
J . Indian Inst. Sci., No".-Dec. 199676,777-792
B Indian Institute of Science

KAMALINI MARTIN*, A. S. GANESHAN* AND & N. SHIVASANKAR**
ISRO Satellite Centre (ISAC), Bangalore 560 017, India. *email:maltin@isac.emet.in
**Department of Computer Science and Electronics, Bangalore Univwsity, Bangalore 560 001

Received on November 24, 1994; Revised on July 14, 1995.

Abstract

A knowledge-based environment for configuration design studies is presented which assists in the conceptual stage
design of spacecraft. During this stage, major decisions need to be taken on spacecraft design drivers such as
soacecraft mass. Dower, size, launch vehicle, cost, reliability, etc. This requires a deep understand in^ of the inter-
acting subsystems of the spacecraft and a thorough examination of the feasible design options and tradeoffs. The
environment aids the effective inteeration of heteroeenous data and methods from various discinlines. The dv-
namic sequencing and control of the design procedure is also highly flexible. The tool has been utilised satisfac-
torily at the I S 3 0 Satellite Centre for the configuration design of a geosynchronous communications and multi-
purpose spacecraft.

Keywords: Spacecraft design, knowledge base, blackboard architecture, integrated design environment, design
and analysis aid.

1. Introduction

The increasing complexity of today's aerospace vehicles requires ever-more sophisti-
cated design approaches and analysis techniques. During the early conceptual design
stage, important decisions need to be taken on spacecraft design drivers such as its mass,
power, size, launch vehicle choice, cost, reliability, etc. The decisions taken here largely
dictate the total cost and technology elements involved that will finally he incorporated
into the design. Conceptual design is a recursive process involving many feedback loops
and successive refinements. With each iteration more and more of the potential design
options are examined and this results in a better understanding of the impact of design
decisions. The final quality of the design depends on how much of the design space is
explored.

Design tradeoffs involve features that improve one aspect of the design (such as pro-
pulsion subsystem in spacecraft) while penalising another (such as structure). Integrated
design brings out the benefits and penalties of each design parameter change and its ef-
fect on the overall design merit. The efficiency with which configuration design studies
can be accomplished is often largely dependent on the coordination of the design pro-
grams and their data interchange requirements than on the processing speed of the com-
puter systems.

There is usually some organisation or hierarchical decomposition in complex prob-
lems. Generally, the hierarchy is organised along functional decompositions of the task

778 KAMAlINl MARTIN et nl.

lo be performed. In blackboard systems, a problem is decomposed to maximise the inde-
pendence of the subsystems (knowledge nodules). In particular, modules that generate
and fill the solution space (domain dependent) are separated from modules that deter-
mine their utility (control). The decomposed domain modules are then reoeganised
within an integrating control hierarchy. This approach is followed in integrated design
approach for spacecraft (IDEAS). This paper presents a design environment which as-
sists spacecraft configuration design and is built using blackboard control architecture.
The purpose of lDEAS is to aid in the complex task of integrating a collection of indi-
vidual, beterogenous design modules into a single system and activating them intelli-
gently in the process of transforming an initial goal into a target design. Examples of
IDEAS are included in the paper in the form of design traces.

2. The spacecraft design problem

The design environment must integrate diverse and heterogenous sources of knowledge
in each of the subsystem domains. To focus on what a spacecraft design entails, a brief
description of a spacecraft is discussed below.

2.1. Spacecraft systems

A spacecraft is a product of a variety of engineering disciplines. What distinguishes the
application of these engineering principles to a space system from others is the need to
realise systems that could operate unattended for long durations and with a high degree
of reliability in the hostile environment of space. Berlin' discusses the problems encoun-
tered by systems in space.

The main objective of spacecraft design is to make the systems lightweight and cotn-
pact (due to prohibitive launching cost per kg mass), and low power consuming (since
all power must be generated onboard the spacecraft). In addition, systems intended to
operate in space must face difficult environmental conditions and therefore be extremely
rugged and reliable. This calls for a high degree of design optimisation needing tradcoffs
of the multiple constraints.

2.2. Spacecraft configuration

As discussed by Kasturirangan', the configuration of a spacecraft is initiated by the
specification of a mission goal(s), usually related to the areas of science, application or
technology. In IDEAS, such a mission goal is the area of geosynchronous communica-
tions. Once the basic payload, orbit, and mission duration are defined, a spacecraft 'bus'
which supports the mission must be designed.

The configuration design of spacecraft being a complex one, the first step is lo parti-
tion the design process into smaller or simpler design subproblems. Partitioning or
problem decomposition could be done in many ways. One method is based on different
distinct disciplines that are needed for the spacecrak design. These distinct areas toem
separable design entities termed subsystems. Any typical spacecraft bus would be com-
posed of a number of distinct disciplines, termed subsystems. The important supporting

INTEGRATED SPACECRAW DESlGN ENWRONMENT

(FUNCTIONAL ASPECTS)

subsystems of the satellite may be listed as power, AOCS (attitude and orbit control),
TTC (telcmetry, tracking and command), thermal, structures, propulsion, payload.
mechanisms and AIT (assembly, integration and test of the spacecraft). Some of these
subsystems are themselves multidisciplinary; for example, AOCS needs mechanical,
eiectronics, physics and mathematics expertise. Figure 1 shows the block diagram of the
spacecraft configuration process, showing a subset of the disciplines actually involved.
Problem partitioning can be repeated at different levels of abstraction until sufcicient
component details are achieved. For example, the TTC (sarellire link to ground) subsys-
tem which is a component of the spacecraft can be subdivided into baseband (TTC-BB)
and high-frequency communications (TTC-RF), while the baseband can further be sub-
divided into uplink (TC) and downlink (TM) and so on.

Each of the above subsystems has its own design considerations and constraints. Sucb
constraints may be ordered in different ways in different subsystems. Each of the subsys-
tems may offer a number of design options, all of v~hich meet the given requirements,
bur with different mass, power, reliability, cost and other penalties.

GiIlam3 has emphasized the importance of building an integrated design environment
which provides a repository of analysis tools, existing models, designs, conrextoa! in-

780 KAMALINI MARTIN el a1

formation about each design, and stores the expertise gained from long experience by
many experts in each of the multidisciplinary domains.

2.3. Need for knowledge-based implementation

The individual discipline designs of spacecrart are knowledge modules involving many
diverse factors such as:

(i) solving calculations, as in the case of orbital parameters,
(ii) using heuristics, as in the case of locating elements like payload transponders,

battery. receivers, etc., on the spacecraft structure,
(iii) interpolations from data tables, as in the case of launch vehicle dynamic and

structural constraints on the spacecraft for a chosen launch vehicle,
(iv) solving sets of equations, as in the case of estimation of link margins,
(v) inferencing from data base as in the case of estimation of package sizes and so

on.

The design tasks within each design module include one or more of Ibe following:

(i) synthesis, where a feasible design option is picked (internal to the design mod-
ule), from the set a f all possible design configurations for that subsystem,

(ii) optimisation. where the parameter values are sized for the given design require-
ment,

(iii) decision making, where some parameters may be discarded, while others are in-
cluded and optimised,

(ivj evaluation of output parameters from input parameters,
(v) analysis such as merit ordering of the design options based on given criteria like

mimimum mass, minimum power, etc.

and several supporting activities: Such tasks may utilise rrieihods which are either com-
putational or heuristic or a combination of both.

In this situation, the purely class~cal programming approaches are not satisfactory
since an algorithmic solution to a design problem is not feasible4 .

Since the designs presently achieved by humans involve knowledge which cannot be
fully formalised and automated, an environment to aid the design process rather than
automate it has been proposed. Similar efforts have been described by Freksa*. The hu-
man designers using this environment can then focus on the more creative aspects of
design and less on the data management or routine computations.

3. The IDEAS environment

it is expected that a software tool based on expert system methodologies should be an
active partner in the decision-making process, perhaps guiding the decision maker,
while leaving the primacy of judgement with the user. Such an environmentb.' has been
proposed for spacecraft configuration and is described here. The design procedure and
the new organisation style adopted for providing a flexible environment is described be-
low.

INTEGRATED SPACECRAFT DESIGN ENVIRONMENT

DATA EXISTING P/L / BASE MISSION
REQMTS.

MASS &POWER

BASE ANALYSIS
EXTRACTION

MISSION OBJECTIVES

PAYLOAD REQUIREMENTS

SELECTION

I KNOW- 1 INTERACTION 1
LEDGE 1 OFMODULES I

FIG. 2. Design process

3.1. Design procedure

ANALYSIS

The design procedure within the IDEAS environment tranafoims the initial goal state-
ment into the final target specifications. In general, the transformation is achieved by

782 KAMALINI MARTlN el al.

selecting and activating suitable sequences of design modules. Design modules operate
on the goal and subsequent requirements by evaiuating design parameters emp!oying
different methods.

The design procedure for all configurations is organised or partitioned at three levels
folIowing the three-phase design model described by C o p e et a1.' The three levels of
design are classified in IDEAS as requirements, selection, and analysis phases (Fig. 2) .

To achieve the three levels of design, IDEAS is organised as a modular, flexible and
intelligent environment in which the human designer can configure spacecraft.

3.2. Organisation

Figure 3 shows the organisation of IDEAS. The essence of this modular structure is to
partition the problem domain (spacecraft configuration) into a kernel containing do-
main-specific information and a supervisor containing the control knowledge. The intent
of this separation of knowledge is to provide an environment for different applications

%. 3. Features af IDEAS.

INTEGRATED SPACECRAFT DESIGN ENVIRONMENT 783

(geostationary communication, geostationary mulitipurpose, low-earth remote sensing,
scientific applications, etc.) within the same configuration domain.

3.3. I . The kernel

The muitidisciplinary/subproblem design modules are executable files central to the
system. These design modules representing domain knowledge are blackboard objects
which are the basic unit of representation. The modules are embedded as suggested by
corkil19 and may be called upon to solve different kinds of applications, i.e., spacecraft
designs. Some modules may be sufficiently general to be used in more than one type of
design (e.g., TTC-BB module may be used in other styles of spacecraft designs), whereas
some modules are very specific to a particular style (e.g., orbit calculation is obviously
quite different in geostationary orbits as against low-Earth orbits). The modules have
entirely different types of reasoning, transformation methods, etc., and have therefore
been developed in different languages, e.g., C, C++, Fortran, FoxPro, etc. The domain
modules are typically of two type-valuator and design option. Both types transform
the input variables into output variables, either by mathematical processing or by knowl-
edge-based reasoning, etc. The evaluator type produces one set of values for the output
parameters as in classical programming. The design option type can produce a varying
number of sets of output parameters. This number corresponds to the possible number of
hypotheses or feasible subsolutions. The number may be more than one, i .e . , many sub-
solutions are feasible, or even zero, i .e . , there is no possible subsolution in which case
the design inputs must change by some means.

3.2.2. The design style

The next layer is called the design style or procedure. This layer is one of the key fea-
tures of IDEAS and is integral in providing flexibility and extensibility. The knowledge
content pertinent to a design style or procedure can be created, edited and maintained in
a file entirely independent of the design session melf. The design session then starts
with a choice of any desired design style: for example, geostationary communication or
remote sensing or scientific experimental style, etc. Each style is a knowledge base in
the form of a TurboProlog internal database. The relevant style is selected and loaded
into the environment at the start of the design session.

The main details in the design style file relate to either the design module or the de-
sign parameter. These details are treated like slots in a frame. Some examples of design
parameters are shown in Table 1. Thus, design parameters are described by entries in
slots corresponding to name, type, unit, if any, default value, if any, and so on. These
details are required whenever the value of a design parameter is updated within the de-
sign session. Design module details include name, type, input parameter list, output pa-
rameter list. parent module name, etc. Typical examples are shown in Table II.

3.2.3. The controller

The next layer in the organisation is the controller. This is written in TurboProlog, and
by irsing the design style, zctivates the subproblem modules either under user guidance

784 KAMALINI MARTIN er al.

Table I
Design parameter details

Pammeter Type Unit Default

Orbit String GEO
Mission life Real Years 7
Propellent type Sfring Bipropellant
TM channels required Integer 1200
Panel temp. EOL Real decC 55
Bias stability Real deg 0.002
L~nk details Unstructured list of

real
Mass allocation Structured list of real

or automatically to solve the design problem. This control component is critical in any
intelligent system, since it determines, implicitly or expiicitly, the problem-solving
strategies to be applied. Blackboard architecture for control has been well documented
by Hayes-Roth and other~'~J'. The last layer is the user interface which provides a lar.ge
number of facilities to the user as shown in Fig. 3. The architecture of the controller is
discussed later.

4. Control architecture

Blackboard architecture provides a general-purpose, powerful and flexible environment
for the solution of problems that require a variety of input data and a need to integrate
diverse information, as in IDEAS.

4.1. Control functions

The environment implements the design process by activating the design modules like a
team of cooperating experts coordinated by a supervisor or controller. The control prob-
lem includes sequencing of the module to be activated, selection of a feasible option and
the evaluation of the configurations.

The function of blackboard control is to invoke the executable modules in an intelli-
gent manner to transform the goal to target. When all executable modules which are

Table PI
Design module details

Parameter Example I Example 2 -
Module number 11 15
Module type Evaluator Destgn option
Module name Launch vehicle select~on TTC-baseband
Module parent ' Requiremenu transformation level TTC subsystem design
Executable file name lvre1.exe ttcbb exe
Module inputs Mission life, dry mass. Payload types, TM channels, TC

commands, technology to be used.
Module outputs Propellent type, ABM propellant. Baseband filter BW, TC subcar-

propellant weight, total mass, TO rier freq. (KHz), TM bit rate (Hz),
inclination, launch vehicles, lawnih mi". SNR at decoder ilp, TO
vehicle geometric details power requirements.

INTEGRATED SPACECRAFT DESIGN ENVHRONMENT 785

scheduled have k e n invoked satisfactorily, the target state has been reached. This target
design is represented by the values of the parameters which are purely domain depend-
ent.

4.2. Blackboard control in IDEAS

In general, the sequence and design procedure is aimed at evaluating (by numerical
methods or otherwise) the design parameters. Such design parameters may he required
either by the user or another design module. In response to a request from the user or
another module, IDEAS determines the module to be executed and activates it. In turn,
if this new module needs further input parameters, they are provided by executing addi-
tional routines. As explained by Hewett and ~ewett ' ' , the activation of a design module
is the basic unit here, unlike a rule-based system where the rule is the basic unit of exe-
cution. The action of a knowledge module makes one or more changes to the blackboard.
Typical actions are:

(i) Fill parameter value (if currently unfilled).
(ii) Change parameter value (if currently filled). This results in recursion.

(iii) Addfdelete a link between modules in the current design style.
(iv) Addfdelete modules in the current design style.

Each change to the blackboard is an event. Each knowledge module is triggered by
an event described in its trigger conditions. When such an event occurs, the module is
placed on the agenda of potential actions. The agenda has two parts: triggered agenda
(scheduled list) and executable agenda (ready list). A knowledge module has state-based
preconditions which determine whether it is executable, and only modules on the execu-
table agenda can be invoked.

The component responsible for selecting knowledge modules to be run is the sched-
uler. It uses control knowiedge for selection. Control knowledge is derived from the
analysis of the design style. The control loop selection of module to be executed is done
as follows. A module is triggered (placed on the scheduled list) when one or more of the
following events occur:

(i) User chooses a module for execution.
(ii) Its output parameters are required by another module.
(iii) Its parent is on the scheduled list.

Since the sequencing is represented as a dataflow net, the only precondition to be
satisf ed for a module to be placed on the ready list is that all its i n p t parameter values
be filied. The scheduler chooses or orders the scheduled list according to any one of the
following strategies:

(i) Minimum number of input parameters.
(ii) Maximum number of output parameters.
(iii) Least sensitive module in backward direction.
(iv) Most sensitive module in forward direction.

KAMALIN: MARTIN er oi.

4.3. Recursion

In case a parameter is redefined at any stage, recursion must take place. This is achieved
by updating the scheduled list continually. Redefinition of any parameter value can oc-
cur at any time during the design process due to any one of the following.

4.3.1. User changes the value of a paramete?

Since modules are already run using a defined set of values, those modules which are
affected by the changed parameter must be rerun. For example, after designing the
spacecraft for, say, a 10-year lifetime, the user may want to see the effect if it reduces to
5 years. This need not entail a complete redesign of the spacecraft, but certainly involves
modification in those subsystems which need mission life as input, i.e., chiefly power,
propulsion, etc.

4.3.2. Conflict resolution

Different modules may utilise data in different ways, or the design sequence may allow
different lines of computation before some parameter can be evaluated. When the two (or
more) niodules yield different values for a parameter, an arbiter module can decidc the
most reasonable value. All modules which have used the discarded value musL be rerun.
This can bappcn anywhere in the design. For example, dry mass of spacecraft is esti-
mated initially in the design, say, at 1000 kg. This is modified later, say, to 1200 kg.
The chosen launch vehicle may not be able take this load. Thus the design is re-iterated
wherever necessary.

4.3.3. Uncertainty in data

In case of uncertain or incomplete information, different lines of reasoning are followed
with a defauit initial assumption, to form a collective opinion of the most reasonable
value of a parameter. This method is chosen instead of the method of attaching 'belief'
weights lo the parametric values and perhaps evaluating the uncertainty function. For
example, the numher of solar panels required to generate power 1s not known before the
solar panel design is started. This numher decides the temperature of outermost panel in
stowed and deployed conditions, in transfer and on orbit conditions. However, the panel
design needs the temperature of the outermost panel, and the power loads (among other
parameters) before the area of the panel can be assessed. In turn, the area of the solar
panel dictates how many number of panels can be accommodated. Thus the design starts
with a default numher of panels, which 1s updated when sufficient information is avaii-
able, and so on.

4.4. Dynamic sequencing

To begin with, the design activity needs sequencing to define the process which itera-
tively calls the building blocks of an entity down to an acceptable component Ievel de-
sign, as shown in Fig. 1. This means that in order to run (execute) IDEAS, the three-
component knowledge modules, i .e . . Levels-0, - L , -2 must be run. In order to run Level-

:hTEGR4TED SPACECRAFT DESICN ENVIRO\ItIENT 787

3, a number of moduies of which payload definition is one. mnst be run. Similarly, to
run payload definition, each payload must be defined; for example, communication, re-
mote sensing, and scientific payloads.

Sequencing is also needed to control the dataflow pattern defined by the design style.
In this sequence, the procedure car, be represented as a network, with the executable
knowledge modu:es forming the nodes and 'design parameters' forming links. For ex-
ample, io run Level-1, Levei-0 must be run so that ail necessary design parameters for
Level-; are available. Similarly, to run Level-2, Level-! should have been run. .,

In case a parameter needs redefinition at any stage,recursion can take place, so that,
for exampie, a moduie of Level4 may be re-executed even while Level-1 is in progress.

in actual sequence, tine execution facility prepares the required input parameters from
values posted on the domain blackboard and formats them into an input data file, acti-
vates the executable file through DOS shell, and accesses the output parameters from the
output data file and 611s the appropriate parameter values on the blackboard. The input
file creation and output file accessing is invisible to the user, who only sees the updating
of the blackboard through the execullon of the desired process.

5. Design trace

A sarnpie subset of views of the IOEAS screen during an actual run are presented here to
exemplify design procedures, particularly iteration and recursion.

5.1. Example of ireration

A design session starts with the se!ection 05 a module, which represents the pait of the
spacecraft to be designed. As an example. suppose that the user chooses to design the

SCREEN I

I Analyse
iModu!e. IDEAS

Design Facilities Quit

Execute +'?
Fill parameter values
Show dengn modules
Show parameter values
Display output rile
Help

I
I

788 KAMALiNI MARTIN et el.

SCREEN 2

Module: IDEAS
IDEAS Message

Design modules schedule
1. Requirement phase (L-0)
2. Functionai design (L-1)
3. Mechanical design (L-2)

Invoking module 1:
Module name : Requirement phase (L-0)
Moduh parent : IDEAS
Module function : Function defined for submodules only
Module type : Not executable

Do later
Quit

Invoking module 1 . l . I
Module name : Communication payload
Module oarent : Payload definition

SCREEN 3

Module hrnctwn . Defitxs lhc ;ommunicaim pay!oad
IModule . Dciignr feartblc oprmr basrd on mpul pdiarncters

Analyse Design Faciiities Quit
Module: IDEAS

IDEAS Message
Design modules schedule
1.1.1. Commn. Payload
1.1.2. Met. Payload
1.2. Mass budgets
1.3. Power budgets
1.4. Launch vehicle selection
1.5. Orbit details
1.6. Ground station selection
1.7. SIC dimension
2. Functional design (L-I)
3. Mechanical design (L-2)

Do later
Ouit

I

entire spacecraft. Then the module selected is the root of the tree in Fig. 1, i.e., IDEAS.
When 'Execute' is chosen from the pulldown menu as shown on Screen 1, the scheduler
places IDEAS in the scheduled list, and looks up the design style to activate the corre-
sponding object. From the style, the scheduler finds that IDEAS is not an excutable
module (no executable file name in the slot for this object) and hence makes a list of the
children of IDEAS as shown on Screen 2.

I

The modules corresponding to the children, i .e., requirement analysis, functionai de-
sign and physical design replace IDEAS on the scheduled list. The top module on the
list is picked up, and the above sequence repeated until an executable module is reached.
(Screen 3). An executable module from the scheduled list is ready to run (placed on

:NTEGRATED SPACECRAFT DESIGN ENVIRONMENT 789

SCREEN 4

Analyse Design Fac~lities Quit
/Module: Power budgets\Requ?remmt phase (L-0) \IDEAS

IDEAS Message
Design modules trace Design modules schedole
1.3. Power budgets: Done 1.4. Launch vehlcie selection
1.2. Mass budgets: NOT done 1.5. Orbit details
1.1. Payload definrtioa: Done 1.6. Ground statmn selection
I . Requirement phase (L-0): being executed 1.7. SIC Dimension , IDEAS: Chosen 2. Funct~onal design (L-I)

3. Meehanicai deslgn (L-2)

SCREEN 5

Module: Mass budgets\Requlrement phase (L-0) \IDEAS

IDEAS Message
Design modules trace Design modules schedule
1.2. Mass budgets: Done 1.4. Launch vehicle selection
I .4. Launch vehicle selection: being executed 1.5. Orblt details
1.3. Power budgets: Done 1.6. Ground station selection
1.1. Payload definit~on: Done 1.7. SIC Dimension
I . Requirement phase (L-0): being executed 2. Functlonal design (L-1)
IDEAS: Chosen 3. Mechanical design (L-2)

'Invoking module 1.4.: C h o o s e -

Invoking module 1.4.:
Module name : Launch vehicle selectmn
Module parent : Requirement phase (L-0)
Module function : Allows user to select feasible launcherr Do iater
Module typz : Evaluates output parameters from inpm parameters Quit

Press Select to Choose, FonvardiBackward to move ForwardiBackward in the design

SCREEN 6

Module name : Launch vehicle selection
Module parent : Requirement phase (L-0)
Module function . Allows user to select feasible launchers
Module t y ~ e : Evaluates output parameters from input parameters

Facilities Quit

IDEAS Message

Module mechanism has no valid output for this input list

Change input

No. of external antennae
MASS ALLOCATION IN kg

i

Continue 4
Skip
Do later
Qult

790 KAMAtlNi MARTIN et of.

SCREEN 7

Analyse Design Facilities Quit
Module: Mechanism/Functionai design (L-l)\IDEAS

IDEAS Message

Value for SIC size in mm is filled already!
Value is Affected modules could be
SIC1 size in mm
Length
Breadth Thermal design
Height Mechanism

Thermal-1
Tank location

I

SCREEN 8

Analyse Des~gn Facilities Quit
Module: Mechanism\Functional design (L-I)\IDEAS

IDEAS Message
Value for SIC size in mm is filled already Design modules schedule
Value is 2.4.1. Tank localion
SIC size in mm 2.5. Thermal-1
Length : 20367750E+04 2.7. Mechanism
Breadth : 22913720E+04 2.8. Masspower check
Height : 16938500E+04 3. Mechanical design (L-2)

Invoking module 2.4.1.:
Module name : Tank location
Module pwent : Stmctures
Module function : Checks for accomodatability of tanks Do later
Module type : Designs feasible options based on input parameters Quit

Ready list) if all its input parameters are filled with valid values. For example, if launch
vehicle selection is scheduled for execution, its input parameters, mission life and dry
mass (Table 11, Example I), must be defined. If any of the parameters (say, dry mass) is
not defined (because the user chose to skip that module during execution, as shown on
Screen 4) the controller fills the value either by default (Table I, using the value in the
'default* slot of the parameter definition in the design style), by user choice, or running
another module which outputs this parameter. For dry mass, the controller finds that
mass budget is the module which outputs it, and the scheduler places mass budgets
above launch vehicle selection in the schedllled list. After executing mass budgets, the
original schedule is resumed (Screen 5). Activation of any module results in defining the
corresponding output parameters.

INTEGRATED SPACECRAFT DESIGN ENVlRONMENT 791

5.2. Example of recursion

a design module of T w e 2 (Table 11, Exampie 2) may offer a number of options for a
given set of input parameters as explained in Section 3.2.1. If an activation of a module
results in no possible design options, the input parameters for that module must be rede-
fined by some means for the design to proceed. This results in recursion. Screen 6 shows
that a design module (Mechanisms) has been run, and there is no feasible solution. The
list of input parameters for this module is looked up and displayed. If the user selects,
say, 0.0. area of solar panel (i.e., area of the solar panel in on-orbit or deployed state)
as the parameter whose value is to be changed, the module which outputs this, i.e., solar
panel design, is added to the schedule and rerun (it was already run once in order to fill
the 0.0 area of the solar panel in the first place). In changing the selected option of so-
lar panel in order to accommodate mechanisms, some other parameters may also be
changed. In another case, if the user selects (spacecraft size) as the parameter to be
changed to get a feasible solution for mechanisms, other modules which also use the
spacecraft size as an input parameter will be affected (Screen 7). Thus, all modules
which use any parameters whose values change must be rerun and added to the sched-
uled list as shown on Screen 8. This process continues until parameter values suitable to
all modules are achieved. When Ihe scheduled list is exhausted, the design procedure
stops.

5. Conclusions

In this paper, we describe a computer-assisted flexible design procedure which is
achieved by integrating heterogenous expert design knowledge and by offering heuristic
search methods in the design solution space. The methodology has been implemented in
IDEAS, an integrated software tool developed as a domain-independent environment
based on blackboard architecture. The tool has been used successfully for the design of
geosynchronous communications spacecraft. The realistic design process provides bal-
anced solutions for multiple criteria, quantifying the tradeoffs wherever required. 81-
though the software roo1 has been evolved for designing a spacecraft, the methodology is
general and can be used for configuration design of any multidisciplinary artifact and
can be represented as a hierarchy of modules. No fundamental limitations to the concept
of integrated design tool have been uncovered in two years of intensive use. It is hoped
that the methodology adopted will shed light on integrating complex systems and trans-
lating or formalising design procedures. The architecture of the tool supports the evolv-
ing nature of engineering design by ensuring flexibility, both from the viewpoint of de-
sign modules, methods and information types, as well as strategies and policies to be
used in guiding the process of design.

Acknowledgements

The authors thank the members of IDEAS task team who were responsible for the devel-
opment of the subsystem design modules. In particular, the authors express their sincere
gratitude to Dr A.S. Prakasa Rao, Deputy Director, ISAC, and to Dr K. Kasturirangan,
Chairman, ISRO, for their constant encouragement.

792 UMALINI MARTIN et al.

References

1. BERLIN, P.

7. MAUTIN, K. AND GANESHAN, A. S.

8. COWE, R. D., ROSENMAN, M. A,,
RADFORD, A. D., BALACHANDRAN, M
AND OERO, J. S.

The geosiotionary npplications soteilite, 1988, Cambridge Uni-
versity Press.

ISRO spacecraft technology evolution, Sadhana, 1988, 12, 251-
288.

Vehicles knowledge-based des~gn envlronrnent. J . Spacecraft
Rockets, 1993.30.342-347.

Study on conceptual design for spocecrafrs using CAE, ESA Con-
tract no. 68861851NLiPP, Fmal Report, 1987.

Knowledge representation for interactive aircraft design, In Expert
systems nnd knowledge engineering (T.Bemold, ed.), 1986,
North-Holland.

IDEAS. Integrated design approach for spacecraft desrgn, ISAC-
TR-44-54, 91-11-22, Nov. 1991, ISAC, Bangalore, India.

IDEAS: A design and analysis aid, ISAC-TR-44-47, 94-06-05,
June 1994, ISAC, Bangalore. India.

Knowledge-based destgn systems, 1990, Addison-Wesley

Ernbeddable problem-solving architecture: A study of integrating
OP55 wrth UmassGBB,IEEE Trans., 1991, KDE-3, 18-25.

A blackboard architecture for control, Artif Intell., 1985, 26,
251-321.

Blockboard architecture and applicotzons (V. Jagannathan, R.
Dodhiawala, L.S. Baum, eds), 1989, Academic Press.

A language and architecture for efficient blackboard systems,
9th Inr. Conf on Alfoior opplicntions,IEEE, 1993, pp. 3 4 4 0 .

