
, j indim, jiist Sij , N o v D e c . 1996, 76, 793-812.
D India Insomte of Science

ANTUPAM BASE*, S. SARKAR, A. K. MAJUMDAR AND X. A. IUO'
Wcpadmanr of Computer Science and Enginccriag. Indian Insritute of Technology, Kharagyur 721302, India.
emaii: anupam@cse. iitkgp.crnet.in
'~niveisity of Norrlr Carolina. Chapd Hill, USA.

Received on January 1, 1995: Revised on March 8, 1995

Abstract

Thls paper describes the salient feature:, of a kirowledge enginrerlng tooi developed for scene rccognitmn. Thuugh
the tool has been developed based on thc requirements of a specriic application arta, the tool has been made gcn-
era1 enough to be ahle to cater to a larze number of applicatmns. The tool, m its extended version, can deal wrth
fuzzy as well as ciisp data and knowledge. A aovel technique, termed mlr atratification, has been introduced and
utilized in this tool. The paper also describes an application of the tool and presents a comparison of rhe features
with those of rhe commercially avaiiablc tools.

Keywords: Expert systems, scene recognition, fuzzy logic, predlcafe logic, inference machme, rule-based systems.

Expert ~ysrcms ' -~ havc proved to be useful in application areas which involve domain-
specific knowledge and expert heuristics for solving problems. Typical examples of such
domains include medical diagnosisds, conpuler-aided design and diagnostics6,', image

complex scheduling etc. A number of expert system shells, such
as EMYCIN"', ART, CLIPS, KES", O P S ~ " are presently available, which provide the
knowledge engineers with an environment for incorporating domain-specific knowledge
to build an expert system. Such shells or tools can be characterized by the knowledge
representation scheme supported, the inference mcchanism, the conflict-resolution
strategies adopted, the facilities to hook up with extcrnal programs, etc. Depending on
the apphcation domain, a knowledge enginecr has to analyze the facilities offered by the
tools and select a proper one for developing expert systems. Since the available shells
are developed lo provide a general-purpose environment, without any problem area in
view, often a lot of tailoring is required to fil in the domain-specific requirements in an
existing tool. This, in turn, reduces the efficiency and flexibility of inferencing.

In this paper, we address the problem of scene recogni:ion. The problem can be de-
fined as: Given a set of attributes of the parts forming a scene, or of the component re-
gions of a scene, the scene bas to be identified. The task is equivalent to that of high-
Level image interpretation and requires application of considerable domain knowledge

794 ANUPAM BASU ei a1

and heuristics. The necessiry of knowledge-intensive computation is more pronounced
because often all the attributes are not known, and hence algorithmic approach does not
turn out to be a suitable candidate.

In order to build an expert sysretr, for the pnrpose, we analyzed the domain and
identified a number of requiren~ents to be specified by the expert system tool, so that
effkiency and flexibility are not traded out. It was found that none ol' the available tools
directly cater to all the needs identified.

In this paper, we first identify the requirements which are to be satisfied by a tool for
developing an expert system for scene recognition. Next, we present the basic architec-
ture, knowledge representation and inference mechanism o i SRT, a scene recognition
tool. We then discuss the extensions incorporated in SRT to accommodate fuzzy reason-
ing capability. Finally, we present an application of SRT for identifying a residential
complex, along with a comparison of the features of SRT with those of wel?-known
shells and developing environments.

2. Overview of SRT

2.1. Requirement analysisfor the donairi

Tn the class of problems, addressed by SRT, a scene composed of many regions or
an object composed of many parts has to be recogized. Information about a region
may not be complete at the time of information acquisition. For instance, the identity of
the regions comprising a scene may not be known at the outset. The system will have to
first infer the missing data about the regions and then infer about the identity of the
scene.

For example, information about an unidentified region might be: The regiorr is a
square shaped one with an area of 350 sq rn and there is a road and a pond nearby. A
typical rule might be: v a region has a road nearby, with a square shape and area more
than 299 sq m then the region is a house.

The regions are entities comprising the attributes. Some typical attribiltes are:

name : The region name, which acts as the repon identifier

shape : The shape of the region, e.g., 'square', 'polygon', 'rectangular',
'irregular', etc.

length : The length of the region.

width : The width of the region.

perimeter : The perimeter of the region.

cenzroid : The coordinates of the centroid.

major-axis : The major axis of the region.

minor-axis : The minor axis of the region

The different regiona may be related to each other. A few example relations are:

SRT: A SCEMB-RECOGNITION TOOL 795

nearby : This is a set of all those regions which lie near to this region. This set is
provided to the system.

surP-our!ded by : This is a set of a91 those regions which surround this region.

to : This is a set of all the adjacent regions.

intersects : This is s set of all the regions which intersect it.

farawayfrom : This is a set of all the regions far away from ir.

These relations are precomputed and provided as inputs to the system. The input data
may be viewed as consisting of a set of different region entities (of a particular scene)
which can be represented as frames. Each entity in turn has several attributes that may
bc known or unknown. The attributes of a region can be represented as slots of the corre-
sponding frame. The unknown region attributes have to be inferred from the known ak-
tributes using a set of rules. Through additional inference, involving more rules and the
known attributes, the identity of the entire scene has to be determined. Thus, a combina-
tion of frames and production rules form an ideal knowledge representation scheme for
this problem.

The following are the required features identified which have to be addressed by a
tool to be applicable to the scene recognition problem.

(1) in this particular problem (scene identification) the same set of rules have to be
app!ied for identiFying multiple regions. Thus the ruies have to be of generic nature
which can apply to different instances of regions. Hence, the facility to define and han-
dle quantified rules has to be provided in the proposed system.

(2) In order to handle relations iike nearby ((there may be a varying number of re-
gions nearby different regions), it was found that this relation is best represented by a
set. Therefore, besides the conventional data types like real, string, etc., a set data-type
is required. Over and above, it is found that in some cases the set contained only strings
whilc in others, only real numbers suffice. Hence, a set each of string and real should he
incorporated.

(31 To effectively utilize the 'set' data-type, whether real or string, set-related predi-
cates and actions are ,needed. For example, i t is found that the predicate 'belongs to'-
which tests for set inclusion, and a new action 'addinlo'-which performs the addition
of a new element into a set, enhance the performance of the system.

(4) Some of the ruies provided may have horh AND and OR connectives in their an-
tecedent fields. Therefore, in order to reduce the number of rules in the rule base, facility
to define rules w~th both AND and OR connectives should be allowed.

(5) It, was found that them were a numher of instances of rules being recursively de-
pendent. So a strategy has to be adopted to handle such rules.

(5) A szrarijication swategy is necessary to club the mles in:o various strata which
w0uld be the order in which they would be fired. $or instance, to identify if the scene is
a residential area, the presence of houses must be established. Thus the rules to identify
houses ~nnst be fired before those required for iden4ifying a residential area.

796 ANUPAM BASU er a1

(7) In some cases external functions have to be called. Therefore, a facility to exe.
cute external procedures is required. This also provides a general-purpose procedural
construct that can be executed during inferencing.

Considering all the above features, it was found that no single existing commercial
system would provide all the features required. Using any of the available systems would
require considerable tailoring and would result in inefficient reasoning. Moreover, the
problem of termination of recursive rules would be present in these systems. These rea-
sons prompted us to develop a new shell SRT to deal with the problem of scene recogni-
tion. In the following sections we present first the knowledge representation and acqui-
sition methods followed by inferencing mechanism of SRT.

3. Overall architecture and knowledge representation

Figure 1 presents the schematic architecture of SRT. Each module of the architecture is
described in brief.

Domain Database

FIG. 1. Architecture of the system (nonfuuy).

SRT: A SCENE-RECOGNITION TOOL 797

KAM: This is the knowledge acquisition module which is required in every expert
system shell. KAM acquires the knowledge represented in a suitable form and converts it
into the internal representation required by the shell. KAM also has additional functions
like the ordering of rules, etc., which will be described in Section 3.

Inference engine: This module performs the actual processing. It uses the knowledge
acquired by KAM and infers new facts from existing ones. The inference engine uses
various strategies to carry out the process of inference. SRT's inference engine uses
depth first search and forward chaining mode of inferencing.

DAM: This stands for domain access module. This is required for the implementation
of the predicate rules. DAM has two main functions: To load the domainbase into the
system at the beginning of the inferencing session, and to instantiate a variahle during
the process of inferencing.

Rulebase and Framebase: These two modules store the domain-specific rules and
frames, respectively. The rules and the frames are specified in a rule-specification lan-
guage (RSL) and a frame-specification language (FSL). This knowledge description is
obtained by KAM and converted into its internal representation.

Domain: Domain is essentially an external database. This database maintains an
ASCII file for each variable used in the rules. A file corresponding to a variable stores
the admissible values of the variahle.

In SRT, domain knowledge is represented using FSL and RSL. KAM compiles the
input file and extracts the knowledge into its internal representation.

SRT expects a text file containing the framebase and rulebase descriptions in FSL
and RSL, respectively, as input. The file can be created using any editor. In the input
format, the framebase description is followed by rulebase description.

3.1. Fact representation

The input facts are viewed as consisting of a set of different region entities. Each entity
in turn has several attributes that may be known or unknown. Examples of attributes in
the present case are length, width, area, radiometric characteristics, etc., of a region. In
SRT, an entity is represented as a frame and its attributes are denoted by the slots of the
corresponding frame. The schema for the framebase has to be specified as input to the
system. In the schema description, the type of the slot has to be specified. The value may
or may not be specified.

The slots in SRT may contain data which may be reallintegers, strings, set of
reallintegers, and set of strings. It should be noted that the real and integers are treated
in the same fashion. Thus, essentially only real is used. The value of a slot can be
changed during the execution only by the actions specified in the consequent of a rule.

Frames may also be used for storing control data such as no-of-houses, no-of-roads,
parks-identified, etc. The slots of a frame may be used as temporary locations.

In SRT, rules may include quantified variables. Each variable corresponds to a frame,
referred to as variable frames. A 'variable frame' can assume any value from a file
stored in the external database domain. !t may be added that whether a frame is a con-
stant or corresponds to a variable cannot be known by inspecting it. In other words, no
syntactic distinction is made. Thus, care has to be taken by the programmer to ensure
that a frame is used consistently as either a constant or variable throughout the rulebase.
The mechanism of a variable frame and variable binding is explained in detail in the
sections on Stratification and Predicate rules.

FSL is used to specify the framebase to the system. In FSL, a framebase is specified by
specifying all the frames in it enclosed by the two keywords begin and end. A typical
framebase specification can thus be specified as <begin frarnel, frame 2, frame n
end>. Example of a sample frame written in FSL is shown below:

RegionX = frame

string obj-name = 'objectl';

string obj-type;

string radio-attrib;

string ohj-shape = 'elongated';

real length;

real width;

real area = 400;

real perimeter = 100;

set of string nearby = { 'xx', 'aa');

The above description is of a frame RegionX which has the foilowing structure: slots
containing string data: obj-name (initialised to 'objectl'), obj-type, radio-artrib, obj-
shape (initialised to 'elongated'); slots containing real data: length, width, area
(initialised to 400), perimeter (initialised to 100); the slot nearby is of type set of strings,
initialised to {'xx', 'aa'].

3.4. Rulebase representation

The declarative knowledge of the knowledge base is stored in the rulcbase in the form of
production rules. Rules having similar functional characteristics can be grouped together
into rule-blocks.

The production rules are of the typical form IF <antecedent field> THEN
<consequent field>. The antecedent field is a conjunction or disjunction of predicates.
The consequent field is a list of actions. the antecedent field it checks for certain
conditions on the slot values of the frames. The consequents may modify the slot values

SRT: A SCENE-RECOGNITION TOOL 799

of frames or perform other actions such as input and output. SRT, as has been already
mentioned, is based on predicate calculus, where variables appearing in the rule may be
quantified. The variables (frames) occurring in the consequents are universally quanti-
fied, and the variables occurring in the antecedents are existentially quantified. To facili-
tate this, the structure of a general rule in the SRT is as follows:

<quantifierlist> IF <antecedent field> THEN <consequentfield>

Each ruleblock may contain several rules. In turn, each rule has a number of clauses,
consequents and quantifiers. The rulebase is specified in RSL.

Predicates: The antecedent field is in disjunctive normal form. It is a series of clauses
linked by the OR connective. There should be at least one nontrivial clause for it to be
valid. Each clause is a list of antecedents linked together by the AND connective. The
antecedents themselves are in one of the following forms:

If at least one of the clauses evaluates to true, the consequent part will be executed.
The truth of the antecedent list is checked once before firing any of the consequent in the
consequent list. So, after checking the truth of the antecedent field, the consequent ac-
tions are taken one after the other in the order in which they appear in the list of actions.
The predicates allowed in SRT are =, <, >, belongs (i f a n item belongs to the set men-
tioned).

Actions: The consequent field is a list of consequents which specify what action to take
and on which slot. The order of firing is the order in which they are written. The actions
available in SRT are shown in Appendix I.

Quantifiers: The quantifiers may be either universal and existential. The quantifiers are
maintained in the form of doublets : <frame, domainfile>. The frame is any frame de-
clared in the framebase. It should be noted here that such a frame is a variable in this
rule. The domainfile is the file that contains the various instances of the variable. Care
should be taken to ensure that the format of this file is the same as that of the frame. It
may be observed that the varisbles occurring in the consequent are universally quantified
and the others are existentially quantified.

3.5. RSL

RSL is the format in which the rules are to be written for SRT to be able to understand.
The ruleblocks are specified one after another within pairs of "begin" and "end". A typi-
cal rulebase may thus be presented as

<begin Ruleblock! end, begin Ruleblock2 erzd, ...,, begin Ruleblock n end>

A rulebiock may contain severai rules. The shell keeps the knowledge represented in
RSL in a file. Tne following is an example rule written m RSL:

800 ANUPAM BASU et a1

Example 1

($RegionX.obj-shape = 'circular')

($RegionX.radio-anrib = 'water')

($RegionX.area > 799)

($RegionX.obj-shape == 'rectanguiar')

($RegionX.radio-attrib = 'water')

($RegionX.area > 799)

($RegionX.area <I 501)

then (set $RegionX.obj-type 'pool')

(add $Status.no-of-pools 1)

(addinto $Status.poois$RegionX.obj-name);

The rule can be interpreted as: For all instances of RegionX in the domain file
'Resd.dat', if its shape is either circular or rectangular, and its radiometric attribute is
water, and its area is between 799 and 1501, then mark it as a pool.

The region is marked as a pool by the actions taken by the consequents. Here the slot
'obj-type' is set to 'pool', the slot 'no-of-pools' of the frame 'Status' is incremented by
one, and the region name (identifier) is added into the set 'poois' maintained as a slot of
the frame 'Status'. It may be noted that the frame Status is not named in the quantifier
list. Hence, it is treated as a constant frame and there is no domain attached to this
frame. All updates are done in the framebase. However, at a later point of time the user
may use it as a variable by simply referring to it in the quantifier list. In such a case, the
earlier values stored have no meaning. Thus the user has to ensure that the frames are
used consistently throughout.

3.6. Stratification

The statification feature is a novelty of SRT as this feature is not found in any of the
commercial expert systems. It reduces the memory and time overheads posed by the
Rete-matching algorithm'3-based production systems. We resort to stratification algo-
rithm to decide the firing order. Here, the rules are stratified into various strata each of
which denotes a level of priority of firing the rules; for example, if rule-A is at a higher
level than rule-B, then rule-A is fired first.

SRT has the ability to handle quantified rules. Forward chaining strategy is adop!ed
for ruleblocks which have quantified rules. To backtrack across quantified rules, it is
necessary to maintain the storage of all the past bindings. Therefore, a very simple strat-
egy has been adopted in which the rules are fired in a precomputed order. This is carried
on till all the rules have been fired. Here the assumption is that when the new round of
firin'g is done, the values of the previous bindings do not get altered, ie., the rules are

SR?: A SCENE-RECOGNITION TOOL 801

monotonic. The order in which the rules shouid be fired is governed by the following
principle:

If ~ntlc-A isfired depending on the condition or value contained in slot-X (referred to
in the antecedent field of rule-A), and if rule-B, when fired, modifies ihe coarents of
siot-X (referred to in the consequentfield of rule-BJ, then rule-B should befiredfirst.

This is necessary since, after rule43 modifies the content of slot-X, the bindings for
which rule-A may be fired may change. Bou~ever, it may happen that there may be cyclic
dcpendencies among the rules, for example, rule-A + rule-3 + rule-C + rule-A.

Here, say. the rules are fired in the order A, B, C; then the contents of the slots on
which rule-A depends may change after rule-C is fired. This may result in rule-A bcing
fired for some new bindings for the variables. To take care of this situation all the rules
in the cycle are fired until the bindings of variables attached to none of these rules
change. Thus, not only the firing order but also the cycles have to be identified and
passed on to the inference engine. In order to deal with such situations we utilize a de-
pendency gruph or the rules.

3.6.1. The deprndencv graph

A dependency graph is constructed to illustrate the dependenciea that exist within the
rules of a ruleblock. This is done after the rules have been acquired. The graph has di-
rected edges and may have cycles. The nodes of the graph denote the rules . An edge
from node 'a' to node 'b' indicates that tho ruie corresponding to node 'b' depends upon
the rule corresponding to node 'a'. A rule 'Yule-A" is said to depend on another rule
"rule-W if at least one antecedent of rule-A contains a reference to a slot that is modi-
fied in the consequents of rule-3. It should however be noted that the action 'put' need
not be checked since it does not modify any slot. Jo SRT dependency graphs are formed
for each individual rule block.

3.6.2. Utilrzatton of the de,nendency graph

After the ruies have been acquired, a dependency graph is constructed for each rule-
block. Using this graph, the cycles and the order of firing are determined using the
stratification procedure. Once the order is decided, the inferene engine fires the rules
according to the precompilted order.

3.6.3. Strut f iat ion procedure

When the dependency graph is acyclic, the firing order can be identified by topological
sorting of the graph. When cycles are present, then firing of one rule may require the
firing of some other rules, which in turn may require the first rule to be refired. And this
could go on till any more firings make no difference to the framebase. Therefore, to re-
solve this, all the ruies belonging to s cycle aie clubbed together. There may be cases of

'
cycles within cycles and overlapping cycles. To deal with those, all the cycles tha: over-
lap are merged. Therefore, the following course of action is taken:

802 AM BASU erul.

PIG. 2. Dependency graph after stratification

1. Fundamental cycles are extracted from the dependency graph (a DFS strategy%
used).

2. If two cycles have common node then the two cycles are merged to create a larger
cycle. This removes the cases of overlapping cycles and cycles within cycles.

3. All the nodes which belong to a cycle axe merged into a supernode. Each super-
node, therefore, points to a list of rules corresponding to the nodes that were
merged to give rise to the supern~de. This completely removes the cycles from the
graph which is now reduced to a DAG.

4. Topological sort is performed on the DAG to obtain a firing order of the nodes.
The ordered list of nodes is then attached to the ruleblock.

Figures 2 and 3 illustrate how a given sample dependency graph is converted into a
DAG by stratification.

4. Inference engine

The inference engine of SRT uses forward chaining. We have seen that two types of
ruleblocks exist: propositional ruleblocks in which all the rules are propositional, and
predicate ruleblocks in which a: least one rule is a quantified rule. The inference engine
uses two kinds of strategies to handle each of the ruleblock varieties. The strategies are
enumerated in the following sections.

4.1. Propositional rubs

The initial state is determined by the faces supplied. Based on this information, the
inference engine attempts to reason from the initial state to the goal state (bzcktracking
if required). The search space is already reduced by the division of the rulebase
into rule- blocks. To further reduce the search space an active rule list (Am) is formed.

FIG. 3. Dependency graph after snatificat~on (sl is the supemode).

SRT: A SCENE-RECOGNITION TOOL 803

is a list of those rules whose (its antecedent field's) truth value may be affected
(TRUE).

SRT uses the depth first approach for selecting the next rule Po be fired.

4.1.1. Implementation ofthe DFS strategy

The following strategy is followed:

1. First rule whose antecedenl field evaluates to TRUE is fired.

2. All those rules whose antecedents access the slots which are modified by the fir-
ing of the rule are put on the ARL. This update is done using 'refblocks' associ-
ated with the modified slots. If a rule has already been fired then it is not put on
the ARE. This ensures that the same path is not followed while backtracking.

3. The next rule to be fired is selected from the ARL. The first rule in AFL whose
antecedents evaluate to TRUE is fired. The fired rule's status is updated to FIRED
and it is removed from the ARL.

4. Steps 2 and 3 are repeated until no more rules can be fired and then the option for
backtracking is given.

In SRT, a flag is reserved, in the status field of a rule, for indicating whether that
rule is in A E . A list of pointers to the rules in ARL is maintained. ARL is updated by
adding deleting elements from the list.

4.1.2. Backtracking

When a rule is fired, with the firing of each consequent, the previous values of the
modified slots are pushed on to a stack. The depth of the stack is equal to the number of
rules fired. The stack element is a pointer to a list of slot-like structures which contain
the old slot values and the address of the slot that has been modified.

Backtracking is done on users' choice. The number of levels to backtrack is left as a
user option. On backtracking, the old slot values are rehieved from the stack and copied
back.

4.2. Quantified rules

A different strategy is adopted for ruleblocks which have quantified rules. This subsec-
tion deals with the firing of rules in such ruleblocks.

4.2.1. Firing a rule

Once the firing order of rules in a block is decided, the next step is to fire the rules in
that order whenever such a ruleblock is selected. The Tiring order is available to the in-
ference engine in the form of a list of nodes and supernodes attached to the ruleblock.
We have seen in the previous section that each node of the dependency supernode stands
for a cycle and therefore points to a list ofrules.

Execution involves traversing the firing order lis: and firing the rule associated with
the nodes. However, the supernodes being different, they point to a list of rules, and are
evaluated differently.

4.2.1.1. Firing a node

Obtain the rule associated with the node. Instantiate the variables with new bindings
(this is done by the domain access module (DAM) at the request of the inference engine)
obtained from their respective domains and fire the rule if the antecedents are satisfied.
This process is repeated till the universally quantified variables have been instantiated
with all possible combinations of the domain elements, and the existentially quantified
variables assume values from a combination of domain elements that satisfy the antece-
dents.

4.2.1.2. Firing a supernode

A supernode represents a cycle. We have seen that evaluation of a cycle involves re-
peated firing of the rules in the cycle until there is no addition to the bindings attached
to the variables, i e . , a fixed point is reached. Iieere the assumption is that when the new
round of firing is done, the values of the previous bindings do not get altered, i.e., the
rules are monotonic.

This is implemented by keeping a list of addresses of the domain elements (frames)
with which the rule has been fired. If, by one round of firing of the rules in the cycle,
new domain elements are added, then the process is repeated. If none of the rules have
been fired with new bindings then the fixed point has reached, and hence, the process
terminated.

4.3. DAM

We have seen in the rule structure that in a quantified rule the type of a variable is deter-
mined by the frame, to which it is associated, and the admissible domain values are kept
in a file. The domain database is the collection of all such files. DAM interacts with the
inference engine at the time of firing of the rule that requires multiple instantiations of
the quantified variables.

Thus, DAM has broadly two functions:

(i) to load the domain values from the files into the data structures before firing a
rule.

(ii) to instantiate a variable while inferencing at the request of the inference engine.

For example, suppose a rule with the quantifier (x:X) is fired, where the variable x
appears in a consequent (universal quantification). The firing of this rule demands that
the rule is to be fired for all bindings of x from domain X. In order to perform this, the
inference engine calls for DAM which accesses the appropriate file, converts it into a set
of frames and passes the set as a domain to the inference engine. The domain is restored
back by the module on termination of the inference engine.

SRT: A SCENE-RECOGNITION TOOL. 805

DAM is independent of the remaining part of the shell, whereby the organization
the database is not fixed. In fact, by suitably modifying DAM, SRT could be interfaced
to any kind of database organization, e .g . , Ingres.

In the domain of scene analysis, information often suffers from linguistic imprecision.
For instance, consider a typical decision rule

if ((region X has radiometric attribute water) AND
(region X shape circular or rectangular) AND
(region X has area > 799 sq m and < 1501 sq m))
then region X may be a POOL.

Here, the shape circular is imprecise since the actual shape available as data will
never be exactly circular or rectangular. A better measure would be the degree of circu-
larity and it may take a wide range of values. Thus, the factbase supplied can often
be imprecise and uncertain in nature. Also the rule itself is not certain in identifying a
pool.

In order to deal with such inherent uncertainties, SRT has been extended to support
both exact and inexact knowledge. Fuzzy logic1' has been adbpted to capture the uncer-
tainties.

In the proposed modification of SRT, we have allowed fuzzy as well as crisp terms
and uncertainities in the rules and facts, and have employed fuzzy logic to hzndle ap-
proximate reasoning.

In this section, we brielly report the extensions of SMT, which has made it a useful
tool, for fuzzy and crisp reasoning.

5 .1 . Architectural extensions

The architecture of the enhanced version of SRT is shown in Pig. 4. There is a user in-
terface through which an user interacts with the system. Rules and facts can be specified
using RSL and FSL as before. Facts can assume fuzzy values. The possibility function
k. associated with a fuzzy qualifier F , can be defined in the form of a table with an in-
terpolation or in the form of a function. The fuzzy tables and functions are kept sepa-
rately in the database and associated with the factbase. User-defined queries can also be ,

defined and stored through the user interface. Rulebase, factbase, fuzzy qualifiers and
user-defined query programs constitute the database termed the long-term database
(LDB). MAM residing under the user interface is responsible for creation, modification
and augmentation of LDB.

The fuzzy inference engine interacts with LDB f o ~ inferencing. The inferred facts
and the intermediate computationai results are kept in a temporary storage caiied the
short-term database (SDB). DAM is active when inferencing is in progres. Details of
DAM have already been disclisscd earlie*.

FIG. 4. Architecture of the proposed system (fuzzy)

Fuzzy knowledge is represented as a set of initial information organized as frames,
slots, a set of fuzzy qualifiers and the domain-specific knowledge, organized as a set of
production rules.

5.2. Fuzzy extensions to the factbase

The factbase is organized in the form of frames and slots as discussed earlier. A slot de-
fines an attribute and the attribute value can be stored in the slot. Each value is associ-
ated with a certainty factor indicating that the fact may not be known to be completely
true.

In the proposed system, a slot may be crisp or fuzzy. A crisp slot stores a nonfuzzy,
deterministic value. A fuzzy slot stores fuzzy values. A fuzzy slot is associated with a
fuzzy qualifier F and the associated membership function p ~ . p~ is stored in the form of
a table. We allow three types of fuzzy slots, namely, real number with or without interpo-
lation and string without interpolation. Interpolation is necessary to obtain the member-
ship value of an intermediate point that has not been stored in the table. However, in
some cases, interpolation of an intermediate data point may not be meaningful due to the
nature of the data itself.

SRT: A SCENE-RECOGNITION TOOL 807

A fuzzy slot may have a quantifier. A quantifier o is a function from [0,1] to [0,1]
that operates on the possibility function p~ where F is a fuzzy qualifier. In the present
version of the extended system we aliow only a fixed quantifier function that can be one
of the three types, namely, not, very and more-or-less. If a fuzzy slot allows quantifier, it
is obvious that the slot must be real with interpolation.

The certainty associated with a slot may he fuzzy or crisp. In case of a crisp certain-
ity, it is a value between 0 and 1 and the slot may be of any type. For fuzzy certainty, the
type real with interpolation is allowed. The fuzzy certainty table is also associated with
the slot.

5.3. Extensions to rulebase organization

The structure of the rule in the proposed system is more or less identical to the previous
system. The general structure is an augmentation of the previous version of RSL,

IF <quant$iers> <antecedents> THEN <consequents> BELIEF <belief-measure>

Here quantifier denotes a predicate quantifier such as for-all or exists. An antecedent
structure is also the same as the previous version of RSE

There may be a belief measure associated with a rule. The belief measure can be crisp
or fuzzy. For a crisp belief, the belief-measure is a value between 0 and 1. A fuzzy belief
is expressed as a fuzzy set with a membership function p~ stored in the form of a table.

5.4. Extensions to the inference engine

The inference engine utilizes the rulebase, factbase, fuzzy information and the domain
database for inferencing. The basic inference strategy remains the same as discussed
earlier. However, the truth value evaluation of the antecedents and the truth assigmnent
of the consequents will differ from the previous version due to the fact that the truth
value of an antecedent in this case is no more from a domain of [0,1] but from a real
number in the range [0,1]. Moreover, the certainty of a slot value being modified by a
rule may not be done with total confidence. Here, it depends on the certainty of the
antecedents as well as the belief of the rule itself. We now discuss the method adopted
for evaluating the truth vaiue of the antecedents and the certainty factors of the conse-
quents.

Consider a general rule r conraining fuzzy-valued antecedents and consequents.

IF (A, = pl) & ..., & (A, = p,) T E N Action A = a BELIEF b.

Suppose, during execution, the facts obtained are:

[A1 = ql, ..., A, = q,].

Let the truth of antecedent i be denoted as T,. Four cases are possible. These are:

Case 1: p, are q, are crisp.

ANUPAM BASU cr ai

In that case T, = XsEqual(pi, qi); where PsEquul returns 1 if p, = q; else re-
turns 0.

Case 2: pi is crisp and qi, fuzzy.

Here T, = pqip,.

Case 3: pi is fuzzy and q; is crisp.

Here Ti = &qi.

Case 4: pi and qi are both fuzzy.

Here Ti = rn~x[card@~ n qi)/card@i), card@; n q,)lcard(q,)l.

Truth of conjunction of two antecedents is

T = rnin(T1, T2), where TI and T2 are the truth values of the two antecedents.

Truth of disjunction of two antecedents is given by

T = max(T,, T2).

If T exceeds a threshold determined by a prespecified a-cut, then the rule is made
'fireable'. When the rule is fired, it modifies slot values. The valve of the slot getting
modified will have some certainty factor which is a measure of the degree of correctness
of the value. We compute the certainty factor as follows.

Suppose the rule being fired modifies the slot S with a value a which may be crisp or
fuzzy. The rule itself has a belief measure b. If a is fuzzy, the corresponding membership
function p8 is already available. There may be four cases.

Case 1: a and b are crisp.

Then the certainty of the value a = rnin(T,b).

Case 2: a is crisp and b, fuzzy.

Then the certainty of a = pb(TJ.

Case 3: a is fuzzy and b, crisp.

Then we assign A with a fuzzy set a* having &(x) = min(T, b, PAX)).

Case 4: a and b are both fuzzy.

Then we assign A with the fuzzy set a** = min,(g,:(x), pb(x)); where a* is a
fuzzy set with p,:(x) = min(T, ,ua(x)).

The modified value and the associated certainty factors are stored with the slot. They
can be used for firing the subsequent rules that are dependent on this slot.

SRT has been successfully applied for identifying scenes in remote-sensing applications.
An excerpt from the session on expert system execution for identifying a residential area
is given next.

SWT: A SCENE-RECOGNITIGN TOOL

Frames and rules sarishctorily acquired

Stratifying the rules
The dependency graph extracted:

1-3
2 - 1 5 6 7
3 + 7
4 - 7
5 - 4 7
6 - 4
7 + 1

The dependency graph, after stratification:

1 +
2 + 1 5 6 7
3 + 7
4 + 7
5 + 4 7
6 + 4
7 + 1
3 2 6 5 4 7 1

Do you want to run in verbose mode ? n

IT IS A RESIDENTIAL AREA

The roads are: Regions: { 'R10' '814' 'R20'j
The pools are: Regions: { 'R25')
The houses are: Regions: {'Rl' 'R5' 'R7' 'R8' 'R9' '1
The parks are: Regions: ['R30')

This is DFS executing
SELECT WORKS

SELECT WORKS*

No more rules to fire in ruleblock no. 2, do you want to backtrack? y
Enter the number of levels to backtrack (maximum 2) : 2

BACKTRACK WORKS
END

DO you want another run ? n

Good Bye !!!

810 ANUPAM BASU e? nl

Table 1 -
Crirerlu CLIPS ART DPSS - SRT

Fxprcsiwe powcr
Data types
Object-orientcd
feallrres

Implementation
Language
Procedural con-
Sl*UCLS

D~qunctmn (OR)
lufercnce paradigm
Rule rnatchmg
Conflm resoimtion
Rule selection
Stratification
Kccurswe rule
evaloatlon
Funy revsomng

Qualified rules
Real smng
No

if-then-else, wlnlc

Yes
Forward chaining
R a e
Sdtenco

Recognrm act
No
No

Qualified roles
Rcal string
Yes

+then-else, while

No
Forward chainmg
Rete
Salience
Rscognlze act

No
No

Qualified tuies
Real symbols
No

None

No
Forward chainrng
Rere
Recency and specificity
Recognm act
No
No

Qualified I -L I~S

Real, sung, set
No

Cali

Yes
Forward chanmg
Smplcr
FCFS
Precomputed and DFS
Yes
Yes

Yea

6. Conclusion

In this paper, we have described the salient fcaturcs of the expert system shell SRT, de-
veloped to deal .with scene-recognition problems. In the extended mode it can deal with
fuzzy as well as crisp knowledge. SRT supports predicate rules as well as propositional
rules. Depth lirst search strategy and forward chaining are the inferencing strategies
incorporated in the inference engine. While foliowing the forward chaining strategy it is
ensured that the order of firing of the rules is independent of the order in which they are
input. This is ensured by stratifiing the rules in Ihe ruleblocks. SRT can also evaiuale
recursive rules which are identified In the course of stratification. Thus, it has the ca-
pacity to handle rules which are monotonic in ualtire regardless of the cyclic dependen-
cies.

Thc knowledge acquisition module is user-lriendly. It supports suitable languages for
specification of rules and frames. Even though it has been developed expressly for ihe
purpose of scene recognilion, the shell developed is general purpose, w ~ l h a wide range
of possible applications with similar requirements. Table 1 compares various features of
some commercial expert system tools with those of SRT.

Presently the features of SET are being enhanced to incorporate facilit~es for expla-
nation generation in "English-like" language. Also, the conflict-resolution strategy is
being made more sophisticated.

Acknowledgement

This work was supported by a project sponsored by the Ministry of DeI'encc, Govt. of
India.

SRT: A SCENE-RECOGNITION TOOL Bll

References

1. PETER, J.

2. B U M E R , M. A. (ED)

3. DAVIS, X. AND LENAT, D

5 . S H O R ~ F E . E. H., BUCHANAN, B. G.
AND FEICENBAUM, E. A.

6 . TAYLOR, J. H., AND FREDERICK, D. K

7. FINK, P. K., LUSTH, 3. C. AND

DURAN, 1. W.

8. NAnF, A. AND LEVIh'E, M. D.

9. NORONHA, S. 1. AND SARMA, V. V. S.

10. VAN MELLE, W., S$OTT, A. C.,
BENNET, J. S. AND PEARS, M. A. S.

lntroducrion to experr systems, 1986, Addison Wesley.

Rescurch and development in expert systems, 1985, Cambridge
University Press.

Knowledge-based systems in artificial intelligence, 1980, Mc-
Graw-Hilt.

Computer-based medical consulration: MYCIN, 1976, Elsevier.

Knowledge engmeering for medical decision making: A review
of computer-based clinical decision aids, Proc. IEEE, 1979, 67,
1207-1224.

An inpert system architecture for computer-aided control engi-
neering, Proc. IEEE, 1984.72, 1795-1805.

A general expert system design for diagnostic problem solving,
IEEE Trans., 1988, PAMI-7,553-560.

Low-level image segmentation: an expert system, 1984, IEEE
Trans., 1984, PAMI4,555-577.

Knowledge-based approaches far scheduling problems: A survey,
IEEE Trans., 1991. K D E J . 160-171.

The EMYCIN Mnnuoi, Report No. HPP-81-16. Heuristic Pro-
gramming Project, Computer Science Depament, Stanford
University, 1984.

The nature and evolution of the commercial expert system buiid-
ing tools, IEEE Computer, May 1987.2441.

Programming expert systems in OPS5. An introd~cfion to ruie-
bosedprogramming, 1985, Addison Wesley.

Xete: a fast algorithm for the many pattendmany object pattern
matching, Artv. IInfel., 1982.19, 17-37.

Knowledge representation in hzzy logic, IEEE Trans., 1989,
KDE.1.89-100.

Appendix I

Actions supported by SRT productions

get: (get < frame-name >< slot-name 2)

(get < frame-name >< slot-name >< string >)

This consequent gets the value of a slot from the user. It prints any mes-
sage, if given along with the frame name and slot name.

set: (set < frame-name >< slot-name >< value>)

(set <fname-name1xslot-nameZ><frame-name2><slot-name2>)

TRe value of slot is set equal to the given 'value' in the 1st case, and the
value of the second slot in 2nd case.

pd : (put < frame-name ><slot-name>) or (put < stringvalue >)

This displays either a message or the value of a slot.

gmtf: (putf < frame-name >< slot-name >)

This inputs either a message or the value of a slot into a standard file
'putfile'.

ad& Smtax is similar to 'set'.

It adds 'value' to slot value and stores the result in the slot. It may also add
the content of the 2nd slot to the 1st.

sub: Syntax is similar to 'add'. Subtraction is performed.

mul: Syntax is similar to 'add'. Multiplication is performed.

call: (call < frame-name >)

This action is used to run an external program. The syntax of this action is:
The frame name specifies the frame which contains the information about
the program to be run. The format of this frame is fixed. The following
slots should be present in the same order for the 'call' to be executed:

name: It contains the name of the executable file to be executed.

path: It contains the full path of the file to be executed.

no-of-ip-pars: It indicates the total no. of input parameters to be given
to the program to he run.

ip-par1 ..a: These are the input slots which may be of type real or
string. Care has to be taken to ensure that they are in the order required
by the program. The external program reads the inputs from these slots.

no-of-csp-pars: It indicates the total no. of output parameters to be read
from the program to be run.

op-par1 ... n: These are the output slots which may be d type seal or
strmg. Care has to he taken to ensure that they are in the order they ap-
pear in the output of called program. The external program returns the
output values in these slots.

addinto: The syntax is similar to 'set'. Jt is a set inclusion operator. It operates only
on those slots which are of the type 'set of strings' or 'set of reai'. The
'value' is added into the slot. It may also add the content of the second slot
to the first. The types of the slots should be consistent. It should be noted
that since this is a set inclusion operation.

select: (select < Ruleblockno. >)

It performs a select operation, i . e . , a new ruleblock seiecred and only the
rules in this block are fired. This is a kind of 'jump' statement.

