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Abstract  

In this paper we look at the avlsymmetrlc flow of confined ma t ing  fluid in a cylindrical container. The fluid is set 
in motion by the rotatlng bottom lid, and a vortex forms along the axis of the cylmder In some pieviaus analytical 
and experimental studies it was suggested that above a crmcal value of the upstream swirl angle a bubble-type 
vortex breakdown takes place along the axis, and below that it does not. However, m our present cornputatmns, 
where wc compute the swirl angle distributmn ewrywhcre in the flow-field, we find no evidence of strong depend- 
ence of axlsymmetric vortex breakdown an upstream swirl angle, since large sw~r i  angles are seen even in cases 
where there is no vortex breakdown. 
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1. Introduction 

Vortices exist in nature in nearly all conceivable spatial and temporal scales. From the 
quantized vortices in liquid helium (spatial dimension of about cm) to the galaxies 
(many light years in size), there are vortices in all sizes. They exist sometimes for a 
fleeting moment, but often for rather large periods of time. They could be life-giving (as 
in the case of the aortic valve, whose functioning depends critically on vortices', and at 
other times devastating (as in the case of hurricanes). 

This dichotomy is also evident in the vortices that form over airplane wings; for ex- 
ample, in a delta-winged aircraft, two strong vortices are formed starting at the leading 
edge of each wing, and extending far behind the aircraft before they dissipate into the 
ambient. The parts of the vortices that are over the wing give additional lift to the air- 
craft, and stabilise it. But the trailing vortices behind a large aircraft can cause problems 
for smaller aircraft following it, as often happens in busy airports. Of great importance 
is the phenomenon cailed 'vortex breakdown" which is known to occur in such swirling 
flows; this refers to a sudden and explosive enlargement of the vortex core that is some- 
times observed (for a review of the vortex breakdown phenomena, see ~ e i b o v i c h ~ ) .  In 
particular, we will not want vortex breakdown to occur over the wings, but it is desirable 
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that the aircraft trailing vortices undergo breakdown so that they do not turn into air- 
traffic hazards. Vortex breakdown is also of critical importance in awirling llows inside 
nozzles, diffusers and turbomachinery, in addition to tornadoes, etc., in nature. 

This, ihen, is the primary motivation for studying vortcx breakdown. It was first re- 
ported by Peckhsrn and Atkinson3 in flow over delta wings al high angles of attack. 
There have been many subsequent sludies: analytical, experimental and numerical, and 
we will mention a few as we go along. There have been relatively fewer studies of vortex 
breakdown behind aircraft wings, presumably because of the difficulties involved. Vor- 
tex breakdown is known to occur in two main Forms: the bubble or axisymmetric type, 
and the spiral type4. We will be looking only at the bubble-type vortcx breakdown in [his 
paper. 

The main analytical studies of this phenomenon can bc attributed to squirts, Benja- 
min6, and ~ a 1 1 ~ .  An early theory of ~udwieg* which considered vortex breekdown to be a 
form of hydrodynamic instability has long been discredited, and we will not go into that 
here. Squire's Theory is based on treating the vortex breakdown phenomenon as standing 
waves, and he found that the swirl angie $4 (defined as the ratio of maximum swirl or 
azimuthal speed, to the axial speed in a rotating Row) is the most important parameter 
in determining whether vortex breakdown will occur or not. In h ~ s  study involving in- 
viscid. axisymmetric rotating flow in  an infinite domain, he found that a critical value 
for $between 45 and 50.2' exists for swirling flows where the axial velocity is constant, 
and the swirl angle bas the following distribution. 

where r is the rad~al distance and B and C' are some constants. Benjamin, following a 
different approach involvir~g the critical state theory, arrived at the same conclusion 
about the existence of a critical upstream swirl angle. Hail's work consists of an analogy 
of the vortex breakdown phenomenon with boundary-layer separation, and, though inter- 
esting, we will not pursue it in this paper. 

There have been some experimental verifications of Squire's theory involving the 
criticality of the upstream swirl angle. Harveyy did experiments in rotating pipe flow and 
measured maximum swirl angle ahead of the vortex breakdown bubble to be at 50.5', 
thereby validating Squire's theory. The distribution of the swirl angle measured just 
ahead of the bubble war found to be of the same form as analysed by Squire. 

Axisymmetric vortex breakdown in rotating lid-cylinder geometry (Fig. 1) has re- 
ceived considerable attention ever sirice the flow-visualization experinlents of ~ s c u d i e r ' "  
who showed rather graphic examples of one, two and three vortex breakdowns as he 
changed thc rotation rate of the lid and the aspect ratio of the cylinder. In his experi- 
ments, a stationary cylinder is filled entirely by a viscous liquid, and a lid at one of the 
ends rotates at a constant angular velocity. What makes this geometry particularly inter- 
esting while numerically studying the vortex breakdown phenomenon is the preciseness 
with which the boundary conditions can be stated, and also that there are only two non- 
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Fro. I .  A schematic of the vertlcal cross-sectmn of the 
rotating lid-cylinder geometry. 

dimensional parameters governing h i s  flow. There are excellent numerical simulations 
of this flow (most notably by Lopez1', among others) that are able to reproduce the ex- 
perimentally observed features almost identically. In this paper, we attempt to put to test 
squire'ss theory about the existence of a criticai swirl angle by means of numerical 
simulations of vortex breakdown in this geometry. 

Escudier'sl0 flow-visualization experiments initially received only a lukewarm re- 
ception as doubts were raised as to whether the recirculation regions seen in his studies 
were 'vortex breakdown' or not. Such doubts do not seem to exist anymore, but it just 
may be so that vortex breakdown as seen in this geometry is different from that in pipe 
flow, for example. Thus it is important to see whether such a critical value of swirl angle 
exists even in this flow. 

2. Formulation and numerical scheme 

In the following, we assume the fluid to be Newtonian and incompressible. The cylinder 
has a radius R and height H and is completely filled with some viscous fluid (Fig. 1). 
The lid at the bottom of the cylinder rotates with a uniform angular velocity a. The 
Navier-Stokes equations governing the flbw can be written in vector form as 

which is to be solved along with the continuity equation 

v.d=o. 
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The pwmcte r s  appearing in eqns (2)-(3) are defined as  follows: 

p = dcnsity of the fluid, 
p = nmlecuiar viscosity of the fluid, 
p = pressure, 

? = the velocity vector, 
V = the gradient operator. 

If we r~ondunensionalise using the reference length R and the reference velocity 
U = RSL, then we get the following nondimensional variables (denoted by *) 

The nond~mens~onal  form of the eqns (2)-(3) may then he wrltten as (atter d ropp~ng  
the *) 

Here, Re is the Reynolds number defined as Re = pCW2ip. The Reynolds number. 
along w ~ t h  the aspect ratio A =NIX,  forms thc two governing parameter\ of this tlow. 

Because of the geometry used here, we introducc a cylindrical coordinate system ( r ,  

0, z) where r is the radial distance, 8, the azimuthal angle and 3 ,  the axial coordinate. 
Further, we assume the tlow to be axisym~nerric (which is a valid approximation for the 
moderate Reynolds numbers that we intend to study here), and so, using the equation of 

continuity (5) we can introduce the streamfunction y, defined by 

where u, v and ware  the velocity compollents along I-, 0 and i, respectiveiy. Pressure can 
ROW he eliminated from eqn (4), resulting in the well-known 'vorticity-streamfuncrlon' 
equations 

where 7 is the azimuthal component of vorticity def~ned as 
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so that 
dLV ! d~ dZv -rq=----+- 
a,-2 ,. a- azZ 

The mirial conditions for this problem are 

v, v, 7 = 0 at t < 0 for all rand  z 

v = TO at t = O  for O < r < R ,  z = 0  

and the boundary conditions are 

1 
y =  0, v = rQ, 17 =--- for O 5 r 5 R  z= O 

r rh2 ' 

The vorticity is evaluated at the boundaries lrom the computed solution of yr using a 
first-order accurate scheme for reaaons of stability". Equations (6)-(7) are solved using 
a high-order accurate compact finite-difference schemeI2. The scheme is up to s~xth- 
order accurate in the interior and up to third-order accurate at the boundaries. We use a 
second-order accurate central-difference scheme to solve the Poisson equation for y (8). 
A first-order accurate Euler time-integration scheme is used 20 integrate the equations of 
motion to steady state. 

3. Restslts and discussion 

In lhis ~ection,  we look at the results obtained using the method above for fluid flow in- 
side a cylindrical container (radius K = 1) with a rotating bottom lid. The fluid is at rest 
initially jt < 0) .  At time r = 0, the lid is impulsively set in motion with a uniform angular 
velocity ( Q =  1 ) .  An Ekman boundary layer develops on the rotating lid. This rotating 
boundary layer acts now as a centrifugal fan, throwing fluid radially outward m a spi- 
ralling motion and 'sucking' fluid into i t  from above. A secondary meridio~lal circula- 
tion regime is then set up duc to thc existence of the solid walls. Abovc the lid, at first 
the fluid which is pumped out of the Ekman layer spirals up the cylindrical wall, estab- 
lishing a Stewartson layer until it reaches the top wall where it is turned and advected 
towards the central axis. The fluid then spirals down and is pumped back into the Ek- 
man layer. 

In our numerical simulations, we have chosen an aspect ratio of 1.5, and three differ- 
ent Reynolds numbers, namely, Re = 1000, 1492 and 2000; these Reynolds numbers arc 
chosen because they lie, respectively, below, within and above the Reynolds number 
range where vortex breakdown occurs for A = 1.5 (see Fig. 7 of ~scudier"  in this 
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FIG 2 Temporal development ofslreainiunct!on contours in the flow at Re= 1492. Only sections rrom the central 
axis to the outw WBUS are SIIDWB. Tbe nond~mensiond tunes for the figures are. (0) 10, (b)  70. ( r )  80, (4) 90, ( e )  
100, O 150, (8) 200, (h)  250, ii) 450. Them am 20 equlspaced contours befween y =  0 and 4 1 ,  and another 20 
equispsced contours between y =  0 and 2 x 10.'. The positive strcamiines are shown ~n solid lines, wheiras the 
nagatwe ones are shown dashcd; thc zero streamlines *re shown by lung dashed liocs. 
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context). These Reynolds numbers can be achieved, for instance, by vuriations of the 
angular velocity of the rotating lid. Thus, when we stark from rest and slowly increase SZ, 
flow develops inside the cylindrical container bul no voriex breakdown bubble can be 
seen till after Re = 1050 or so. As Rep-olds number is increased further, a bubble-type 
vortex breakdown occurs at the axis, but it disappears again around Re = 1900 or so. So, 
at Re = 1000, the breakdown bubble is yet to appear; at Re = 1492 there is a recircuia- 
tion region at the axis, and at Re = 2000 the bubble has disappeared. The Re = 1492 case 
was chosen specifically so that comparisons can be made with the visualizations of Es- 
cudier. The results presented here use a 61 x 91 uniform grid. Test computations using 
81 x 121 grid showed no perceptible difference in any computed quantity. 

We present the temporal development of the flow for the Re = 1492 case in Fig. 2. 
Since the flow is axisymmetric, in all the following figures we show only sections 
bounded by the central axis and the outer walls (equivalent to the region in the right half 
of Fig. 1). The streamfunctions are shown using equispaced contour levels on either side 
of iy= 0, so that the breakdown bubble can be seen easily (the flow in the bubble is very 
weak, and therefore will not be visible if the usual equispaced contours are drawn). Note 
that Fig. 2, etc., are not in uniform time-sequence; this was deliberately done so that 
important events during development of the flow can be captured. The breakdown bubble 
appears between (nondimensional) times t = 70 and t = 80. The bubble oscillates in size 
and shape (but never completely disappears) for considerable time before settling down 
to a steady state by t = 450, as can be seen from these figures. 

In Fig. 3, we present the computed streamfunctions for the three Reynolds numbers 
after steady stares have been achieved in each case through numerical integration. Non- 
dimensional times to reach steady states are 250, 450 and 500, respectively, for the cases 
with Reynolds numbers 1000. 1492 and 2000 (a time-step of 0.025 was used in all 

Fa.  3.  Steady-state strenmfunctlon contours for: (a) Re = 1000, (b) Rc = 1492, and (c) Re = 2000. Sections from 
the ccntrai axis to the ourer walls are shown. There are ten equspaced contours each between p= 0 and -.01. and 
yi= 0 and 2 x 10.'. Positive contours are shown in solid lines, whereas the negative one are skown dashed. 
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FIG 4. Computed distnhutioor <IF \wirl snglc $ ( m  degrees) tn the flow Tor- (a) R e =  1000. (b)  Re= 1442, 
(c) Rc = 2000. Secliona from the cenlrai axis to thc ootcr wails are shown The coniour levels are from $b = -90 to 
+90 a1 intervals of 10. Positive contours are shown In solid Ilnes, whereas the neganve one am shown dsshcd. The 
reglous between @ =  -50 and -60 are shown filled m grey 

cases). Figurc 3(b) for Re = 1492 can actually be compared with Fig. 3(d) of ~scudier ' s "  
flow visualization pictures. The similarities with the experimental flocv-visualization 
pictures confirm the accuracy of the present calculations. We can also see that there are 
perceptible waves in the flow-field for both Re = 1000 and Re = 2000, hut that thcre is 
no recirculation region at the axis (in conformity with Escudier's results). The recircu- 
lat~on zone in Fig. 3(b) is very weak, and has near-stagnant fluid as has been found in 
cxperiments too. 

In Fig. 4, we have the computed swirl angle dibtributions over the entire ilow-field 
for the three different Reyuolds numbers. 'She swirl angle @ i s  defined as 

The regions between @=-50 and -60' are filled in grey in order to highlight them. 
From Squire's theory and also from various experiments in pipe flow, one should cxpect 
a region just ahead of the breakdown bubble where the absolute value of $ is greater than 
50. From the figure, it is clear that though such a region for Re = 1492 exists, it is not 
close enough to the axis ol' rotation to be unambiguously called the 'upstream of thc 
bubble'. Moreover, one can see that such regions of high swirl exist even at Re = 1000 
and 2000, and that these regions are closer lo the axis than that for Re = 1492. If the 
criticality condition of ~ ~ u i r b '  was necessary and sufficient for the existcnce of vorrex 
breakdown in this flow, one would expect no large swirl angles around the axis for 
Re = 1000 and 2000. 
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radial distance 1 bubble radius 
FIG 5 .  Cumpured dialr!bution of a w r l  angle 4 ( ~ n  degrees) at various dntar~ccs upstream of the vorren brcilk- 
down huhhle for R E  = 1492 

To compare with the results of ~ a r v e y ~ ,  we take a closer look at thc distribution of 
the swirl angle just upstream of the breakdown buhble. In Pig. 5, we present the distri- 
bution at different upstream distances as a function of the radial distance I-. Ar can be 
seen, :hc distribution (for small r) of the swirl angle g upsweam of the breakdown bubble 
changes very rapidly from the classical form given in eqn ( I )  close to the hubble, to a 
near-logarithmic ion111 a little distance away. 

Thus it appears that a region of large swirl (swirl angle greater than 50") is not a 
cufficient condition lor vortex breakdown, although it may be a necessary one. W i l e  
this observation is vaiid for the rotating lid-cylinder geometry, we do not yet know 
whcther similar behaviour can be observed in swirling pipe flows or flow over deita 
wings. 

4. Conclusion 

We have computed the distribution of swir! angle over the e n t m  flow-fieid inside a cy- 
hnfirical container with a rotating bottom lid. We lind rhat existence of ilpstrearn swirl 
angle greater than some critical value (as suggested by several investigators) is not a 
stfficicnt condition for the existence of a vortex breakdown bubble, even though it is 
liitely to be a necessary one. This finding polnos lo the poss~bili;y that the precise charac- 
ter of vortex breakdown may be very sensitive lo thc actual flow situation, especially on 
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the boundary conditions imposed, since the boundary condilions in the actual experi- 
ments (rotating pipe flow) and analytical solutions (infinite rotating disk: were different 
from that in the present numerical simulation. 
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