n$)/ 

( , I :  / n :  + z ) ] R ~ ,  where nl and n, are, respectively, the refractive indices of Lhe polyballs 

(-1.58) and water (1.33L is large. The electric field of the laser modulation hence in- 
duces large dipole moments on the polyballs, leading to an effective potential 

V,(rl) = - i X [ ~ ( r l ) ] Z  on the ball (with its centre) at rl .V, is easily tuned to be compara- 
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ble to or larger than the thermal or interaction energies. The ordered structures of opti- 
cal matter2 then arise because the colloids! particles prefer to sit at the maxima of 
[.E(r)12. At the simplest level, for a potential of the form 

v,(r1) = C < [ g j f ' ]  exp[igjf).r] (3) 

one will have an induced linear response in the density of the colloid given by 

&p(r,) = z ~ ~ / , i t [ g ! ~ ) ] e x p  [idf' .r] (4) 

where S, is the structure factor of the polyball liquid. Thus, the polyball liquid develops 
modulations that mimic the potential. But more interesting is the nonlinear response that 
one can generate in the presence of a strong V,, strong correlations in the liquid, and a 
tuning of (gjf))  to the first peak of S, so that SE!,, is large. A typical example of such a 

response is the phenomenon of laser-induced freezing which I discuss next. 

2. Laser-induced freezing (LIF) 

The phenomenon of LIF was first demonstrated by Chowdhury et al.' They subjected 
a 2-D polyball system (obtained by constraining the polyball system between glass 
plates such that only one layer of polyballs can he accommodated) to a 1-D laser modu- 
lation, with wave vectors g j f )  =+qo(O, I), with q ,  tuned to be at the first peak of the 
structure factor S, for the 2-D polyball liquid. They were able to demonstrate that turn- 
ing on the 1-D modulated V, generated a freezing of the polyball liquid into a 2-D trian- 
gular lattice. 

It is not hard to understand this phenomenon as a nonlinear response in the context 
of a Landau-Alexander-Mctague In this theory the difference between the free 
energies of the liquid and the crystalline phases is expressed as a truncated power series 
in terms of the Fourier components of the order parameters at the smallest six recipro- 
cal-lattice vectors of the triangular lattice (see inset of Fig. 2). One has, by symmetry, 

PI =pa. p2 =p3 = ps =ps. Hence, 

AF = ~ ( p :  + 2 p : ) + ~ p , ~ i  + C  (p: +2p$)' +D ( p f  +2p:)-2<pl (5 )  

where the tuning of the wave vector of V ,  to q, makes it couple directly to the order pa- 
rameter(~) p, (and p.,). For a typical set of parameters, B = -1, C = 112, D = 312, when 

= 0,  as A decreases there is a first-order transition from the liquid phase (with pi = 0) 
to the crystalline phase (with pl = pz # 0) at A 5 0.04. The full phase diagram obtained 
by minimising AF is shown in Fig. 2. The transition is continuous for large V,, which 
makes for a very interesting phase transition. However, whiie later studies by Loudiyi 
and Ackerson4 using direct observation and Monte Carlo simulations confirmed EIF, the 
nature of the transition was not explored carefully. 



FIG 2. Phasc dragram in thc 1.andaii-Alexander- 
Eilctague theory. In the mudulared liquid phase, 
p, ;e 0, p. = il. In the (modulated) crystal phase 
p ,  + p, # 0. Pull line irldicatca a hoe of fira-order 
rranqitions, and the dashed line a linc of continuous 

trans~lions. TCP, the lrtcrltical poim marked by x, 
\epulaIcs thc two. In .w The imallc\r s v e  rlv of the 
trmnguiar lattice iilhelled 1-6 The rnodulatron V,, has 
wavc vectors 81 md  5.t =-g1 Their, by \yrnmctry, 
pi " pe, p2 = PI = PS = P,,. 

3. Density functional theory (DFT) of laser-induced freezing 

Thc DFT of freezing, pioneered by Ramakrishnan and ~ussoulf', has been extensively 
used' to study a variety of phenomena associated with the freezing of liquids, including 
defects in crystalsY, solid-solid interfacest0, phonons'l, etc. It has also been used, with 
considerable success, to understand/predict the phase diagram of the colloidal system 
from first prmciples'2.'3. So it is natural to attempt to describe LIF using this framework. 
harlier work in this direction".", using DFT plus the nonovcrlapping Guassian ap- 
proximation fol- describing the periodic density modulations in the crystal, reached 
wrong conclusions about the continuous liquid 4 crystal transition suggested by the 
work of Chowdhury et al.? The conclusion was that "the symmetry gap between the fluid 
and the solid can never be bridged compietcly by rhe external constraint unless," 
(trivially,) "the external potential has the full symmetry ollhe solid." 

We have d e ~ e l o ~ e d l ~ . ~ '  recently a DFT of LIF without uncontrolled approximations. 
We have shown definit~vely that, in the prescnce of an external potential 1.', of lower 
symmetry than the crystal, the transition from the modulated liquid to the (modulated) 
crystal can be made to change from first order to continuous wlth increasing V,  via a 
tricritical point (TCP); but this happens only when a certain criterion (see later part) is 
satisfied by the wave vectors of V,. The wrong conclusion in the earlier worki4. was 
reached because the choice of the wave vectorc or V ,  used did not satisfy this criterion. 
Our DFT is not bound by the limitalions of the Landau-Alexander-Mctague theory 
(which, furthermore, as is clear from Fig. 2, has no stable crystalline phase for large V , ) .  
In addition, our DFT is a first principles theory. We have used it (see later part) to pre- 
dict the parameters for the TCP and for obtaining continuous modulated liquid i bcc 
crystal transitions in the context of a 3-D colloid, subject to a carefully chosen 2-0 
modulation. 

To get a flavour of our DFT, it is enough to consider a simple version, whcre the 
order parameters {,, given by the Fourier components of the 'molecular field' 
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C(T) E ~ n [ ~ ( r ) l p ~ ]  whcrc p(r )  is the per id ;c  density in the rnndulaled liqllid or the crys- 

tal, are dcterniined hy miniinising the I'm energy given (in the incompressible limit) 
by7, ' 

where 

Here (0)  are the reciprocal lattice vectors (rlv) of the crystal, and cg)  is the direct cor- 
relation function of the liquid at G .  The self-consistent equations for the order parame- 
ters obtained by minimising F, namely, 

can bc solved essentially exactly numcrically for any finite set of ordcr parameters, even 
if large, using a technique developed by us''. ". Note that even iC is a finite set, all 

the Fourier components pc of p(r), namely, pG =Ir'G.'e5('', are nonzero. 

For purposes of understandmg the essential physics of LIF in 2-D it is enough 
to further simplify the theory by keeping only c$' -cia, i e., retain the order para- 

meters only for the smallest set of riv. As is known'" the 2-D liquid freezes into a trian- 

gular lattice when Vc = 0 with the smallest set o i  rlv given by {g,(O)} = {(O, + l)qo, 

( + & c ~ y , ) .  Now, cons~der a I-D moduiated V ,  with wave vectors {e,(fl>={(~.+ l)qo). 

Then the order parameters 4 ,,,, assume, by symmetry, only two values, kt for the nf(= 2) 

veclors of the set {glf'}. and <,, for the nd( = 4) vectors of the complementary set 

{gjd'} = {g,(O'}-{g~o} The free energy become? 

where, $,(,-) - Z, cxp[ig:/'.p] and $,,(I.) - C, exp[igjd'.r]. Minlmising this and solving 

the resulting self-consisten( equations, one gets ihe phase diagram16." shown in Fig. 3. 
There are two phasas: (i) the modulated liquid with <,t- 0 but <d = 0, and ('i) the 



Titi. 3. DFT pliaic dhgiam ot a (mcornprcrnblc) 2-D 
system suh~ected to 1-U modulation, showng first- 
order (solid line) and eontinaous (il:whcd line) modu- 
lated hqusd i crystal tiltnst!ons. These are \epamtcd 
by the mcritm.l point (TCP). whicli is Ihc iirtrrseclion 
or lha Ti = O  line and 7 ~ l i O  lme (bee :ex:). Insel: 
Ti = 0 lmea of the truncated Landau thorics and that 
of the DFT The TCPz are marked by T (fourlh-order 

!O mnca~ion),  ' (8th- and 12th-order truocauons). and x 
(full DFT). 

(modulated) crystalline phase with 5,# td # 0. As is known'', for V, = 0, the liquid i 
crystal transition is first order and takes place at cia = 0.857 (which corresponds to the 

first peak height of the liquid structure factor S,,,,, = 7.14). Wlicn V,, is turned on, the 
transition remains Erst order, but moves to smaller valuea of r j2 ' ,  as indicated by the 
solid line in Fig. 3. Thus V ,  facilitates the liquid--crystal transition, which is the phe- 
nomenon of laser-induced freezing. This transition IS characterized by a discontinuous 

change in 4, as we11 as  by a discontinuous development of 5,). However, the jumps In 

and 5, decrease with increasing V,  and finally vanish at the TCP given by PV,, s 0.106 

and cf" s 0.748. Thereatter, one has a coniinuous tranrition from the rtiodulated liquid 
to the (modulated) crystalline phase across the dashed line in Fig. 3. Qualitatively simi- 

lar results are predicted by our theory for a 3 - 0  colloid, where, when V ,  = 0, thc liquid 

freezes into a bcc crystal with the smallest rlv given by {gl"') ={(*I, *I, O)ql,/fi, 

(0, &I,  i l , )q , / f i . ( i - I ,  O ? r l , )  Now, if one turns on a 2-D modulation with wave 

vectors chosen to be ig,(I)} = {(+I, i l ,  o)~,/&}, one gets a phase diagram qualitativciy 

s~milar  to Fig. 3 with the TCP at PV, E 0.22, cj2' z 0.55. 

The general criterion for obtaining a TCP, and a phase diagram similar to that in 
Fig. 3 is that1"" the wave vectors of V ,  nust he so chosen thar c r y  odd conlhinarion of 

vectoi-s of the set {gjd'}= {g,("'}-{g:f)) cannot be written us un integer comhinatiorl of 

vectors of the set {g,(f'). 

For, if this criterion i s  satisfied, it can be verified easily by expanding the In@ term 

in (9) that the Landau expansion for j?F in powers of 5<,, given k g  0 (with c, treated 

nonperturbatively), has only even powers of &; the coefficients, which we can compute 
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numerically, are functions of five and c/Z1. As c;') and PV, increase, the coefficient of 
the second-order term in this Landau expansion, Tz, changes sign and becomes negative, 
leading to an instability with respect to the formation of &. In the region of the parame- 
ter space where the fourth-order coefficient, T4, is negative (but T6 is positive), the con- 
tinuous transition is preempted by a first-order transition. The TCP thus arises when 
both T2 and T4 become zero. In the 2-D case, corresponding to Fig. 3, we also show in 
the figure the lines along which TZ = 0 (marked by dashes) and T4 = 0 (marked by small 
squares). To the left of the 7'4 = 0 line, where T4 is negative, the first-order transition 

(solid line) preempts the continuous transition. The T4 = 0 line meets the T2 = 0 line at 
the tricritical point. In this way we obtain the precise location of the tricritical points 
quoted earlier. It is easy to verify that the above criterion is satisfied in the context of the 
modulations that we use. Note in particular that in the 3-D bcc case, a I-D set or any 
arbitrary 2-D set for { g j f ' )  picked out from {gjO'} would not satisfy the above criterion. 

It is interesting at this point to compare the above phase diagram with that obtainable 
in the Landau-Alexander-Mctague t h e ~ r ~ ~ . ~ . ' .  For this purpose we expanded the con- 
ventional Ramakrishnan-~ussouff7.8 density functional free energy in powers of the 
Fourier components of p(r)/p, for the wave vectors igjf'] and {g td ) }  in the 2-D con- 

text. We truncated the power series at different powers and found the phase diagram by 
minimizing the resulting free energy. We studied truncations up to the 12th order with 
the results shown in the inset of Fig. 3. In each of these cases we obtain a TCP as 
marked; however, the numbers are very different from, and converge very slowly to, 
those of the full density functional theory. More importantly, the continuous transition 
line eventually bends upwards for large enough V,, indicating that there is no stable 
crystal phase for large V ,  in these truncated Landau theories, as is also clear from Fig. 2. 
This is in contrast to the DFT result, where the critical line asymptotes to c/Z' E 0.5 for 

large PV,. 

We have also shown that if the above-stated criterion on the wave vectors of V ,  is 
satisfied, the TCP and the phase diagram are then robust with respect to the inclusion of 
more order parameters and of the effects of compressibility. For a more detailed discus- 
sion refer to Chakrabarti ct  ol.'%nd chakrabarti17. 

Finally, I would like to draw attention to our DFT calculation of laser-induced 
freezing in a real colioidal. For this purpose, we considered the same experimental sys- 
tem as Monovoukas and ~ a s t ~ '  for which the DFT phase diagram is known' in the ab- 
sence of Ve. The liquid-state DCF for this system of charged colloidal particles with di- 
ameter 1334 A and surface charge 880 e was obtained using the rescaled mean spherical 
approximation of Hansen and ~ l a ~ t e r ~ ' . ' ~  for the modei DLVO potential in eqn (1). We 
focused our attention on the portion of the phase diagram where there is a first-order 
transition from the liquid to a bcc phase in the absence of V,. We took the modulation 
wave vectors { g j f ' }  of the external potential to be along (+I, f l ,  ~ ) ~ o l f i  as stated 

. . 

above. We did calculations retaining order parameters corresponding to 10, 20, and 50 
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Fio. 4. (a) Schematic phase dlagrarn of a ieallstic polybali suspension m the presence of an erlemal potential (b) 
Phase diagram for a realislic polyball suspension in thc +Pi/, plane for vvrmus values of n,. The sohd line j omng  
the open squares is the 1st order lme and that joinmg the filled circles is the continuous transition line. TCP de- 
notes the tricritical point. 

shells of the RLVs of the bcc lattice. We retained the three-body  term^^^^ in the DFT in 

the same spirit of Sengupta et al.12 with d3' = 0.23. In the 3-D parameter space of im- 

purity concentration n,, volume fraction @, and PV,, the first-order and continuous tran- 
sitions between the modulated liquid and the crystal now take place across surfaces, 
which meet in a line of TCP, as indicated schematically in Fig. 4a. We find that in the n, 

range of (1.8-2.6) x mole/cm3, PV, is almost a constant -0.198 along the tricritical 

line, as shown in Fig. 4b (compared with PV, = 0.22 obtained in the simplest theory). 

4. Monte Carlo (MC) simulations of laser-modulated colloids 

We have verified many of our conclusions discussed above using MC simulation studies 
of laser-modulated colloids, hut also obtained some surprising and interesting differ- 
e n c e ~ ' ~ . ' ~ .  The simulations were conventional equilibrium MC simulations of 2-D poly- 

balls with 2R = 1.07 p, n, = 1.81 x 1O7/cm2. The inter-ball potential was of the DLVO 

form with & =  78, Z* = 7800 e .  The laser-modulation potential was chosen to be - 
43 ve cos(q,x) with q, = 2 n l ( a , a ) .  The simulations were done in a -La, x(La,?) cell 
2 

with periodic boundary conditions for L = 6, 8, 10, 12 and 20, i .e . ,  for N = 36, 64, 100, 
144 and 400 particles, with a (randomly distorted) triangular lattice as the starting con- 
figuration. 

The results ~btained".'~ for the phase diagram in the (KUJ', PV, plane are shown in 

Fig. 5. For PVe 5 0.2, the modulated liquid-lo-crystal transition is first order, and takes 
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place at a higher Ka, [lower (KU>)- ' ]  for increasing SV,. This is clearly the phenomenon 

of LIP. For higher valuc? of PV,, howevcr, the transition line bends back to lower (KO,) 

[higher ( i r a ,%) - ' ~  values, i.e., to larger interaction strengths eventually saturating around 

(m,J' : 0.1 1. The transition is also continuous for PV, t 0.25. The exlstencc of a cross- 

over from first order to continuous transition with increasing PV,, and the stability of the 

crystalline phase for large ( iruJ' ,  no matter how large is, are clearly consistent will1 
our DFI' results. 

However, there are two novel aspects to the simulational phase diagram (Fig. 5 )  as 

compared lo the DFT phase diagram (Fig. 3). First, for . I1  >(?a,)-' > ,092, as in- 

creases one gcts a laser-induced melting (LIM) transition! Second, for 0.066 c (KU,)-' < 
,072, LIF is followed by an LIM transition to a reentrant-modulated liquid phase! These 
very interesting features deserve to be further explored using experimental, simulational 
and theoretical studies. 

5. ModuPation of coLloids by confinement 

There are other interesting ways to modulate colloids than by using larers; for example, 
by confining it between two glass plates with rcpulsivc charges on them. This leads to a 
layering phenomenon2%s the separation between thc glass plates is decreased. The ten- 
dcncy is especially strong when the separation is a (small) integral ~nultiple of the mean 
interparticle spacing a,,, as sketched schematically in Fig. 6. But each layer can bc liquid 
like within the laycr for large iru, (weak correlations between the particles.) For small 
KO,, i . ~ . ,  strong correlations, by analogy with what we have discussed, it seems clear that 
layering should he able lo induce crystalline order within the layers. This should result 
in a complicated and fascinating interplay between various competing ordering tenden- 
cies. Some glimpses of the possibiiitics are alrcady clear iii the work of Pieranski e! dZ3 
where, in a wedge geometry, as a [unction of the ~eparalion the layers show alternately 
triangular and square ordering: 0 i lA i 2 O -+ 24 i .... .i nA i (n t 1 )  13-, (n  + I )  



Ro. 6.  Schematic diagram depicting the layering effecis in a colloidal system confined between rwu glasa plates. 

A+ .... These phenomena need to be explored in much greater detail both experimen- 
tally and theoretically. 

6. Concluding remarks 

I conclude by mentioning other interesting issues in this area which I think are worth 
exploring in future research projects. The first obvious set of questions are about the 
critical phenomena associated with the continuous modulated liquid -+ crystal transi- 
tion, in particular, its universality class. Of particular interest is light scattering from 
modulated colloids, especially the nature of the critical opalescence that will occur near 
the continuous transition from the modulated liquid to the crystal. Also for the 2-D case, 
complications arising from the two-dimensionality and the role of topological defects in 
this transition should be of interest. Another, largely unexplored class of phenomena has 
to do with quasiperiodic, incommensurate or random modulations. For example, can one 
get LIF f i e . ,  using laser modulations of lower dimensionality) into a quasicrystal? - 

,I5 1- 1 / Specifically, can a 1-D modulation with .gif' ={(+I, O)q,z(+l, 0)q0 /z), where r 3 - 
2 

induce LIF into a pentagonal quasicrystal? Preliminary results from a Landau- 
Alexander-Mctague theory suggest that the answer is yes24: clearly this needs further 
exploring. Finally, there would be many interesting dynamical effects associated with 
the continuous liquid -+ crystal transition that would be worth exploring. 
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