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Abstract

In this paper we address the issue of rer ion of itive processes of n ions. This purpose
derives from a nieed felt by theories that address strategic behavwr of firms. We propose to represent the cognitive processes
of managers (termed as beliefs, values, efc., in organizational science theory) as qualitative probabilistic networks (QPNs).
QPNs have a topology similar to cognitive maps (directed-acyclic-graphs with qualitative signs attached to edges).
Perceptions {concepts) of top management are represenied as nodes, and beliefs about environmental unceriainties are
quantified as probability estimates. We propose infuitive models on these QPNs. These models result from studying human
behavior under uncertainty with the help of psychological experiments. During the experimentation we observe two
patterns of inference that subjects resort to, while inferencing under uncertainty. We incorporate these patterns into the
existing theories of inter-causality. This is done by defining patterns with the help of certain probabilistic criteria, Finally,
we demonsirate the apphcability of these intuitive patterns in quanti belief p ion in a cognitive map abstracted
from the annual report of a company from the Indian autemobile industry.

Keywords: Qualitative probabilistic ks, behef p i hastic simulati itive maps, verbal protocols,
inter-causal reasoning.

1. Introduction

The study of strategic behavior to environmental changes is very topical. Historically, issues
related to this have been addressed by two different streams of theories in strategic
management. They are: the industrial organizational (I0) economics stream’, and the
behavioral stream’. The distinguishing characteristic between these two approaches is
primarily the type of information attended to (structured or unstructured), and the focus on
the sources of information (internal or external to the organisation).

L.1. Theories on strategic behavior of firms

(i) {0 Theory of firm behavior: The 10 stream emphasizes on structured information like
market shares, profitability, etc., in analyzing firm behavior/performance” . The underlying
premise here is that the market or the industry imposes selective pressures to which the firm
must respond. In this approach, firms are assumed to be rational with an objective of
alloceting sarce resources to altemative ends, to maximize profits. However, managerial
‘proactiveness’(or mindsets)-based competencies (or drawbacks) are not given any serious
consideration. Firm-level behavior like Iimits of bounded rationality in humans®, teck-
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nological unceriainties, constraints and mobility factors, information asymmetries and other
things are ign()re:d5 .

In other words, the strategic behavior of a firm is analyzed with reference to the firm’s
performance in the indusiry (i.e., external to the organisation).

(i) The behavioral approach: Behavioral tesearchers argue that any firm’s strategic
behavior is the final form of managerial thought processes. Thus, reactions to changes in the
environment (say, launch of new product) are the final outcome of managerial causal
understanding of the environment. However, information on managerial thought processes is
highly unstructured.

In broad terms, this stream of research suggests that cognitive processes of managers
influence market performance. This approach is developed on the limits of bounded
rationality model in individuals, advocated by Simon’, Cyert and March® developed the
behavioral theory of firms based on this wodel. According to them, an organization is an
adaptively rational system that learns from experience. The key assumption here is that firms
need not be rational, or, in other words, profit maximizing need not be the sole objective of a
firm. The underlying factors that have an important role in firm behavior are issues like
‘organizational slack™.

Thus, the main emphasis in this approach is on the cognitive processes that take place in
the minds of managers which affect the strategic behavior of firms. Hence, any organization’s
strategic response is a reflection of change in the top management’s mental models (cognitive
processes), with respect to significant changes in the environment®”’. Top managers, with
their perceplible filters, may generate unique information that enables them to effectively
interpret the firm’s environment with respect to opportunities and threats. In other words,
the central thesis of this approach is ‘cognitive processes’ direct strategic behavior. Re-
searchers®™' in strategic management of late have emphasized on this missing role of beliefs,
values and culture of an organisation in evaluating firm performance (which have
unstructured information content). The above observations can be conceptually represented as
in the framework given in Fig. 1.

UNSTRUCTURED
BEHAVIOURAL THEORY

TYPE OF
INFORMATION
PROCESSES
ADDRESSED
10 THEORY
STRUCTURED

INTERNAL EXTERNAL
ENVIRONMENTAL FOCUS FOR ANALYSIS

Fia. 1. Cornceptual framework



INTUITIVE MODELING OF INTER-CAUSAL RELATIONSHIPS 705

Thus, to analyze strategic behavior, an important prerequisite that one needs to address is
the issue of ‘representation of information’. There are various mathematical tools and
techniques to represent structured information. Modern-day decision-support systems and
spread sheets have provisions to deal with these structured information'!. Various studies™ >
have used these representation tools to understand strategic behavior. However, little research
has been done on representational issues of unstructured information which is central to
understanding strategic behavior of firms. In the following section we cite the research done
on representation of unstructured processes in various fields.

1.2. Representation of unstructured processes

Representing qualitative information like human decision-making processes, values, beliefs,
etc., has been a challenging task for researchers interested in strategic management * °. Also,
many decision problems encountered in organizational decision making are unstructured in
the sense that predetermined algorithms are not available for their solution'”. According to
Mintzberg et al.”® decision processes in organizations are primarily unstructured. Prior to
addressing the knowledge representation issme, we consider the process of knowledge
elicitation.

One of the major difficulties that has been stated by researchers who are interested in
knowledge representation is the process of explicating knowledge. For most human activities
there is little formal documentation of relevant knowledge and procedures. Thus, the
important step in the process of studying representation of cognitive processes of managers is
extraction of relevant knowledge from the managers.

The process of knowledge elicitation, however, has been addressed by cognitive
psychologists whose primary objective is to understand the human mind. Hoffman'* compares
various elicitation methods with respect to the number of knowledge elements elicited per
minute in humans, Burton'® compares four methods (formal interviews, protocol analysis,
laddered grid, and card sort) to elicit information about how undergraduate geology students
distinguished various types of rocks. It has been found that protocol analysis produced fewer
rules than the three other elicitation methods.

Researchers interested in modeling cognitive processes of humans found that
mathematical models developed to capture human behavior and the true cognitive processes
mediating performance have been dissociatingw. However, mathematical regression models
have remarkably been able to reproduce the final outcome. The experiments of Einkom er
al.”” show that how rules extracted from think-aloud protocols on subjects making judgements
could predict observed judgements similar to that of linear mathematical models. Larcker and
Lessig'®, however, found that process models were superior in reproducing observed
judgements in comparison with regression models. Linear models fail to give the
‘intermediate steps’ (the process) involved in arriving at the finai outcome.

In the research involved in strategic management, various representation techniques are
being used to capture the cognitive processes in managers (see Fiol and Huff"” for greater
details). Mapping of cognitive processes based on causal assertions (termed as cognitive
maps) made by managers is one such popular technigue.
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The other important issue, in addition to those stated above, which is essential to
representing strategic behavior of firms is the representation of uncertainty. According to
researchers in organizational science, beliefs of top management include perception of top
management with respect to environmental uncertainties. Traditionally, representation of
uncertainty has been in the form of probabilistic networks. In this paper, we adapt this
approach for analyzing strategic behavior of firms.

1.3, Organisation of the paper

In the following section, we give a brief overview of cognitive maps, Bayesian belief revision
and qualitative probabilistic networks (QPNs), and their related concepts. We then define
intuitive models which are based on an experiment done on understanding decision process in
human beings. Here we detail the protocol experiments conducted, and the associated
observations made from the transcripts. We then propose intuitive models which are directed
by certain probabilistic criteria. We incorporate the intuitive models into the general
characterizations for inter-causal reasoning as detailed by Druzdzel and Henrion™. We also
elicit the applicability of these intuitive models for belief propagation. Further, we
demonstrate quantitative belief propagation scheme developed on the basis of proposed
intuitive models. In other words, we demonstrate the applicability of models based on human
intuition in the construction of belief networks, and in representing the decision processes of
managers. Finally, we conclude by summarizing the main contributions of this paper.

2. Network representation of beliefs and uncertainty

2.1. Cognitive maps

Cognitive maps provide graphical descriptions of the unique ways in which individuals view a
particular domain®"?*, The term ‘cognitive map’ has been used to describe several forms of
diagrammatic representation of an individual’s cognition. Causal mapping is one such
technique'”. These are essentially network representation of beliefs of individuals.

Technically, cognitive maps are directed graphs with signed edges. Formally, a cognitive
map, M, is represented as a pair (CE), where C is a set of nodes representing concepts, and
E. a set of signed edges. The possible signs, e, aitached to an edge are usually ‘+’ and ‘~’,
although sometimes edges with sign ‘0’ are also present. For more details on the semantics of
the cognitive maps, refer Wellman %

The intention behind drawing a cognitive map is to describe an individual’s conscious
perception of the environment. However, the aim is not to map an individual’s entire set of
beliefs, or to present a model that simulates actual cognition. Typically, in practice, the map is
restricted to a particular domain. This is done by filtering in details that relate to specific
situations or detailed instances of the individual’s experience, from a general set of
observations. Typically, cognitive maps have as many as 100 such conceptual nodes.

Ba.r; et al® have used cognitive maps of top management to understand the process of
strategic behavior of firms. In their research, they have tried to give causal explanations to
firms’ behavior with respect to decision process of top management. Cognitive maps are of
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potential interest to organization theorists because they can be used for graphical display of
the process of strategic behavior. Barr et al® and Stubbart and Ramprasad® have used
cognitive mapping technique to identify key assertions, and represent them as a directed
graph. In their study, these maps have been used to abstract changing managerial beliefs and
their impact on strategic behavior of firms.

2.2. Representation of uncertainty

An important factor that is necessary to be looked at in capturing the decision process in
managers is the representation of ‘uncertainty’’, Complex systems like organizations and
medical diagnostic systems exist in highly uncertain environments. This environmental
uncertainty must be captured while studying the strategic behavior of firms. To stmdy the
strategic behavior of firms, capturing the top managements’ subjective estimates of
uncertainty along with representation of cognitive processes is essential.

Traditionally, representation of uncertain information has been a great challenge to
computer scientists working in the field of artificial intelligence. Probabilistic models and
fuzzy logic-based models are some of the important representation schemes that have been
proposed. Amongst the various probabilistic models, network-based representation is one of
the most popular forms used in various applications. This is largely due to: (i) the inherent
representation of Bayesian conditional independence in the topology itself, and (i) the
pictorial representation of the decision problem, thus eliciting the parameters explicitly. An
important form of probabilistic networks is Bayesian belief networks (BBNs). For a complete
overview of probabilistic network models, refer Pear!®®.

Cognitive maps are similar in topology to probabilistic networks. However, cognitive map
representation does not have provision to capture uncertainty. A variation of BBNs is QPNs?’.
These networks need 2 graphical representation of domain knowledge which captures
probabilistic conditional dependencies.

2.2.1. Bayesian belief networks

Bayesian belief networks (BBNs) have been developed as tools for capturing coherent
probabilistic representations of uncertain knowledge®. Historically, BBN models were
developed to represent a subjective view of a system elicited from a decision maker or domain
expert. These representations are used when causal dependencies in a model are probabilistic.
BBNs are represented as directed acyclic graphs. Nodes in these graphs are connected by
edges which capture the conditional dependency. In addition, each node has a probability
estimate attached to it. The probabilistic estimates in a BBN represent the subjective estimates
of the domain expert. Henrion™ has used this scheme to represent knowledge of apple tree
root disorders.

If the nodes of a probabilistic network follow a distribution and the causal dependence is
consirained by a qualitative sign (like in cognitive maps), we obtain, QPNs*’, QPNs are
signed directed acyclic graphs, with nodes denoting concepts and signed edges denoting
abstract causal relations. Wellman® has demonstrated the efficient inferencing capability of
QPNs.
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2.3. Qualitative probabilistic networks

Formally, a QPN G can be represented as an ordered pair (V, Q), where V is a set of variables
(represented as nodes in the graph) and Q, a set of qualitative relations among the variables?’.
All qualitative relations are expressed by signs {+, —, 0, ?}, the last sign, ?, denoting
ambiguity. These networks support two types of qualitative relationships: qualitative influence
and qualitative synergy. Qualitative influence captures the sign of direct influence between
two variables, and corresponds to arcs in a belief network. We reproduce the definition of
qualitative influence here. The reader is referred to Wellman® for further details and
clarifications. All variables are assumed to be discrete variables, unless otherwise stated.

Definition 1 (qualitative influence): We say that a positively influences c, written S™(a, ¢), iff
for all values a; > a,, ¢ and X (where X is vector representing unspecified nodes in the
network)

Pric = cofar, X) 2 Pric 2 ¢g/ay, X). )

Vector X captures the status of all the irrelevant ancestor nodes (i.e., nodes which are not
under consideration for discussion). The inequality gets reversed for S7(a,c), and becomes
equal for S%(a, c).

Note: Here we elaborate on the notations used in the above inequalities. Notation, Pr(c 2 ¢, /a,
X) implies cumulative probability distribution given a and X. Thus, the inequality (1) is to be
viewed in the first-order stochastic dominance sense®’.

‘We demonstrate the concept of qualitative influence using an example. Consider the graph
given in Fig. 2. Assume that node c can take three values in the ordinal scale: ¢y, ¢|, and ¢,
(where o > ¢; 2 ¢ ). Similarly, let node a take two values: a, and a, (where a, 2 a,). Suppose,

Pr{c=cofa1) =0.5,Prc=c;/a;) =03,Pr{c=cyfa;) =0.2, and
Pr(c=co/ag) =04,Pr(c=c;/a) =0.3, Pr(c=cy/ay) =03.

Then, we have, according to definition 1,

Pr(c 2 cp/a) = 0.5, Pr(c 2 ¢ /a;) = 0.8, Pr(c = ¢3 /a;) = 1.0, and
Pr(c = co/ay) =0.4, Pr(c 2 ¢, /ap) = 0.7, Pr{c 2 c3 /ap) = 1.0.

These satisfy the conditions for S'(a,c) (in the first-order stochastic dominance sense).
Thus, we can say that there is a positive qualitative influence between nodes a and ¢.

2

<

FIG. 2. An example of qualitative probabilistic net-
wark (two-cause network).
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2.3.1. Qualitative synergies X

The qualitative synergy property among the variables in a QPN takes two forms: additive
synergy and product synergy. Additive synergy is used with respect to two direct ancestors of
a variable. Positive additive synergy, Y*({a, b}, ¢), captures the property that the joint
influence of a and b on ¢ is greater than the sum of their individual influences. Negative
additive synergy, Y-, and zero-additive synergy, Y®, are defined analogousty. We restate the
definition from Wellman and Henrion® here.

Definition 2 (Additive synergy): Let a, b and x be the predecessors of ¢ in 2 QPN. Variables a
and b exhibit negative additive synergy with respect to particular value ¢, of ¢, written Y ({a,
b}, cp), if for all a; 2 a5, by 2 by, and x

Pric = cofas, by, X) + Pric 2 cofay, by, X) < Pr(c 2 cofay, by, x) + Pr{c 2 co/ay, by, %). 2)

Positive additive synergy, Y, and zero-additive synergy, Y?, are defined by substituting =
and =, respectively, for <in (2).

The intuitive appreciation behind framing inequality, (2), is to capture the property that
the joint influence of two causes when present is greater than the sum of individual influen-
27
ces .

Product synergy is defined in Henrion and Druzdzel®. This synergy has been used to

derive sufficiency conditions for explaining away™. ‘Explaining away’ is a common form of
inter-causal reasoning. It captures situations where an observed effect and an increase in the
probability of occurrence of one of the causes brings down the likelihood of occurrence of all
other causes. The generalizations on inter-causality, as propounded by Wellman and
Henrion®, primarily deal with two-cause single-effect nodes. In multi-cause nodes, the
assumption is that irrelevant causes are instantiated (observed) to a particular value. We
reproduce their definitions here:

Definition 3 (Product synergy I): Let a, b and x be the predecessors of ¢ in a QPN. Variables a
and b exhibit negative product synergy with respect to particular value ¢; of ¢, written X ({a,
b, cp), if foralla; 2 a5, b 2 by, and x

Px(co /a5, by, X) * Pr(co /2, by, X) < Pr{co/as, by, x) * Pr(co/az, by, x). 3

Positive product synergy, written X*, and zero product synergy, written X", are defined by
substituting > and =, respectively, for < in (2). The irrelevant ancestor nodes are represented
by x in the above equation.

Note: Here it may be noted that notation Pr{c, /...) denotes a point estimate (unlike as stated
earlier as a cumulative distribution given for additive synergy). Also, it may be noted that
product synergy is defined with respect to each value assumed by common effect node c.
There are, thus, as many product synergies as the number of values that variable ¢ can
assume. If ¢ is a binary variable (say a Boolean variable), there are two product synergies, one
for C (true} and another for C’ (false). While additive synergy has found applicability in
reasoning in planning and monotone decision policies”’, product synergy has found
applications in belief propagation®.



10 VADHRI SRINIVAS et al.

Druzdzel and Henrion? have proved that an uninstantiated irrelevant cause node (x in the
above case) affects the inter-causal relation between the observed cause nodes (nodes a and b
here). They proposed a new definition for product synergy taking this aspect into
consideration. We reproduce their definition here.

Definition 4 (Product synergy 1I) : Let a, b, x be direct predecessors of ¢ in a QPN (Fig. 3) and
y be direct predecessor to b. Let n, denote the number of possible values of x. Variables a and
b exhibit negative product synergy with respect to a particular value c; of ¢, regardless of the
distribution of x, written X ({a, b}, cp), if for all a; 2 a, and for all b; 2 b,, a square matrix
n,* n, matrix D with elements

Dy = Pr(co/ay, by, X)*Pr(co /ag, b, %)) — Pr(co /ar, bs, X)*Pr(co /az, by, X)) 4

is half-positive semi-definite. f D is half-positive semi-definite, a and b exhibit positive
product synergy written X'({a, b}, ¢p). If D is a zero matrix, a and b exhibit zero product
synergy written as Xo({2, b}, co).

The necessary and sufficient conditions for explaining away to take place is given below
(reproduced from Wellman and Henrion™). This general condition is valid for both
definitions (3 and 4, above) of product synergy™. It is to be noted that the term “half-positive
semi-definiteness’ is nothing but the co-positivity condition for a square matrix.

Theorem 1 (explaining away) : Let a, b and x be the predecessors of ¢ (Fig. 3). A necessary

and sufficient condition for S”(a, b) upon observation of ¢, is negative product synergy, X ({a,
b}, o). ’

2.4. Belief propagation in probabilistic networks

Belief propagation in probabilistic networks can be of two forms: qualitative (which is purely
based on signs) and quantitative (where updation of subjective probabilistic estimates is
done). For a quick overview for introduction to algorithms for inferencing in belief networks,
refer Hearion™. Henrion classifies qualitative propagation techniques as ‘weak’. This kind of
belief propagation is resorted to when it is difficuit to obtain a complete point-valued
probability distribution. Tn this paper, we consider only qeantitative belief revision.

>

Fic. 3. An example of qualitative probabilistic net-
work (three-cause network).
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2.4.1. Quantitative belief revision

Primarily there are two methods of belief revision®, namely, exact and approximate methods.
Exact methods deal with studying the impact of evidence by explicitly computing the joint
distribution over all variables as a product of all prior and conditional distributions. This
method gets complicated in the case of multiply-connected poly trees (like cognitive maps).
Lauritzen and Spiegelhatler’s®® clique-triangulation method and Shachter's™* graph
reduction method address belief revision in such graphs. However, these methods alter the
topology of the graph, thereby leading to loss of information.

A completely different form of belief revision is done by employing simulation (Monte®
Carlo techniques), termed approximate methods by Henrion™, Pear!™, and Chin and Cooper”’
have proposed stochastic simulation as one such method. The key advantage of these methods
over exact methods is the complexity of the algorithm with respect to the size of the entire
graph. However, the complexity of the algorithm is exponential in the number of observed (or
evidence) nodes. The other advantage of this method over exact methods is that the topology
of the graph is preserved. In this paper, we resort to stochastic simulation method for
quantitative belief revision, as the primary objective of belief revision is to study the influence
of evidence on all concepts (nodes). For this we need to preserve the topology of the graph.

3. Intuitive models

Studying human decision processes and human intuition under uncertainty has been the
central focus of research to psychologists'® ** ¥, Issues related to this have also been studied
by researchers in fields like artificial intelligence, primarily because they have been subjected
to criticism of developing systems which are nonintuitive in nature’™*’. This criticism stems
from the classical ‘expert system’ paradigm that employs computer representations and
inference mechanisms intended to emulate human reasoning processes. Wiiile there is ample
evidence to show that normative schemes such as probability theory are poor models of
human reasoning under uncertainty”', expert systems (viz., PROSPECTOR) built on these
normative theories have also been found to be successful in replicating expert opinions*.

3.1. Literature survey

Studying human decision process has become popular ever since Newell and Simon®®

conducted experiments to observe problem-solving strategies of humans. Currently, this
approach is being widely used in fields where the objective has been to capture decision
processes of experts*®®. While there is a vast literature on human judgement under
uncertainty for simple inference problems (see Kahneman and Tversky" and Morgan and
Henrion™* for extensive review on this topic), little work has been done on issues related io
cognitive processes in more complex situations, i.e., mulitiple hypothesis and multiple
evidence situations™. Henrjon and Druzdzel’® have used this methodology to study the
inferencing process adapted by humans in uncertain situations. The main findings of their
research work are the foilowing®: (i) subjects generally use qualitative terms for probabilities,
using quantitative information very rarely; (ii) subjects resort to causal reasoning in uncertain
inference; (jii) subjects resort to two different strategies dusing uncertain inference, which are
quatitative belief propagation and scenario-based reasoning.
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While (i) and (i) above are consistent with the earlier studies on intuitive reasoning®#,
(iii) Jaid the foundation for explanation-based reasoning in uncertain inference®. The first
strategy cited above in (iii), qualitative belief propagation, involves propagating the
qualitative impact of an evidence from event to event, following causal and diagnostic
relationships. In scenario-based reasoning, the reasoner identifies scenarios that are consistent
with the causal explanations compatible with known evidence.

An important issue, as sighted earlier, is the capture of decision process in humans.
Largely, researchers have used verbal protocols of subjects to capture these decision
processes“. The methodology adapted captures the thinking process of subjects (humans)
while they analyze a problem given to them. The subjects are requested to ‘think aloud’ the
steps they have taken. These ‘think aloud’ (TA) protocols are then transcripted and analyzed
to identify patterns of inference.

3.2. Verbal protocol analysis

Research on cognitive psychology has emphasized methods that rely wholly on external
observations. The predominant form of these observations has been through verbal reports
articulated by subjects.

Typically, verbal reports are elicited by asking the subjects specific questions. To answer
such questions, as Ericsson and Simon'® detail it, ... the subject has to comprehend the
question and transform it to retrieval cues that select the relevant information from the vast
amount of information in the memory. In addition, the subject has to put the retrieved
information into a sequential form that allows the generation of a coherent series of
verbalization. However, the actual problem in these types of studies is the possibility that the
information they retrieve at the rime of the verbal report might be different from the
information they retrieved while actually performing the experimental task.

Typically, verbalization process is categorized into two types: concurrent and
retrospective. In concurrent verbalization, the subject is instructed to ‘think aloud’
concurrentily about the thought processes, while answering the question. In this method, the
subject is asked not to describe or explain the thoughts. This is because, any such provocation
would make the subject to attend to information not normally needed to perform the task. In
such simations the sequence of thought process gets changed—altering the purpose of the
experiment. Ericsson and Simon'® classify the information needed for this type of expetiment
as ‘short-term memory’-oriented experiments.

In retrospective verbalization, the subject is instructed to detail the cognitive processes
after the experiment is over. Immediately after the task is completed, the particular subset of

the sequence of thoughts occurring during performance of the task that is stored in ‘long-term
memory’ is tapped *°.

Ericsson and Simon’s’® framework predicts a close correspondence between concurrently
anc? rgtrospecmvely reported information. However, according to them, this correspondence is
valid in task durations which are between 2 and 10 seconds.
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The other issue in protocol analysis is the different effects of verbalization. These different
effects, termed Types 1, 2 and 3, are formed on the basis of different types of instructions
given to the subject to verbalize. The major distinction between these different types is: In
Types 1 and 2, the instructions are to verbalize per se about the thought processes in general.
In Type 3, the instructions are to verbalize specific information, such as reasons and
explanations. Type 3 verbalization forces subjects to change their thought sequences in order
to generale, and verbalize overtly the information requesied. This does not occur in Types 1
and 2. For greater details, and for an excellent overview on protocol analysis, refer Ericsson
and Simon'®.

3.3. The experiment and findings

In line with the above research, and based on earlier research done on human problem
solving™, we conducted protocol analysis on subjects to identify strategies they adapt to
propagate belief revision. The main objective in conducting the experiment was to find
patterns of inference adapted by humans while they propagate beliefs. We requested the
subject to verbalize concurrently about his thought processes.

3.3.1. The objective

The objective of this experiment is to observe the patterns of inference in humans reasoning
under uncertainty. This study investigates the following: what strategies (heuristics) do
humans adapt for qualitative belief propagation?

3.3.2. Methodology

Subjects are given a problem and their concurrent verbalizations are recorded. The problem
administered here is given in Appendix 1. This problem set has been used by Henrion and
Druzdze!™ for their protocol analysis. However, the second problem has been modified to suit
the profile of the subjects. The subjects are primarily graduate students. Ideal test conditions
were provided. The test supervisor (one of the authors), however, periodically prompted the
subjects to ‘think aloud’. Other than this, there was no conversation of any kind between the
subject and the supervisor. The verbalizations were taped and transcripted. For this purpose,
the methodology recommended®®*® was followed. The problem set which is used for this
experiment is given in Appendix 1. The transcripts of the verbal protocols of one of the
subjects is given in Appendix II,-which is indicative of protocols of the sample studied.

3.3.4. Observations

We refer to the transcript given in Appendix II to study patterns adapled by humans for
inferencing under uncertainty.

(1) As cbserved by Henrion and Druzdzel’® in their experiments, the subject (S2 here)
resorted to qualitative belief propagation scheme. According to Henrion and Druzdzel™,
under this scheme, human beings propagate beliefs by updating information available in

the evidence through causal chain. The verbal accounts (statements between C138 and
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C148) of the subject demonstrate this aspect. Here the subject is trying to find causal

explanations to observed events.

The subject has used ‘explaining away' when reasoning qualitatively. Explaining away,

as detailed in Section 2, deals with reasoning about causes in the event of an observed

effect. The verbal accounts between C49 and C57 corroborate this. Both observations, (1)

and (2), substantiate the earlier work done by Henrion and Druzdzet*.

(3) The other interesting observation we noticed, that forms the central theme of this paper,
is the different types of causal clustering that the subject resorted to while propagating
beliefs. Consider the verbal accounts (between C58 and C80) of the subject given in
Appendix II. While reasoning with the help of uncertain information, the subject used
combinations (similar but not identical, to logical AND and OR) in clustering causes, of
which he does not have any extra information. The subject also articulated that he
resorted to this kind of reasoning because he does not know how each cause acts in
accordance with other causes. Similarly, while providing causal explanations for Problem
2, the verbal accounts of the subject (between CI145 and C160) detail about how the
subject tries to cluster causes of an observed effect. He stated that the company can adapt
different combinations of FOCUS, DIFFERENTIATION, and LOW-COST strategies. In
other words, he reasons for situations where there are combinations like FOCUS-
DIFFERENTIATION, LOW COST-DIFFERENTIATION, and LOW COST-FOCUS
strategies. Given that the subject is not provided with any information about the causes
(FOCUS, DIFFERENTIATION, and LOW-COST strategies), for the observance of the
effect (MARKET LEADERSHIP), the subject resorted to these different possibilities.
This process can be interpreted as follows: the subject was trying to generate alternate
situations to determine the cause(s) for the observed effect. Among the possible set of
causes for the observed effect, he was clustering the causes in a logical sense to explain
the occurrence of effect node.

@

-~

Similarly, while reasoning in a two-cause situation, viz., the causal network that include
A, B and C of Problem 1, the subject tried to generate situations such as assuming the effect
node when both causes are absent. The subject here even tried to generate a scenario in which
the observed effect could have been caused by an unknown event (external) which is not
stated in the problem. Though at the outset, this scenario seems impossible, this does have a
certain significance which we will explore further.

The subjects’ behavior in this situation can be interpreted as that of establishing a
functional relationship among the canses. He also assumes the impossible situation as detailed
earlier—observation of the effect node when both causes are not observed. However, he ruled
out this possibility later, after realising that B and C are the only possible causes. We make
the following observation: the subject is generating all combinations that imply (similar to
logical connectives like AND, OR...) causes for the effect. The central issue that is being
highlighted here is that, even within multiple combinations that the subject generated (which

closely follow the pattern of a logical AND, OR), there are certain impossible situations
which the subject considers.

The practical ggniﬂcance of such impossible situations has been highlighted by expert
system developers™. An important information that these developers seek from the expert is
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the chances of an effect being observed even when none of the causes are present. Pearl® uses
the term ‘leaky probabilities® to denote such estimates. The advantage of incorporating these
probabilities is to make the model more robust. Usually, the numerical value of such estimates
is of the order of, say, 0.001. However, there is little empirical justification for such concepts
(Druzdzel-personal communication). Typically such effects can be classified as follows:
either completely random events, or events about which very little information is available.
Usually random events are events for which causes cannot be clearly delineated. The other
type of events are those where there is lack of complete information. In the present context,
there is very little information about event A, other than the fact that it is caused by B and C.

To put it succinctly: it is intuitively compelling on the part of the subject to resort to some
sort of logical connectives while reasoning under uncertainty. This is particularly evident
while propagating beliefs when very little information about the causes is available, given that
the effect is observed.

The key findings based on our observations: (i) subjects resorted to causal reasoning
during uncertain inference, (ii) there is support for ‘inter-casual’ reasoning as defined in
Henrion and Druzdzel™®, and (iii) subjects used logical connectives similar to AND, OR while
propagating beliefs in uncertain inference situations.

3.4. The intuitive models

From the above experiment, we can say that, in general, human beings intuitively adapt two
patterns of inference, while propagating beliefs: AND and OR. The OR combination
considered here is exclusive-OR rather than inclusive-OR. This is because, modeling
inclusive-OR would be straightforward as it is a combination of AND and exclusive-OR.

In a multi-cause single-effect network, an AND pattern captures situations where all the
possible causes need to be true (in a propositional sense) for the effect to be true. On the other
hand, an XOR (exclusive-OR) pattern represents a situation where only one of the cause
nodes is true for the effect node to be true. All through the discussion, we make the
assumption that the probability values do not take extremne values (0 or 1) but are in the midst
of the continuum®’. Unless specifically stated, we assume that the probability values are point
estimates, and not camulative distributions.

Typically, causal networks can be segregated into two- and multi-cause networks. In two-
cause networks, there are only two-cause nodes which lead to the effect node. In multi-cause
networks, we consider situations where there are more than two cause nodes.

3.5. Two-cause nodes

Consider Fig. 2. The proposed intuitive models are defined on this network. After defining
AND and XOR models, we generalize the conditions for inter-causal reasoning. Since the
proposed models are not exhaustive, we can establish only one way implication. In other
words, we show that if we find a causal network satisfying conditions for AND model, it can
be proved that the inter-causal relationships between the two-cause nodes satisfies the
conditions for pesitive product synergy (definition 4). However, it is important to note that in
a causal network if it is observed that the cause nodes satisfy conditions for positive product
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synergy then it is not necessarily true that the network under consideration forms an AND
model. Similar is the case for XOR synergy.

All variables are propositional, unless otherwise stated explicitly. Node a, for example,
can take two values: a, and a,, Thus, in a propositional sense, a; takes the value A (true) and
2, takes the value A’ (false).

3.5.1. Definitions
Definition 3 (XOR model): Let a, b be the predecessors of ¢ in a QPN. Variables a and b form

an XOR model with respect to a particular value ¢ of ¢, written XOR(a, b, ), if for ail
a;> &y, and by > by,

Pr (cyfay, ba) = Pr (cof 4, ba); ()
Pr (cofay, ba) 2 Pr (co/ a1, by); 2
Pr (co/az, b1) 2 Pr (cof a2, bo); 3)
Pr (co/2z, b1) 2 Pr (cof 21, b); 4

Example

This pattern of reasoning can be detailed with an example. Consider the example detailed
above. Assume that node c represents market leadership, node a, differentiation strategy, and
node b, cost leadership stratcgy. The probability of finding a firm having market leadership
(i.e., c=true, i.e., takes the value c) will be the highest when it is observed that the firm
follows either cost leadership strategy (when node a=true, i.e., takes the value a,) or
differentiation strategy (when node b = true, i.e., takes the value by). Thus, the probability of
observing an effect node to be true will be the highest only when one of the cause nodes is
true. The probability of finding a finm having market leadership is the lowest when it adapts
both cost leadership and differentiation strategy because of economies of scale. Low-cost
strategy is adapted by companies which have capabilities to produce. On the other hand,
differentiation strategy is adapted by companies which have capabilities to give variety in 2
product. For such a strategy (differentiation), a company needs flexible manufacturing
systems. Such companies cannot go for mass production which low-cost manufacturers adapt.

Hence, finding a company that is a market leader, and which has adapted both differentiation
and low-cost strategies, is uncommon.

The modeling of AND relationships, however, is not quite straightforward. Since the
objective of framing these probabilistic models is to incorporate them into the generalizations

to inter-causal reasoning in QPNs, we reason intuitively the rationale behind framing cach
cquation.

Definition 4 (AND model): Let a and b be the predecessors of ¢ in a QPN. Variables a and b

form an AND model with respect to a particular value ¢, of ¢, written AND (a, b, cy), if for all
ap > 2y, and by > by,

Pr (co/ar, bi) 2 Pr (co/ a1, ba): (5)
Pr (co/ar, b) 2 Pr (eq/ 2, by); ®
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Pr(cofay, b2) R Pr(co/ 23, by); @)
Pr (co/az, by) R Pr(co/ as, ba). ®)

The inequality relation, R, is not defined for the reason that it can take any of the possible
values: 2, and <. However, there are certain limitations in each case to satisfy the conditions
of inter-causality (given by definition 3, above).

Case 1: When R takes the value 2
The relations (7) and (8) can be written as follows:

Pr (co/ay, by) = Pr (cofag, by); (&)
Pr (Cofag, b1) 2 Pr (co/ag, by). 19

Here, we observe that the probability estimate which represents a situation where all the cause
nodes need to be true for the effect node to be true (i.e., Pr (¢ /a;, by) is the highest among all
the possible combinations). Equations 9 and 10 capture the situation where the probability of
observing the effect node is true when both cause nodes are false is greater than or equal to
probability of observing the effect when only one cause node is true. The intuition behind
framing these sets of relations is that both cause nodes are functionally dependent on the
observation of the effect node.

In this situation, the conditions for inter-causality are satisfied directly. Using relations 5,
6, 9 and 10, we can show that they satisfy the conditions for positive product symergy
(definition 3).

Example

This inference can be explained with an example. Consider Fig. 2. Assume that node c
represents sustainable competitive advantage, node a unique-resources (assets), and node b
distinctive skills. For a company to have overall sustainable competitive advantage (i.e., node
¢ takes the value true), it is essential that it has both unique-resources (assets) and distinctive
skills*’, Thus, having just one of the two (either unique-resources (assets) or distinctive skills)
will not help a firm build sustainable competitive advantage, or probabilisticaily, the chances
of finding a firm having sustainable competitive advantage when it has either distinctive
competence or unique-assets is less.

The above probability estimates have to be captured from the expert. Relations, however,
are defined only when node ¢ takes the value ¢q (true). The above relations need not be valid
when node ¢ takes the value ¢; (false). If ¢ is multivalued, there couid be an AND causal
structure for a particnlar value of ¢, say c;, but not for other values of c. As observed in the
previous sub-section, this definition captures the situation when the observance of the effect
node when none of the cause nodes is present. Pearl®® and, Weliman and Henrion® term such
estimates (i.e., Pr{co /4y, b))} as “leaky probabilities’.

" Case 2: When R takes the value of <

In this situation, relations 7 and 8 take the form:
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Pr(co/ar, by) S Pr(¢o/a, ba); (11

Pr (co /a3, b1} £ Pr (co /2, b2)- (12)

At the outset, the set of relations, 5, 6, 11 and 12, do not satisfy the conditions for inter-
causality. We re-write the relations (11) and (12) in such 2 way that we can deduce the
conditions under which the above set of relations defined for AND model satisfy conditions
for positive product synergy (definition 3). We assume that the values of Pr(cy/a;by) and

Pr{co/az,by) are equal. An AND model satisfies the conditions of positive inter-causality only
when the following relation is satisfied:

Pr(co / a.b) *Pr{cy / az,by)
Pr(cy / ay,by)

>1.0.
Rewriting the above, for the case where the variables a and b take muitiple values (i.c., when
they are not binary),

Pr{cy / a;.b;)*Pr(cy / ar.by)
Pricy / a;.by)

>1.0.

where a; > a, and b, > by

This case is intuitively more appealing than case 1 above as we are considering the
situation where at least one cause-node is to be true for the effect node to be true.

Using the definitions for AND and XOR models given above for two cause-node
situations, we generalize the conditions for inter-causal reasoning in the form of the following
theorem. The proof is straightforward from the definitions given earlier.

Theorem 2a (Sufficiency conditions for product synergy): Let a and b be the predecessors of ¢

(Fig. 2). A sufficient condition for S™(a, b) upon observation of ¢y, is that the network of a, b,
c should satisfy XOR(a, b, cq) model.

3.6. Inter-causal reasoning in multi-cause nodes

As detailed earlier, causal networks topology can be segregated into two- and multi-cause
networks. Using the definitions for AND and XOR models given above for two-cause
networks, we generalize the conditions for inter-causal reasoning in multi-cause networks.
In the proposed definitions, the causal structure considered is a two-cause single-effect
network. Typically, multicause single-effect networks are of two types: (i) networks where
the irrelevant cause nodes with respect to the effect node under consideration are
uninstantiated, and (i) networks where imelevant cause nodes are instantiated. In the
following subsection, we give definitions for situations where x (the irrelevant cause node) is
uninstantiated. In such siteations, we need to consider all possible values that node x can
assume. The definitions for multi-cause networks, where we look only at situations where

there are only three cause nodes, are detailed in Appendix ITa. There are two observations to
be made here:
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(1) All the above definitions have only one-way implications. In other words, if we
observe that the conditional probabilities governing a network satisfy one of the proposed
intuitive models, then we can make a statement about the status of product synergy. However,
the converse need not be true. This means that if we observe two-cause nodes satisfying the
conditions of negative or positive product synergy, we cannot conclude anything about the
configuration of the causal structare of the network. This is primarily because multiple forms
of causal networks exist for the same set of inter-causal conditions.

(2) The probabilistic criteria governing the proposed intuitive models need not necessarily
result in AND or XOR patterns. In other words, in certain situations (particularly if nodes are
rultivalued), the probability estimates need not satisfy any of the proposed intuitive model
criteria. This implies that in certain networks, the cause nodes and the effect node need not
form either an AND or an XOR model.

4. Intuitive models in belief propagation

As detailed in Section 2, we observed that cognitive mapping technique can be used tc capture
cognitive arguments of an expert in a domain (here managers). We also saw that
representation techniques like qualitative probabilistic networks have provision to capture
subjective measures of uncertainty in the form of probability estimates. We proposed intuitive
models on the QPNs based on the experiment detailed in Section 3. Here we discuss the
applicability of the proposed intuitive models in studying belief revision.

We take a cognitive map constructed from the annual report of company A (for the year
1992-93) to exemplify the issues cited above (name withheld on request from the company).
For the various concepts involved in a cognitive map, we captured subjective estimates of
middle-level managers of the company through interviews. We fook a segment of the
cognitive map and converted it into a probabilistic network.

We conducted belief revision exercises on the probabilistic network developed to
demonstrate the usefulness of such methods. We conducted stochastic simuiation (pertaining
to quantifative belief revision) exercise on a segment of the cognitive map using the
methodology given in Pear®®. For the same map, we incorporated intuitive models while
conducting stochastic simulation. We found that the convergence in the second case is faster
to get approximate estimates.

4.1. Research methodology

The data source for constructing the ‘raw’ cognitive map is the annual report of the company.
We used the methodology suggested by Barr et al.® in building the cognitive maps. Following
this, we have interviewed the managers of the company and refined the cognitive map. This is
primarily because the information about the company from the annual report provides an
overview of its strategic thinking only. To understand the cognitive process of a manager in
that company we have refined the ‘raw’ cognitive map with the managers’ subjective view.
We have interviewed for this purpose two managers, both fairly semior in rank with an
average of about 8 years service with the company.
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FIG. 4. Cognitive map abstracted from the annual report of Firm A.
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Increase_the_crash_survivability_of_vehicles;
Improve_fuel_efficiency, reduce_emission_levels;
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Refer Fig. 4 for the resultant cognitive map generated, which is a segment of the complete
cognitive map developed. On the completion of final cognitive map, we have interviewed the
managers to capture their subjective estimates of relevant concepts in the cognitive map. We
have captured the probability estimates with the help of linguistic table provided in Henrion
and Druzdzel™. Table 1 gives the subjective estimates {conditional probabilities) of each
manager. Using these values, we have conducted the belief propagation experiment.

4.2. Stochastic simulation experiment (Quantitative belief propagation)

Stochastic simulation is a method of computing probabilities by counting the fraction of time
that events occur in a series of simulation runs. If a cansal model of a domain is available, the
modet can be used to generate random samples of hypothetical scenarios that are likely to
develop in the domain. The probability of any event or a combination of events can then be
computied by recording the fraction of time it tegisters true in the samples gencratcdzé.
Stochastic simulation on the cognitive map is conducted 1o generate a scenario. As discussed
earlier, the scenarios generated on these mental models represent the top management’s
revised beliefs in that particular hypothetical situation. Given the subjective estimates of the
nodes present in the cognitive map (Table I), the main task is to compute posterior probability
estimate (or new belief) of every node in the map. Certain observed nodes are clamped to on¢
of the two values: 0 or 1 (as all the nodes in this example are assumed o be propositional).
The unobserved nodes are instantiated to some arbitrary initial state (0 or 1). The observed



INTUITIVE MODELING OF INTER-CAUSAL RELATIONSHIPS 721

Table 1

probability esti of 5
Pr(a)=038; Pr(e/d) =0.9;
Pr(b)=0 Pr(e/-d) = 0.45;
Pe(c) = 0.85; Pr(ffe)=0.8;
Pr(d/a, b, ¢} =0.9; Pr(ff-e) =0.45;
Pr(d/a, b, <) =0.3; Pr(g/f) = 0.6;
Pr(d/a,~b,~c)=0.5; Pr(g/-f)=0.3;
Pr(dfa, ~b, ¢} = 0.4; Pr(h/d) = 0.75;
Pr(d/~a, b,c)=0.8; T Pr(y-d) = 0.4

Pr(d/-a,b,—¢)=0.7; Pr(i/h) = 0.85;
Pr(d/-a,-b, <)} =0.5; Pr(i~h) =0.5;
Pr{d/-a, -b,¢)=0.3; Pr(jfh) = 0.9;
Pr(j/-hy=0.1;

nodes that are clamped do not change the assigned values throughout the simulation run. Al
unobserved nodes change their state in accordance with the conditional probability dictated on
it and the current state of the nodes that are in the Markov blanket. In a simulation run, the
number of times each unobserved node takes a value of ‘1’ is counted. This gives the
conditional probability (which is the revised belief estimate) of that node for the given set of
‘clamped’ nodes (observed nodes). Thus, we get revised belief estimates for the nodes of the
causal model in a hypothetical situation. These estimates are termed as ‘BELIEFs’, and are
not exactly posterior conditional probabilities. For greater details and examples, see Pearl??¢,

The simulation exercise was done on an IBM-PC clone using C language. The average
number of runs for convergence was around 500. Random numbers were generated using a
randomized seed value, whose initial value was given by the user. Tables IIa and b give the
final revised belief estimates for a hypothetical scenario with respect te the cognitive map
shown in Fig. 4. We can generate more such scenarios by clamping the appropriate nodes.

Table Ila gives the belief values of all the unclamped nodes when we used Pearl’s
algorithm. The belief of node b when nodes a, ¢ and j are clamped is written as BEL (B/A, C,
J). As detailed above, this notation is just an alternate notation for posterior distribution of
node A, under the given scenario. Table IIb gives the probability values when we used the
intuitive models (Fig. 3) on node d and conducted stochastic simulation. As discussed in
Section 2 (and as per Fig. 3), if each node represents a cognitive concept of the manager, with
this methodology one can predict the managerial beliefs under various hypothetical situations.
As discussed in Section 1, this kind of methodology is helpful in studying the strategic
behavior of firms, as it facilitates capture of beliefs in managers.

From Table b it may be observed that, in the second method, the algorithm “arrives’ at
the true estimates much faster than the first method. However, it can be observed that after
five hundred runs, the second method does not have any added advantage as it gives similar
result to that of Pearl’s method”. Thus, the second method (that nses the intuitive models)
arrives fo the approximate values faster. In each run here, the algorithm tests for the intuitive
patterns defined in Section 3. For the network given in Fig. 4, the algorithm checks for
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Table Ifa Tabte IIb
Results of stochastic simulation experiment (Peari’s Results of stochastic simulation experiment {propesed.
algorithm) model)
Clamped nodes A=1C=4LJ=1 Clamped nodes A=LC=1J=1
Posterior No. of runs Posterior No. of runs
probabilifies probabilities
50 100 250 500 750 50 100 250 500 750

BEL(B/A,C,J) 100 099 100 100 1.00 BEL(B/A,C,I) 098 100 1.00 10O 1.00
BEL(D/A,C,T) 000 000 077 077 0.78 BEL(D/A,C,J} 000 068 077 077 078
BEL(E/A,C,J) 000 0.00 058 063 064 BEL(E/A.C,]) 000 0.00 059 063 064
BEL(F/A,C,J) 000 000 064 063 064 BELF/A,C,) 000 000 0.64 063 064
BEL(G/A,C,J) 018 033 038 038 038 BEL(G/A,C,J) 018 033 036 038 038
BEL(H/A,C,J) 100 1.00 092 095 094 BEL(H/A,C,J) 100 100 092 095 0094
BELI/A,C. D) 048 050 057 057 057 BEL(/A,C,)) 048 050 057 057 0357

intuitive patterns defined on node d, based on subjective probability estimates given by the
managers. Thus the cause node b is made ‘0" or *1° based on the definitions given earlier. It is
to be noted that nodes a, and c are clamped to ‘1’. While calculating the belief for node d, the
algorithm checks for the status of cause nodes (a, b, and ¢), and identifies the pattern of
inference that the causes form with respect to the effect node. As the canse nodes a and ¢ are
clamped to ‘17, the other cause node b is set to ‘0" or ‘1’ (using the definitions given in
Section 3), depending on the current value of node d. In this way, the number of runs required
to arrive at an approximate value in calculating the beliefs of nodes b and d are fewer. This is
because the value that node b takes is not dependent on the random number generator, but is
based on the type of pattern it gets formed with respect to the other cause nodes. In large

cognitive maps, where the emphasis is on finding approximate estimates only, we foresee the
use of such intnitive models. -

5. Conclusions

In addition to the conclusions given at the end of each section, we present a summary of the
findings in this section. The critical issue that we have tried to address in this paper is
representation of uncertain information in organizations. From the verbal protocols of
subjects in an experiment we conducted, we found that humans resort to certain pattems of
inference under uncertainty. We also found that human beings use logical connectives while
propagating uncertainty. We formalized these observed patterns by proposing intuitive models
with the help of certain probabilistic criteria. We incorporated these models into the existing

generalizations on inter-causal reasoning defined on probabilistic networks. Finally, we
applied this network representation in scenario generation.
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Appendix I

Introduction
(please read aloud. You may ask questions if you wish.)

You will be asked to solve two problems involving qualitative and quantitative reasoning. It is
important that you solve the problems as well as you can, given the facts. Even more
important is that you allow the experimenter to follow your approach to solving the problem.
To accomplish this, you will be asked to ‘think aloud’ during the experiment.

Whenever you are asked to read something, please read aloud, if there is something you
think about during the reading, please pause and say aloud whatever you think. Please, try to
say aloud everything that comes to your mind, every thought you may have during the
sotution process. This includes even details of what may seem insignificant or even
embarrassing. You do not have to explain why you are thinking that way. There is no need to
interpret or justify your approach to the problem. Just say aloud what you are thinking at the
moment. Be as spontaneous as possible.

If you are silent for more than a few seconds, you will be reminded to think aloud. Just to
get an idea how the experiment will proceed try solving the following WARM UP problem
(remember about thinking aloud).

Warm-up problem

(Please remember about reading aloud.)

John is now twice as old as Mary. In five years time this relation will not be true any more,
but the age of their father, who is now 41, will be equal to the sum of the ages of John and
Mary.

How old is Mary now?

The experiment

(Please read aloud. You may ask questions if you wish.)
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You will be presented with two hypothetical situations where you will be asked to express
your beliefs with respect to unceriain events. It is important that you estimate the probability
of the events as precisely as you can, on the basis of facts.

The text of each of the problem consists of several pages. The first page will describe a
certain situation. Every page will give you additional information, which is to be considered
to be in a cumulative manner. No additional information will be given to you by the
experimenter. However, if you think you cannot find the information you need with respect to
estimating the probability, you are allowed to make any assumptions that you find necessary
(both qualitative and quantitative). You are requested to mention them when thinking aloud.

You will be asked questions at the end of every page. You may use all the information
available to you, given in the current page and also from the previous pages, while answering.
Do not turn to the next page until you have finished answering all questions given for of the
current page. You may go back and look at previous pages whenever you find it necessary.
Even while re-reading the text, please read aloud.

Problem One

Effect A is observed sometimes. The only possible causes of A are B and C. B and C very
rarely occur at the same time, but whenever one of them occurs, it is certain to cause A. C can
be caused only by D. If D occurs, it is almost sure to cause C. D is not observable directly, but
its presence can cause E. E has several possible causes, but all of them except for D, F and G
are not probable in the present context. D, F and G need not occur together. The dependencies
described above are the only dependencies among A, B, C, D, E, F and G.

A is observed

How prot—;‘a—ble is it that A is caused by B?

< Next Page >
Later E is also observed.

1. How and in what way does observing E affect the probability of A being caused by B you
estimated in the question of the previous page?
2. Now, how probable is it that A is caused by B

< Next Page >

Later G is also observed.

1. How and in what way does observing G affect the probability of A being caused by B you
estimated in the question of the previous page?

2. Now, how probable is it that A is caused by B?

Problem Two

Mr. ‘A is a shrewd buyer. He buys a particular product either when the product is of good
quality or when the price is less. It is also known to him that usually cheaper products are of
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poor quality. However, certain products are both cheap and are of good quality. He also knows
that for a company te sell a product cheaper than its competitive brands, it has to be a low-
cost producer. If he knows that a particular company is a low-cost producer, he is sure that the
prices of this company’s products are low. Typically, companies follow the following
strategies to be the market leader: low-cost producer, differentiation (with respect to
competition), focus (targeting on a particular segment only).

Mr. A visits the local supermarket for his weekly purchases. He decides to buy a product
of a particular company.
How probable is that Mr. A would have decided to buy the product because it is of good
quality

< Next Page >

Mr. A finds that the company which manufactured this product is the market leader. .
1. How does this information affect the probability of M. A’s decision to buy the product.
2. Now, how probable is that Mr. A has decided to buy because of good quality.

< Next Page >

Mr. A recalls that this company is focusing its products on teenagers and youth (adapting a
oo Sty )
1. How and in what way do you think the knowledge about the company’s strategy affect the
probability of Mr. A’s buying decision process.

2. Now how probable is it that Mr. A’s decision to buy the product because it is of good
quality.

Appendix Ila

PROTOCOL OF SUBJECT S2

Texts read by the subject

Texts spoken by the subject

(E: Texts spoken by the experimenter)
(comments on the protocol)

Brackets () mark 5-second intervals.

Cl:  Problem one. (pause) { } Effect A is observed sometimes. The only possible causes of
Aare BandC.

C2:  This looks like some kind of causal theory stuff. ()

C3:  (writing) A is caused by B and C.

C4: B and C very rarely occur at the same time.

CS: Ican scribble on these sheets right?

C6:  (E: sure no problem).
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CT:
CR:

C10:
Clt:
Cl2:
Cl13:
Cl4:
Cls:
Ci6:
Cl17:
C18:
“C19:
C20:
C21:
C22:
C23:

C24:
C25:
C26:
C27:
C28:
C29:
C30:
C31:
C32:
C33:
C34:

C33:
C36:
C37:
C38:
C39:
C40:
C41:
C42:

C43:

C48:
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But whenever one of them occurs ( ) it is certain 1o cause Al
Looks like some kind of mutual exclusivity.

() or maybe that is an assumpticn.

C can be caused only by D.

(writing - draws a casual graph) Fine ().

If D occurs it is almost sure to cause C.

(writing) Can we assume the conditional probability is 17
This surely is a causal tree.

D is not observable directly but its presence can cause E.
What do you mean by not observing directly? (lcoks at the experimenter).
(E: Some kind of a hidden cause — not observable).

©Oh it is a causal chain?

D is not observable... can cause E.

Right!

E has several possible causes ()

Some kind of multiple causes

(writing) but all of them except for D, F, G are not probable in the present
context.

So there are more causes which are not considered here.
usually D F G need not occur together ( )

ah! mutual exclusivity

(writing) some kind of logical OR relation

there are two types of OR right? inclusive and exclusive?
The dependencies above are the only dependencies among ABCDEF G
so they are exhaustive

Let me cross check the information you gave to me ()
(pause).. Well

Ihope [ have got the cansal dependencies right

These are the questions is it? (pointing to the information given at the bottom of
the page)

(E: they are observations)

Ok! A is observed

(writing) A is observed

so what next

How probable is it that A is caused by B

Well (pause)

from this graph... this says B and C cause A

so just by observing A how can we say anything

I can make assumptions right? (look at the experimenter)
(E: yes and think aloud)

Ok

(looks at the sheet on which the graph is drawn)... Well
Assuming say () that D is observed

this makes C more probable to occur
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wait a minute () it is given here that B and C occur very rarely together

then in this case B is not the cause of A

alternatively () if...

we assume B is observed

then B is the canse of A

we can also have a situation er... I mean hypothetically ()

given the incomplete information... (pause) say both A and C being not the cause
forB O

otherwise... naturally the probability will be high

Is that what you want? (looks at the experimenter)

Later E is also obseved. ( ) How and in what way does observing E affect the
probability of A being caused by B you estimated in the question of the previous
page?

(turns the previous page) Fine looks like I have to make assumptions again

at the outset I would say it decreases

the only possible causes of A are B and C

E can be caused by DF and G

naturally if E is observed () assuming D F and G...

D F G do not occur together

If E is observed (pause) one of D F Gs has occurred

assuming probability is 1/3... equally likely case

If D has occurred ... then C has occurred (fooks at the casual graph which he drew
earlier)

If C has occurred ... naturally B is not the cause for A,

Alternatively ...

If F has occurred ... then C would be the cause

wait

if F is observed ...

B would be the cause ... because B and C rarely occur together

similarly with G

other combinations can also exist....

either F G being observed and D not observed

... (looking at the graph drawn before him) this leads to higher probability

if both D and ¥ have occurred and G has not taken place

() then the probability becomes low

... anything is possible

(looks at the experimenter) may be we should have a random number generator
here (langhs)

to decide which event is to be observed

I feel here, it depends on how the causes act among themselves

no information is being provided

information on how the causes behave should be given

is there any time limit? (looks at the experimenter)
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(E: no you can take as much time as you want)

How probable is it that A is caused by B

1 think this question is repeated

are you following the techniques of marketing research (Janghs) cross-checking
respondents?

1 would say low () because ...

as 1 explained ... it depends on whether D or F or G is the cause or ..
combinations of them

but agsuming they could have occurred ...

as E is observed

naturatly B is not the cause .. err low

1 hope you will listen to whatever you are taping here (laughs)

Later G is also observed

as [ requested
How and in what way does observing G affect the probability of A being caused by B
you estimated in the question of the previous page?

again I would say... odds in favonr of C

since you are asking about probabilistic or .... uncertainty

... think on those lines ()

I would say it gets reduced

the more information you give me about the causes of E

the less likely the cause of A would B be

isn’t it natural?

Now how probable is it that A is caused by B

T would say low.

because ... you told that B and C rarely occur together

naturally it is low.

...er... fine that’s ir.

Problem two.

Am I supposed to do immediately or take a break.

(E: Preferably do it right away).

Mr A is a shrewd buyer. He buys a particular product either when the product is of
good quality or when the price is less. It is also known to him that usually cheaper
products are of poor quality. However, certain products are both cheap and are of
good quality. He also knows that for a company 1o ...

Let me organise the information. I know what you are going to ask me later.

This looks like a market survey kind of thing.

(writing) Mr. A buys a product based on good quality or cheaper price.

(writing) cheaper products are of poor quality ... usvally

He is also not ruling out the possibility that some products can be cheap and
of good quality ... a rarity in reality

Anyway ... why do these kinds of experiments are based on ideal situations
(laughs)
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He also knows that for a company to sell a product cheaper than its competitive
brands it has to be a low-cost producer

so the cause for cheaper products is the company is low-cost pmducer {writing)

fine!

If he knows that a particular company is a low-cost producer he is sure that the
prices of this company’s products are low.

(writing) the conditional probability is 1... this is my assumption

Typically companies follow one of the following strategies to be a market leader,
either low-cost producer or differentiators with respect to competition or focussing
on a particular segment.

This looks like an example from Porter’s framework.

I make the assumption that the three strategies are mutually exclusive ..
exclusive OR say (writing)

Mr. A visits the local supermarket for his weekly purchases; he decides to buy a
product of a particular company

S0 our man goes to a grocery shop

fine

How probable is that Mr. A would have decided to buy the product because it is of
good quality

This looks exactly like the previous problem... more information

no not information per se, but a realistic cxample

Is it to cross-check my thinking (looks at the examiner)

(E: no)

How probable is that Mr. A would have decided 1o buy the product because it is of
good quality

It depends on what type of buyer is Mr. A

1 make an assumption that this guy prefers good quality to cheaper products ...
assuming that good-guality products are priced high

50 it would be high ... say .8 types

Mr. A finds that the company which manufactured this product is the market leader
{looking at the graph) Well, I think I made a wrong assumption

(wiiting) so it is observed that the company is the market leader

How does this information affect the probability of Mr. A’s decision to buy the
product

it depends on the strategy the company follows ... either low cost or differentia-
tion or focus

if it low cost ... then obviously the probability goes up because it is casuaily
connected to cheaper product.

on the contrary ... if the company adapts a differentiation and focus strategy ...

it may not affect ...

because he could have decided to buy due to good quality

Now how probable is that Mr. A has decided to buy because of good guality
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C153:  (he traces with his pencil) naturally it goes down
C154: 1 would say the probability now would be... say 0.3

C155:  Mr. A recalls that this company is focusing its products on teevagers and youth
adapting a focus strategy

C156:  (writing) So observed focus strategy

C157:  How and in what way do you think that knowledge about the company’s strategy
affect the probability of Mr. A’s buying decision process

C158: In this case I would say Mr. A would not buy ... because focus is not linked to
cheaper products ... hence prompting Mr. A to buy

C159:  wait... if I can make an assumption...

C160: companies adapt a combination strategy like focus—differentiation or focus-cost
leadership or cost leadershipdifferentiation ... which are valid according to
Porter

C161:  so in this case T would say if focus and cost differentiation are present with the
company ...

C162:  then the probability actually goes up

C163: Icannot say anything of other cases

C164:  we need more information

C165:  so I would say... it may affect or may not

C166: Now how probable is it that Mr. A’s decision to buy the product because it is of
good quality

C167: it goes down... or it may not affect

C168:  the probability would be 0.8 or becomes less ... case to case basis

B

APPENDIX IIb
Uninstantiated irrelevant cause nodes

Let the causes in a multi-cause-single-effect causal network be a, b and x, and let the effect

node be c. Let a, b and ¢ be propositional and x be multivalued. We use the following notation
to generalize inter-causality relationships.

P = [Pr(Cfay, by, Xo) Pr(Clay, by, X} ... Pr(C/ay, by, X))

Q = [Pr(C/ay, by, Xg) Pr(Cfay, by, xy) ... P(Clag, by, x)}

Al = [Pr(C/ay, by, X0) Pr(C/a1,bp,Xy) ... Pi(C/ay, by, x3)]
A2 = [Pr(Clay, by, xo) Pr(Cay, b, x,) ... Pr(Clay, by, x,)]
X = [Pr(xo) Pr(x)) ... Prx)]™

Positive progiuct synergy (definition 4), according to the above notation, can be written as a
square matrix ny * n, matrix D, (where D) is half-positive semi-definite matrix):

D = (QX)™PHX — (A2 X)*A*X 2 0 %)



INTUITIVE MODELING OF INTER-CAUSAL RELATIONSHIPS 733

and whose elements are:
D, = Pr(co/ay, by, x)*Pr{co/az, bz, X,) — Pr(Co /a1, bz, %) Prico /a2, by, x).

The inequality in the above (7) relation is reversed for negative inter-causality.

Definitions

Definition 4 (and model 11): Let a, b and x be the predecessors of ¢ in a QPN. Assume x to be
uninstantiated and multivalued and has n, states. Variables a and b form an AND model with
respect to the observance of the effect node, i.e., ¢ =C, written AND(a, b, x, C), if for all
a>ay and by > by,

S() Pr(C/ay, by, x)*Pr(x) 2 S(i) Pr(C/a;, by, x)*Pr(x;)
S(@i) Pr(C/a,, by, x)*Pr(x)) 2 S(i) Pr(C/a,, by, x)*Pr(x,)
5(1) Pr(C/ay, by, x)*Pr(x,) = SA) Pr(C/ay, by, x:)*Pr(x,)
S(@i) Pr(C/a,, by, x)*Pr %) 2 S(i) Pr(C/ay, by, *-)*Pr(x) @

Notation S(i) denotes summation over all values of i, where { * sies from 0 to n, (n, is the
number of possible values that node x can t1ke).

Note: Here we assume that the inequality in (I) is all 2, as it is ntuitively appealing unlike the
relations given in two-node situation.

The above relations can be represented in matrix notatic'«. Using the notation given above,
(1) can be written as:
P*X > AT*X;
P*X > A2¥X;
QX 2 A1*X,
Q*X 2 A2*X. n
By matrix manipulation, we can show that relatior . in (If) satisfy relation in (7). In other
words, networks which satisfy conditions for an /+ND model will possess positive product

synergy between the cause nodes. However, it is o be noted that the converse need not be
true.

Definition 4 (XOR model 11): Let a, b and x be the predecessors of ¢ in a QPN. Variables a
and b form an XOR model with respect to the observance of effect node, i.e., c =C, written
XOR(a, b, %, C), if for all 2, > a,, and b; > b, (using matrix notations)

A*X 2 P¥X;

AFX 2 QFX;

A2¥X = P*X;

A2FK 2 Q¥X. am)
Similarly, we can prove that the above relations exhibit negative product synergy, as defined
in definition 4 and written as inequality (7). Based on the above observations, we extend the
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generalizations for inter-causality (Theorem 1) by providing sufficiency conditions. These
conditions are based on the proposed AND and XOR models. The following theorem captures
these conditions. The proof, again, is direct from the arguments detailed above.

Theorem 2b (Sufficiency conditions for product synergy I): Let a, b and x be the predecessors
of ¢ such that a and b are conditionally independent given y, ie., S%a, b). Let x be an
uninstantiated cause node and ¢ be a propositional node. A sufficient condition for S7(a, b)
upon the observation of node ¢ (i.e., ¢=C) is that the network of a, b, ¢ should form an
XOR(a, b, x, C) model.

Instantiated cause nodes

The generalizations are not straightforward if the irrelevant cause node (node x in the above
case) is instantiated, In a multicause network, we need to find combinations of cause nodes
with respect to observance (in a propositional sense) of the effect node. See Fig. 5 for a
possible set of combinations when the relevant cause nodes (here a and b) form an XOR
model with respect to the effect node (here ¢). The situation where the relevant cause nodes
form an AND model with respect to the effect node can be similarly dealt. Trrelevant cause
node, x, can be instantiated to one of the possible states: X or X,

Theorem 3a (Product synergy IIT) Let a, b, x be the predecessors of ¢ in a QPN. Assume all
nodes are propositional. Let node x be instantiated to X’. Let nodes a and b form an XOR
model with respect to ¢; nodes a and x form an XOR model with respect to c; and nodes b and
x form an AND model with respect to ¢. The nodes a and b exhibit negative product synergy
with respect to a particular value of ¢, say C, written X"({a, b, X', C), iff,

Pr(C/A, B, X'Y*Pr(C/A’, B, X) 2 Pr(C/A, B, X)*Pr(C/A", B’, X).

Theorem 3b (Product synergy IIT): Let a, b, x be the predecessors of ¢ in a QPN. Assume all
nodes are propositional. Let node x be instantiated to X. Let $7(b, c) be present between nodes
b and ¢. Let nodes a and b form an XOR model with respect to ¢; nodes a and x form an XOR
model with respect to ¢; and nodes b and x form an AND model with respect to ¢. Nodes a

and b exhibit negative product synergy with respect to a particular value of ¢, say C, written
X({a, b, X, C), iff,

Combination 1 CombBination 2

Combination 3

F@. 5. Possible sets of combtnations when nodes a and b form XOR model with node c.
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Pr(C/A, B, X)*P(C/A, B, X') 2 Pr(C/A, B, XY*Pr(C/A, B, X).

Theorem 4 (Product synergy 1II): Let a, b, x be the predecessors of ¢ in a2 QPN. Assume all
nodes are propositional. Let node x be instantiated to X”. Let nodes a and b form an XOR
model with respect to ¢; nodes a and x form an XOR model with respect to ¢; and nodes b and
x form an XOR model with respect to ¢. The nodes a and b exhibit negative product synergy
with respect to a particular value of ¢, say C, written X({a, b, X', C}, iff,

Pr(C/A, BY, X'V*Pr(C/A’, B, X') 2 Pr(C/A, B, X)*Pr(C/A’, B’, X)).

Proofs for Theorems 3a and b are given in Appendix Ta. Gther theorems can be proved using
a similar approach.

Note: There are two more combinations that can be formed, which however have the same
inequality as given in Theorems 3a and b.

Combination 1: Let nodes a and b form an XOR model with respect to ¢; nodes a and x form
an AND model with respect to ¢; and nodes b and x form an XOR model with respect to ¢.
Nodes a and b exhibit negative product synergy with respect to a particular value of ¢, say C,

written X ({a,b,X",C),
Pr(C/A, B, X'V*Pr(C/A’, B, X') 2 P(T/A, B, X'VPr(C/A, B, X
{which is the same as the relation in Theorem 3a).

Combination 2: Let nodes a and b form an XOR model with respect to ¢; nodes a and x form
an AND model with respect to ¢; and nodes b and x form an XCR model with respect to c.
Nodes a and b exhibit negative product synergy with respect to a particular value of ¢, say C,
written X ({a, b, X, C),

Pr(C/A, B, Xp*Pr(C/A", B, X) 2 Pr(C/A, B, X)*Pr(C/A', B, X)
(which is the same as the relation in Theorem 3b).

Apart from the combinations listed above not being exhaustive, there are certain
combinations which are semantically contradicting. One of them is: nodes a and b forming an
XOR model, nodes b and x forming an AND model, and nedes 2 and x forming AND model.
In this situation, we can generalize the conditions for negative product synergy between nodes
aand b only if $¥(b, c) and S7(b, ¢) are present simultancously. This contradicts the definition
of qualitative influence. In addition, we can intuitively reason the invalidity of this
combination,

Combinations resulting from nodes a and b being an AND pattern can be dealt with in a
similar way.

Appendix Iib
Proofs for Theorems 32 and b are given below. Proofs for other theorems follow similar lines.

Theorem 3a (Product synergy I1I): Let a, b, x be the predecessors of ¢ in a QPN. Assurse all
nodes are propositional. Let node x be instantiated to X’. Let S7(b, ¢} be present between
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nodes b and c. Let nodes a and b form an XOR model with respect to ¢; nodes a and x form an
XOR model with respect to ¢; and nodes b and x form an AND mode! with respect to ¢. Nodes
a and b exhibit negative product synergy with respect to 2 particular value of ¢, say C, written
X({a, b, X, C), iff,

Pr(C/A, B, X)*Pr(C/A’, B, X)) 2 Pr(C/A, B, X'y*Pr(C/A/, B, X').
Theorem 3b (Product synergy ITI): Let a, b, x be the predecessors of ¢ in a QPN. Assume all
nodes are propositional. Let node x be instantiated to X. Let S7(b, ¢) be present between nedes
b and ¢. Let nodes a and b form an XOR mode] with respect to ¢; nodes a and x form an XOR
moedel with respect to ¢; and nodes b and x form an AND model with respect to ¢. Nodes a
and b exhibit negative product synergy with respect to a particular value of ¢, say C, written
X({a, b, X, C), iff,

Pr(C/A, B, X*Pr(C/A, B, X) 2 Pr(C/A, B, X)*Pr(C/A", B”, X).

Proof
Case 1: When node x is instantiated to X
From Theorem 2b above, as nodes a and b form an XOR model with c, there should be a
negative inter-causal relationship present between the canse nodes. Thus, on the observation
of the effect node, i.e., when ¢ takes the value C, then there will be a negative qualitative

influence, i.e., S7(a, b). Similarly, the other intercausal relationships that are present are S'(b,
X) and $7(a, X). We try to generalize the inter-causal relations of the complete network.

Since §7(a, b), then by definition 1 (above),
Pr(A/B’, X, C) 2 Pr(A/B, X, C).

This can be written as, .

Pr(A,B,C) S Pr(A,B,X,C)

Pr(B,X,C) Pr(A,B,C) ~
This is equivalent to,

Px(C/A,B’, X)*Px(A,B,X) o Pr(C/A,B,X)*Pr(A,B,X)
Pr(B’,X,C) - Pr(B,X,C) '

which is equivalent 10

Pr(C/A,B’, X)*P1(A,B".X) . Pr{C/A,B,X)*Pr(A,B,X)
Pr(C/B"X)*Pr(B’, X)) ~  Pr(C/B,X)*Pr(B,X)

Since nodes a, b and x are independent, the above inequality can be written as:

Pr(C/A, B, X)* Pr(C/B,X)
Pr(C/B,X)

2Pr(C/A,B,X).

Sinc~e nodes b and x form an AND model, the ratio Pr(C/B, X)/Pr(C/B’, X) according to
relations (3.1) and (3.2) will be greater than 1. Thus, the above inequality can be written as,
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Pr(C/A,B’ZX) 2 Pr(C/A,BX). av)

However, the general conditions for the case when node a takes the value A’ is not straight-
forward. The additional condition we assume here is that there is $7(b, ¢).

Starting from the definition of 57(a, b), we have,
Pr(A"/B, X, C) = Pr(A"/B", X, C).
The subsequent simplification of the above relation gives rise to

Pr(C/A’,B,X)*Pr(C/B’,X)

>Pr(C/A"B . X).
=R HC/ A" B, X)

From the definition of S™(b, ¢) we have Pr(C/B’, X) 2 Pr(C/B, X). The above relation can be
written as:

Pr(C/A’,B.X) z Pr(C/A",B".X) ™)
Multiplying relations IV and V, we get:
Pr(C/A, B, X)*Pr(C/A’, B, X) 2 Pr(C/A, B, X)*Pr(C/A", B’, X).

Case 2: When node x is instantiated to X’

If we assume that node x is instantiated to X’ by similar argument as above, we get

Pr(C/AB’, X) 2 Pr(C/A, B, X'). (VD
The other scenario that could happen in this network is that node a taking a value A". From
the definition of $7(a, b), we have

Pr(A’/B, X, C) 2 Pr{(A'/B", X, C).
If we proceed on similar lines as above, we get:
Pr(C/A’, B, X) 2 P(C/A’, B, X). vin
Multiplying VI and VII, we get
Pr(C/A, B, X)*Pr(C/A", B, X') 2 Pr(C/A, B, X')*Pr(C/A", B, X).

R TN



