
J . Indian !mi. Sci.. N0v.-13cc. 1996, 76. 751 -765.
g Indian Pnatitutl of Science

G. UMA* AND T. S ~ V A &"ERRMU**
*Department of Computer and lnformntion Sciences. University of Hyderabad, Hyderabad 500 034.
(e-mai1:guma-cs@uohyd.~mey.in)
**Research Center. Imarat, Vignyan Koncha, Hydtrabad 500 Oh9

Keceived on December 15, 1994; Revised on June 24, 1995

Distributed problem solving (DPS) lcchnlques assume a priorr partitlonmg of the problem and also problem-
solving knowledge. In most time-constrained domains (TCDs), the problem and consequent partitioning of knowl-
edge ia not trivial. A graph-based partitioning technique for rule-based systems using individual agent capabilities
was developed earlier. In TCDs. the amlication's time constraints are an addilionsl actor lo he considered while
partitioning the knowledge. In thls paper, we extend the knowledge partitioning technique by proposing heurmtics
to be applled in TCDs. Further, a high-levcl Pelri net (ElLPN)-based knowledge model 1s used mstead of the graph
proposed m the earlier approach. IILPN 1s a formal modeiling technique which integrates various aspects of intel-
llgent problem-salving like knowledge representation, verification and reasoning.

Keywords: Distributcd problem solving, high-level Petri nets, knowledge parritloning, problem decomposition,
and time-constrained domains.

Domains in which the problem-solving activity is governed by time constraints are
termed as time-constrained domains (TCDs). Solutions obtained in violation of the time
constraints have iittle or no value. Real-time applications fall under TCDs. Very often,
many real-time problem-solving tasks1 must share the computing resource among tbem-
selves. This leads to two timing constraints, vir., deadline and available computation
time. In real-time control problems, meeting the deadline is important. Solutions ob-
tained heyond this time have no value or have decreasing value wilh time. Obtaining a
solu?ion becomes more important, rather than obtaining the best solution. Examples are
aerospace checkout diagnosis, process control, etc. In real-time planning problems,
usually the solution quality improves monotonically with increasing computation tihe.
Hence, in these problems, the problem-solving agent endeavours to increase the avail-
able computing time for the task unlike in control problems. Examples are robotic pam
phn i r ig and robot shooting galleryz.

En this paper, we Focus our attention on real-time controi probiems. TO facilitate the
discussion, we rake the example of ground-based launch control of an aerospace vehi-
cie3. Problem-solving systems Em this domain should be able to

752 G . W A AND T. SIVA PERRASU

(i) accept data asynchronously:
(ii) initiate reasoning in response to changes in the environment:

(iii) respond to events while meeting the timing constraints;

(iv) explicitly represent temporal data and knowledge; and

(v) reason about and respond to multiple simultaneous faults while recognising
propagated faults.

Intellign problem-solving systems can be used to assist operators to arrive at correct
decisions in time-constrained control applications where there is continually arriving
and large volume of data. However, the prohlem-solving system has to be augmented to
manage temporal data, knowledge and events and react to simultaneous disjointed
events. Further physical systems are too complex and large to he modelled by a single
agent. Applications in real-time domains are complex and outgrow the problem-solving
capabilities of a single agent. Aerospace domain is typical example of such applications.
It is more realistic to model the problem-solving system as a network of asynchronous
problem-solving agents(or simply agents). This gives rise to the distributed problem
solving (DPS) paradigm4-6 with accompanying advantages like speed, modularity and
ease of maintenance. Problem decomposition is the necessary first step in implementing
DPS systems.

Problem decomposition helps in breaking complex problems into more simpler ones
whose solutions are easier to achieve than the larger whole. Problem decomposition
helps to explore alternate sets of problem-solving methods. Usually, problem decompo-
sition is viewed as a consequence of natural decompositions like functional, geographi-
cal and spatial. In this view, problem decomposition becomes a consequence of frame-
works and organisational structures used in the distributed problem-solving system. In
real-time domains, usually natural decompositions do not exist or are not easily avail-
able. Hence, unlike in other domains, problem decomposition solely depends on the ca-
pabilities of the individual agents (like processing power, available knowledge). There-
fore, the fkameworks and organisational structures of the DPS systems should reflect
problem decomposition.

Most of the existing work on distributed problem-solving systems is on functional
distribution or about geographically distributed data. There is no explicit provision for
distributing a given knowledge base among several agents with relevant data. The prob-
lem is assumed to be already decomposed into sub-problems with possible overlap, and
allocated to agents. The solution of such a problem with overlapping sub-problems obvi-
ously requires inter-agent communication of partial results or data. As a result of im-
proper distribution of knowledge and data, the communication overhead may he much
more compared to the gain in speed. Therefore, it is essential to develop a domain-
independent method to partition a given knowledge base into a given number of parts of
specified size, so that these parts may be allocated to agents of suitable capacity. The
data must also be suitably partitioned so that inter-agent communication for data and
partial results is minimised. Besides appropriate problem decomposition, fast pattern
matching and load balancing are some of the advantages of an appropriate partitioning

of knowledge and data. Parther, providing meta knowledge about the data needed by
other problem solvers (agents) as part of the partitioning process facilitates disiributed
reasoning7.

In this paper, we propose such a heuristic-based approach which partitions a given
knowledge base and associated data among different probiem-solving agents based on
their capabilities and the time consiraints imposed by the application. In Section 2, we
present a rule-based knowledge representation scheme which can capture the semantics
of applications in time-constrained domains. This is followed by a high-level Petri net
(IILPN) modei that integrates the semantics of the knowledge representation scheme and
the forward-chaining reasoning process. h Section 3, a knowledge-partitioning algo-
rithm thal works on the IiLPN graph of a knowledge base to distributed knowledge (i.e.,
rules), based on timing constraints is developed. This is followed by an example of
knowledge partitioning in a real-time application. Section 4 presents the conclusions and
some future directions of research in this area.

2. Knowledge representation

Rules are a widely nsed formalism lo represent knowledge. They have been augmented to
represent knowledge about temporal properties and beha~ iour~ .~ . There are three types of
rules, viz., autonomous, clock synchronous and spanning rules. Spanning ruies are fur-
ther divided into event- and tirne-spanning rules. Autonomous rules are generic rules
from which the other two rule types are derived. Ciock-synchronised rules model knowl-
edge about events and the temporal relationships between them. Spanning rules modei
knowledge about trends based on historical data. Examples of knowledge represenled by
these different rule types are given below.

Example of autonomous rules

Rule A1
Premise: Hydraulic-system.pressure z 1000 Ksc and Y2w.b > 15"
Action: HydrauPic~system.status = OK.

Examples of clock synchronised rules

Knowledge: [f the auto pilot has issued a Yaw command, the Yaw feedback is to become
equal to the Yaw con~rnand 2 seconds after the command is issued but before 6 seconds. ;
Rules:

C I
Event: Uaw.cmd = +10°
Time limit: 2 seconds
Time operator: "BEFORE"
Premise: Yaw.% == -10'
Action: Yaw.Conrrolstatus = Fast

C2
Event: Yaw.cmd == +loo

754 G. UMA AND 7'. SlVA PERRUU

Time hmit: 6 seconds
Time operator: "AFTER"
Premnse: Yaw.% # -10'
Hold: Yaw.Contro1status = Lag

Example of event-spanning rules

Knowledge: If hydraulic system pressure is less than 1000 Ksc and its rate of decrense
is more than 10% in the last 100 seconds then a leak in the pipe system is suspected.

S1
Event: Hydraulic-system.pressure 5 1000 1
From time: 100 seconds
Spanning premi.ie: Decrease(Hydraulic-system.Pressure) > 10%
Hold: [message "Leak in pipe system suspected, check up"]

Example of time-rpanning rules

Knowledge: If the increase in the hydraulic system pressure is greater than 5% in the
lastfive seconds then it can be concluded that the hydraulic system is overcharged.

S2
Cycle time: S seconds
From time: 10 seconds
Spanning premise: Increase(Hydrauiic-system.pressme) > 10%
Hold: [message "hydraulic system overcharged"]

These rules can be modelled using HLPN (Fig. 1). Petri nets are formal models that
are simplc and powerful to represent complex systems with concurrent interacting com-
ponents'. I1 is possible to integrate different aspects of DPS, viz., knowledge representa-
tion, communication, coordination and distributed reasoning in a Petri net model. An
HLPN for modelling a distributed problem solving-system is defined. It consists of three
different parts: net structure, the declarations. and net i r z ~ r r i ~ t i o n s ' ~ .

The net structure is a directed graph with two kirids of nodes, places and transitions,
interconnected by arcs such that each arc connects two nodes of different kinds.

There are four types of places:

(i) ordinary places (OP) are places as defined In elementary Petri nets.

(ii) cumulative places (CUP) where the tokens are not removed on tiring of theii out-
put transitions; tokens in such places have time tags and stored in archives so
that they can be retrieved later4.'.

(iii) color places (Cop) where tokens have colors belonging to the defined color
set.

(iv) time places (TP) which has an interval It,, tz] . A token placed in a time place at
time t, is available for firing of an output transition from t ine t , + tI to t , + t i ' .

After 8 , -t t 2 , the token will be rcrnoved from the time place, even if no output
transition tires.

Transitions are of ihrce types.

(i) ordinary transieiom (OT) that we as defined for elementary Petri nets;

(ii) periodic transitions (PT) that have a frequency of iiring(f)12.13;

(iii) timed !ransitions (TT) which have an interval I t , , t J . A transition enabled at
time t , can fire between t , + r , and t, + r2. If the transition does not fire before
t , + E,, then it cannot fire even if the corresponding input places have the neces-
sary markings. New markings are required in the input places to enable the timed
transition to fire.

[uaw.m# loq

Fm. 1. High-level petri net representation far aerospace rille base

756 G. UMA AND T. SIVA PEKRAJlJ

~h~ evaluation function associated with a transition denotes the evaluation of' an ex-
pression (premises or events in the rules) when the transilion fires. If the Output is a col-
our place, this, expression must evaluate to a colour belonging to thc c ~ ! o u r set of the
output colour he exppession contains variables which will he bound to the colour
of the token from the input colour place. Multiple occurrences of the same variable i n
such an expression will be bound to the same colour.

There are two types of arcs.

(i) ordinary arcs (OA) as defined in elementary Petri nets, and
(ii) inhibitor arcs (IA) that end with a circle rather than an arrow head and are se-

mantically the same as the NOTin logic circuits.

HLPN is formally defined as a triple W = <P, T, A> where

e P is a finite set of places. Each can be one of the above types {CUP. TP, COP, OP}
T is a finite set of transitions. Each can be one of the above types (OT, PT, TTJ

e A is a finite set of directed arcs. Each can be one of the two types [QA, PA].

The firing rules of the three transitions are as follows:

enabled Ordinary trunsitions follow k i n g rules as defined for elementary Petri
nets.
enabled Periodic transitions are fired once in the period.
enabled Timed transitions are fired within their interval.

Net inscriptions are atlached to a place, transition or arc. Places have live different
kinds of inscriptions: names, types, rule labels, time interval and colorrr sets. Name,
type, and rule labels must be given for every place but other two inscriptions may or may
not be present depending on the type. Transitions have four dirlerent types of inscrip-
tions: names, types, rule labels and evaluation functions. Arcs have only one kind of in-
scription: labels. All net inscriptions are positioned next to the corresponding clement
and to distinguish between them we write names and labels in plain text, colour s c ~ s in
itallcs. types are underlined and evaluation functions are enclosed in square bl-ackets.
Names have no formal meaning except that they serve to identify the nodes.

In HLPN in Fig. I , the places Yaw.cmd, Yaw& Hyd-sys.Pr with a zoro indegrec
represent external inputs and participate i n 'the premises and events of various ruies. The
places Yaw.ctl-status and Hyd-sys.status represent attributes that participate in the ac-
tions of rules. The place Wold represents Lhe Hold slot of different rules. A single place
can have more than onc input transition, i.e., the corresponding parameter is participat-
ing in the actions of more than one rule. This leads to multi-colour tokens coming in
these places, depending on the rule transition that has fired.

In Fig. I*., consider the inscriptions for the node V1. V1 represe~lts the external input
Yaw.cmd. The inscriptions 7Jaw.cmd and V1 are names of places. 7Jaw.cmcj can take
multrple values. Hence, V1 is a colour place with inscription COP. The range of values
that can be vdbn by Yaw.cmd are real numbcrs. So, the inscription 4 indicates the

* F w r e 2 shows the HLPN wtthout na inscripttons

DPS FOR TIME-CONSTRAINED DOMAINS 757

I "4

FIG. 2. HLPN of the aerospace rule base without net inscriptions.

cobur set of V1. The inscription (Cl,CZ] indicates that the node V1 participates in two
rules, viz., C1 and C2.

Node V8 represents the rule transition of rule S2. Inscriptions V8, S2 are the names
of the transition. Since S2 is a time-spanning rule and is to be invoked repeatedly, this
transition is a periodic one. The inscription PT indicates the same. The evaluation func-
tior! associated with the rule premise is inscribed below the transition. The inscription
t"= !It indicates the firing frequency of the rule(transition).

758 G. LIMA AND T. SlVA WRRAJU

3. Partitioning and allocation

A linear time heuristic for partitioning knowledge in the form of rules for a set of agents
in a distributed production system has been developedI4. It reduces the data inconsisten-
cies and communication, and helps in reasoning. The rules are represented as a graph
and the pztitioning is applied on this graph. The vertices are the data elements and
edges denote rules. Literature on graph partitioning usually refers to vertex partitioning,
p$ticularly two-way partitioning which is also referred to as bisection". If multiple
parts, say k, are required, it is done by repeatedly bisecting the graph. The emphasis in
~ ~ l i ~ i k u m a r i ' ~ is to obtain a k-way graph partition such that rules are in the given pro-
portion, without using repeated bisection. Data dependencies and adjacency of data and
'rules are exploited in doing this. We present below an informal discussion of the heuris-
tic.

The k-way partitioning14 consists of two phases: initial k-way decomposition and
boundary refinement. In the first phase, knowledge graph has to be initially cut into k
disjoint components by cutting the graph at k-1 places using cut sets. T o identify the cut
sets, it is necessary to generate a spanning tree of the graph. Usually, the spanning tree
covers most of the rules. In the spanning tree the chain** is identified and the edges on
the chain are labelled sequentially. The total number of rules and the proportions in
which parts are to be obtained give us the number of rules in each part. This i s used to
determine the edges (on the chain) to be cut for obtaining the graph components. Once
we roughly determine which rules belong exclusively to each part, we can check if the
boundaries must be smoothened' to get the required partitioning without disturbing the
inner portions of the parts. There are several alternatives to be considered in boundary
smoothening. In the heuristic proposed'b~'6, the total number of data elements participat-
ing in a rule on the partition boundary, and the number of data elements in each part
only are considered14. A boundary rule is assigned to the part that contains maximum
number of its data elements. Directories for maintaining attributes to be shared among
different partitions are created, and are used by agents during the reasoning process. In
TCDs, when the partition boundary cuts a time-constrained rule (TCR) (e .g . , clock-
synchronised rules with BEFORE operator and time-spanning rules)" the above heuris-
tic alone does not suffice. It is necessary to consider the associated time constraints when
deciding in which partition a rule is to be placed. The following possibilities exist when
such rules are on the boundaries of the partitions obtained by the algorithm.

(i) a time place in one partition and its output time transition is in another parti-
tion;

(ii) a time place in one partition and its input transition is in another partition;
(iii) a periodic transition in one partition and its input place in another partition;
(iv) a timed transition in one partition and its corresponding input place in another

partition; and

** A path c -dug one no& to another in a spanning tree is termed a semi-path. ~h~ longest semi-path m a
spanning tree is termed a chain. '

Partitioning it is possible that some ~ l e s are on the boundary and can be in one of the the
Process of determining to which partition these should be assiaed is boundary smoothening,

DPS FOR TIME-CONSTRAINED DOMAINS 759

(v) a time transition in onc partition and its corresponding output place in another
partition.

Case I

In this case, when a marking appears in the time place wilh interval It,,, tPz], it takes a
certain co~nnlunication time t,, before the tsansition in the other partition gets enabled.
So the elfective time interval of the place is now [t,, + I,, rPz + t,]. Now to satisfy the
time constraint on the output time transition, its interval would now become [t,, + t,,
ti2 - t J . where [i l l , t,zl is the interval of the time transition in the other partition. If q is
the firing t i n e of the transition, then the following relaxion musa hold good

t, + tJ < tt2, or
t,. < t t2 - t f .

If the above relation is not satisfied, it should be ensured that both the time place and
time transition are in the same partition.

Case 2

In this case, the interval of the time place becomes [t,, + t,, tPz - t,.], thus reducing the
lifetime of the marking in the time place. In order to satisfy the time constraint on the
output time transition it is necessary that,

If the above relation is not satisfied, it should he ensured that both the time place and the
input transition are in the same partition.

Case 3

in this case, we assume that t,,,, is the total communication time that includes the time
for transmitting the request + the time for processing the request + the time for reply.
Also, the update rate of the input place is U. If t is the time over which data is required
and f is the firing frequency, then

If the above relation is not satisfied, it should be ensured that both the place and output
periodic transition are in the same partition.

Case 4

In this case, the interval of the dmed transition becomes [t,, + t,, t n - I ,] . in order to
satisfy the time constw,int on the output time transition it is necessary that,

760 6. UMA AND T. SIVA PERRMU

If the above relation is not satisfied, it should be ensured that both Ihe time place and
input transition are in the same partition.

Case 5

In this case, the output marking is available in the place after a delay oft,..

All the above casestt can appear in a knowledge graph either individually or in con-
junction. If they appear in conjunction it is necessary that all constraints are satisfied.

3.1. Knowledge partitioning algorithm

The algorithm for knowledge partitioning using the I3LPN graph representation is given
below.

Inputs

(i) High-level Petri net for the rule base consisting of N rules.
(ii) Proportion pl:p2: ... :pk in which rules are to be. distributed among agents (this pro-

portion reflects the problem-solving capabilities like processing power of the
agents).

outputs

(i) Rule base subsets PI, P2,..,Pr with rules in the given ratio.
(ii) Directories for the rule base subsets with attributes details--.owned or shared.

Steps

1. (* spanning tree generation and marking *)

(i) Generate a spanning tree for the given HLPN graph (ali places and transitions
are considered as nodes in the graph). The tree generation starts at node with a
degree of 1.

(ii) Identify the chain (longest semi-path) of the spanning tree.
(iii) Starting at the initial node of the chain, label the edges of the chain with con-

secutively increasing integers. If a branch is encountered at any node, then label
the edges of the branch if the nodes in the branch have rule labels other than
those present on the nodes of the chain. Let MAXLABEL be the maximum label
on the edges.

2. Using the proportion in which rules have to be partitioned, determine the number of
rules in each partition.

nr, = N x pi&

3. (*initial decomposition*)

(i) Divide the labelled edges of the spanning tree in the partition proportions. e, =
MAXLABEL x p,Epi.

'' More cases have been detected a h reporting of this work.

CPS FOR 'TIME-CONSTRAINED DOMAJNS 76 1

FIG. 3 . Spanning tree(dashed lines) of the HLPN knowledge graph

(ii) For each pastition form the vertex sets VS.
VS, = [x/x is the second vertex of edge e+,, or
xis the first vertex edge of e,, or
x is a vertex incident on edges between e,_, and c, I

For each partition determine proposed rule sets (PRS)
PRS, = (xlx is a rule labe? for a vertex in VS, 1.

762 6. UMAAND T SIVA PEKKAJU

(iii) Form the cut-set mie-set (CRS)
CRS = [xlx E PRS, Y x E in PRS, v i # j)

4. (The data required for matching and firing rules in CRS are present in more than
one partition. Hence these rules can be allocated to either of the partitions in whose
vertex sets the data nodes of the rule are present.)

For each rule r in CRS

(i) determine the partitions in which r is present;

(ii) from these partitions find a partition such that timing constraints enunciated in
Sectioll 3 are satisfied, and allot r lo that partition.

5. For each partition determine the following sets

MRB, = {xlx is a data item present in partition p, and may be requested by rulcs
in another partition)
NRF, = (a, pJ > lx is a data item present in partition pJ and is required for rules
in partilion p ,)

6. stop

3.2. Example

The steps of the algorithm are explained with the help of an example. Figure 3 gives the
spanning tree of the HLPN knowledge graph.

The algorithm is traced below.

1. (i) The spanning tree edges are: <V1,V2>, iV2,V13>, <Vi3,V4>, <V2,V3>,
<V3,V4>, <V4,V5>, <V5,V6>, <Vh,V16>, <V6,V7>, <V7,V8>, <V8,V9>,
<V9,VIO>, <VlO,Vl I>, <Vl l,W>

(ii) Thc path {Vl , V2, V3, V4, V5, V6, V7, V8, V9, VIO, VI1. V12) forms the chain
(longest semi-path) of the spanning tree.

(iii) The arcs in the spanning tree are consecutively numbered if they belong to new
rules (Fig. 2).

2. Assuming that the partitions are to be made in the ratio of 2:3(pi, p2), the size of
the first partition z, = 2 (no. of rules x pilpl + pz), z2 = 3.

3. (i) The edge at which the partitions is to be made is 5 (max. label no. on the chain
*PI~PI + PZ).

(ii) So, now all nodes beginning at edge 1 till edge 5 fall in the first vertex set, simi-
larly are rules associated with transitions beginning at edge 1 till edge 5 fall in
the first rule set. The remaining nodes and rules go to the second sets. So,

Vsi = {Vl , V2, V3, V4, V13j
VS?= (V5, V6, V7, V8, V9, V10, V11, V12, V14, V15, V16)
PRSi = {CI, C2)
PRSz= 1.41, S l , S2, C l , C2)

DPS FOR TIME-CONSTRAINED DOMAINS 763

(iii) Since the rules Cl and C2 are found in both the partitions, they form the cut-set
rules. So, CRS = (C1, C2)

4. In the graph, the arcs cut in the partitioning are <V4,V5>, <V13,V14>, <V4, V15>.
These cuts come under cases 4, 1 and 5, respectively, as discussed in Section 3.

Consider the arc <V4,V5>. For V4 and V5 to be present in different partitions it is
necessary that tc < m(t,z of V5). Since any communication delay is finite, this constraint
is always satisfied. So, rule C2 can be in partition 1. Consider the arc <V13,V14>. Here,
t,, and t,, are 0, while t,z and 10 are 2. If t , and + are the average communication and
rule firing times, then the constraint t, < 2-+must be satisfied for V13 and V14 to be in
separate partitions. In this case, rule C1 will be in partition 2. However, if the constraint
is not satisfied, it is necessary that V14 be shifted to VS, (C1 is shifted to partition 1). If
the shift is effected, then the arcs 4 '5 , V14> and <V14, V15> are cur. The cut on the
latter arc corresponds to case 5. In this case, the value is available at V15 after a time
delay oft,. Since there are no further constraints on V15 this is acceptable. The cut on
the former arc corresponds to case 4. In this case, it is necessary that r, < 1 (&,I2 of V14)
for V5 and V14 to be different partitions.

Consider the cut on <V4,V15>. In this case the value is available at V15 after a time
delay oft,. Since there are no further constraints on V15 this is acceptable.

Summarising, rule C2 will be in partition 1, while C1 can be either in partitions 1 or
2 depending on the constraints to be satisfied. We will assume that C i is also in parti-
tion 1. The final sets are

VSI = {VI, V2, V3, V4, V13, V141
VSz = {V5, V6, V7, V8, V9, V10, V11, V12, V15, V16)
PRSg = (CI, C2)
PRSz = { A l , Sl , S2]

Based on the above partitioning, rules C1 and C2 require the value of place V5 and
they modify the value of V15. This information should be maintained as meta knowl-
edge. Two directories are maintained with each partition, viz., need to be requested from
(NRF) and may be requested by (MRB).

NRF, = ((V5,2))
MRB, = $I
NREz = $I
MRBz = I (V5,1) J

In some cases, it is possible that the smoothening rules generate partitions which are
not in the designated proportions. Clearly, this is a case of mismatch between the indi-
vidual node capabilities and the problem requirements. It is practically not possible to
obtain partitions in the right proportions for every problem-solving'activity. There are
two factors which affect the perfoimznce under such circumstances. They are the indi-
vidual computing power of the nodes and the communication bandwidth.

164 G. UMA AND T. SIVA PERRAW

Usually, every node will have a margin and can take additional load to a limited ex-
tent and yet meet the time constraints. We hope that this margin would take of imbal-
ances in the partitions. However, if the imbalances grow beyond the margins of individ-
ual nodes, then the given distributed problem-solving system needs to be augmented
with additional nodes to meet the time constraints of the application.

If the communication bandwidth is low, then it is possible that there will be a single
equivalent class. This is because the slow communication medium does not permit dis-
tributed problem solving. This necessitates an increase in the communication capacity
and the speed before partitions can be made and distributed problem solving be used.

4. Conclusions

Many domains have clear functional or geographical separation of knowledge so that
they can be implemented easily as distributed problem-soiving systems. However, in
TCDs no natural distributions are available. In these domains, problem and knowledge
decomposition is solely dependent on the capabilities of individual problem-solving
agents. Further, results must be obtained in a given time limit, communication delays
due to implementation as a distributed problem-solving system should not be prohibitive.
Knowledge partitioning by considering the temporal constraints of the rules falling on
the boundaries is necessary for TCDs. We have shown that a high-level Petri net is suit-
able to represent different types of rules encountered in a TCDs such as aerospace appli-
cation. Boundary smoothening criteria are developed for heuristic partitioning of HLPN
knowledge graphs. The rules are distributed such that all time constraints are met even
after communication delays are considered. This has been done by taking a static esti-
mate of the communication delays and the processing time.

A dynamic repartitioning can be done by periodically performing boundary smooth-
ening with actual measurements of these two parameters instead of a static estimate. A
suitable distributed reasoning strategy is being formulated incorporating these features.
This distributed reasoning algorithm7 will consider the priorities and timing constraints
of the partially matched rules, while requesting for nonlocal information.

References

%. SmosNDER, 1. K. AND PAUL, C. 1. A Shuctured view of real-time problem solving, AI Mag., Scmmer
1994,45-66.

2. BODDY, M. AND DEAN, T. L. Dellberation scheduling for problem solving in timecanstrained
domains. Art$ Inteli.. 1994, 67,245-285.

3. PRASAD, 0. E., PERRAJU,T. S., U M A , G. An expert system shell for aerospace applications, IEEE Expert,
UMARAN, P. 1994,9(4). 56-64.

A framework for modelling end analysis of distrtbuted intdiz-
gent systems, Ph. D. Thesis, Department of Computer Science,
University of Hyderabad, 1991.

5. UMA, G., PRASAD, B. E. AXD Distributed intelligent systems: issues, perspectives and appro-
NALWIKUMARI, 0. aches, Knowledge-BasedSystems, 1993,6.77-86.

DPS FOR TIME-CONSTRAINED DOMAINS 765

6 . UMA, G. , PRASAD. B. E. AND

REDDY, P. 6.

7 . NALINIKUMARI, 0.. UNLA, 6. AND

YRASAD. 5. C.

8. PERRAJU, T . S., UMA. C. AND

PRASAD. 8. E.

13. BAIL, I. L., ALLA, H. AND DAVID, R

16. NALLNIKUMAI~!, O., UNA, 6. AND

PRASAD, 5. E.

Framework for modeiling and analysis of distributed problem
solving systems. Knowledge-Rased Syrrems, 1992,s. 295-304.

Reasoning with imomplete information in distributed forward
chaining systems. In Proc. Workshop on Decbinn Thcnry for
DAi Applicarions. Amsterdam, 1994.

A scheme for knowledge representation, verification and reason-
ing in real tme asynchronous production system9. In Pmc. IEEE
Inr . Conf on Tools w t h A/ , 1EEE CS Press, 1994.

Petri net theory and modelling ojsystems, 1981, Prentice-Hall

Coloured Petri nets: A high level language for system design and
analysis. In High level Petri nets. Tkcorj a d appiicorions (K.
Jensen and 6. Roeenberg (eds)), 1991, pp. 44-119, Springer-
Veriug.

Continuous Petri nets, i n Proc. 8th Eur. Workshop on Applica-
tions and Theory @Petri nets, 1987, pp. 275-294.

Autonomous and timed continuous Petri nets, In Proc. 1 l rh I m
C o n j "on Apphcnrions ond Theory of Peni "en, 1990, pp. 367-
385.

Hybnd Petri nets, In Pro'. is1 Du,. Control Canf., 1991,
pp. 175-194.

Cooperative prohiem solving---4nowledge base portir:oning
nppmuch, Ph. D. Thesis, DeparUnent of Computer Science,
Unjvers,ty of Hyderabad, 1994.

An efficient heurlstlc procedure for panitloning graphs, Bell
Syslents T ~ c h 3.. 1970.49, 291-307.

Knowledge base pbnitioning in distributed inte1hger.t systems. In
Pror. Carindim Work~hop on DAI. 1994.

Object oriented r e d limc nsynrhronousproduction systems, Ph.
13. Thesis. Department of Computer Science, University of Xy-
deiabad, 1993.

