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Abstract 

Undrr\tnnd~ng of light plopagatlon i n  fiber and ~nte$ra:ed opilcal uauepu!der I \  mpor!.int cr, d e q n l n p  effwent 
guided wave optical srmctures. Dependmg on the complex~ty o l  the dcwce\. varmu\ snaiyt~cal  and nun~crlcnl 
mcthods of analysis have been developed by many group\ Two of the popular method\ arc heam propagallon 
method (BPM) and coupled-modc theory. Our group has, wlth certain mod~Rwiion\  and in?piovemcni\. applwl 
the\e thrones to study a few integrated optic (101 dewce\. Theae include lqh t  piopafatmn 10 planar and channel 
wavegude bends, coupling of hght from fiber to 1 0  wuvegu~3c and Ceienkov wwnd  hoimooiu generation Thro- 
iettcal deiwiltrons and some resulfa are revlewd in rhea paper. 

Keywords: Beam propagation method (BPM). coupled-mod? rhroiy (CMT).  ~ntegiated o p r r  drvicc\. optical 
fiben, sem~onduc to r  lasers, pho tunm 

I. Introduct ion 

The  advent of optical fibers and semiconductor lasers was largely responsible tor the 
rapid and revolutionary changes in the whole gamut of communication, computing. 
sensing and signal processing using photonics. A basic building block in photonics is the 
optical waveguide which traps and transports light waves in the form of well-defined 
modes. Two types of optical waveguides are important. The  cylindrical-type single and 
multimode fibers of silica glass are  the most appropriate for long-distance transmission 
and also certain sensing and signal-processing applications. Planar and channel 
waveguides are the workhorse in integrated optics a n d  optical ICs. The field of optical 
communication has assumed tremendous importance in terms of high information- 
carrying capacity. Integrated optics (10)  is expected to play an incl-easing role in optical 
signal processing at the transmitting and receiving ends and at the point of regeneration. 
Here one builds various functional devices and c i r cu~ t s  like power splitter, modulator, 
multiplexer, amplifier, switch, etc., using thin-film technologies. The study of light 
propagation through waveguide structures is an important area. as  it enables the design 
and fabrication of well-defined single-mode waveguides and devices with precise per- 
formance characteristics. Over the years the theory of dielectric optical waveguides has 
become well established. The range of methods varies from direct methods when the 
waveguides are simple ( p . 8 . .  planar step index waveguides) to coupled-mode theory and 
other approaches which are required to tackle complex waveguides. Our group has been 
active tor over five years in the field of analysis and design of waveguides 2nd 
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waveguide devices. Two of the most co~nrnonly uced methods in this ctmtext are the 
beam propagation method (BPM) and coupled-mode theo~y  (Chill'). An outline of the 
basic theory and some applications of BPM and CMT are presented in thi? review. 

2. Beam propagatior~ method (RPM) 

2.1. Fourlet transform (FTI BPM 

BPM is a transform technique where, given an input beam W ( r )  a1 z = 0 along tile propa- 

gation direction, lhe output beam at 2 = L is obtained in two stcps. In the first step tire 

field, ~ ( r ,  L), that would have propagared in a homogeneous structure r i ; ( . ! )  is obtained. 
This is easily done, for example, by multlplyng the Fourier components of the input 

beam by the corresponding pha.;e factor exp(-~0:). In the second stcp, the resulting 

propagated ficld is multiplied by a correction factor, exp(-jr). This is repeated in a 
number of steps. We now present the essential formulas of RPM' ' (for one propagation 

step z = 0 to A:). 

The propagation of light in a medium can be deccrihed hy a scalar wave equation 

where ko = wlc, w, the angular frequency of light, and V'. the Lapiacian operator. Next. 
the refractive index n(1, :) is split into two paits and is written as 

where n, (x ,  z )  is the refractive index of the homogeneous (unpertul-bed) medium and is 
assumed to bc constant. An(x, z )  is taken to be a  mall perturbation compared to n,(.r. 2 ) .  

The solution5 of the wave equation for the unperturbed medium can br: readily oh t ined  
by solving the wave equation 

The required field fin, 2 = A $  can be written as a product of :he f ~ e l d  t(.a. z = A:) 
propagated in the unperturbed medium and a correction factor r as below 

where 5 ~atisfies the Helmholtz equatlon 
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The correction factor r h a s  been obtained using the paraxial approximation in the scalar 
wave equation as2, 

Here <(x, A;) is the beam propagated in unperturbed medium n,(r, r ) ,  A,I~(x, -,_) = 

(n2  - n ; )  and p, = 2z/h,,  the propagation constant in the unperturbed medium. The 

computations are done for a point in the interval (0, Az). Propagation in homogeneous 
medium can be computed by replacing eqns (6) and (7) by an equivalent FT pair as be- 
low: 

To solve the above equations, Simpson's 113 rule can be used. But ~t would need 2N + I 
complex multiplications and additions for each value o f ,  where 2N is the number of - 
samples taken for integration. If c ( k , )  is calculated 2N times, then 2N(2N + I )  complex 

multiplications and additions will be needed. To  reduce the number of complex multipli- 
cations, we have used Simpson's 113 rule combined with fast Fourier transform (FFT) so 
that the total number of complex multiplications reduce to 4N log N. Also the speed of 
FFT and accuracy of Simpson's 113 rule is simultaneously achieved. We have applied 
the above theory to bent waveguides, y-branches, directional couplers and X-switches in 
I 0  form'. As an example, to find the field in integrated optic structures we have used 
the modified BPM to study a bent waveguide. Figure I shows a typical field variation as 
a function of propagation distance. The power in the waveguide region can then be cal- 
culated using the field obtained. It is found that when the bent angle is large, most of the 
power is radiated out of the waveguide. For example, when a Gaussian input beam 

with a refractive index 1 7 ,  = 2.1.398 and An = 0.1 is used, and the output power after a 

propagation distance of 150 pm with a bent angle of 3' is calculated, then nearly 7 0 6  of 
the power is found to be within the waveguide. If we increase the bent angle, to  about 

10". only 10% of the power remains within ;he guide. Thus RPM enables a proper de- 
sign of integrated optic structures taking info account the possible Losses at bent? in 
waveguides. 
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It may be mentioned that the BPM described above solves the Helmholtz equation di- 
rectly. A limitation of the method is that computations can be carrled out only over a 
limited propagation distance. Also, the refractive index variation must be small t o  keep 
the errors within limits. We have developed a transform technique in place of BPM in 
which such limitations can be overcome. The method converts the partial differential 
equation into a set of algebraic equations in the transform domain which can be solved 
on a computer4. 

2.2. Finite-differente (FD) BPM 

As mentioned earlier, the limitations of FT-BPM are that computations can be carried 
out only over a limited propagation distance and limited computational window, and that 
the refractive index variation must be small. An alternative approach to FT-BPM could 
be FD-BPM. We have used this method to study the coupling of light from fiber to I 0  as 
discussed below5. 

The scalar Helmholtz equation can be written in the operator formalism as 
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where the operator H ts given by 

Here n, is a suicabiy chosen mean refractive ~ndex. ko, the wave number in vacuum and 
V,, the Laplacian in transverse coordirates. Replacing the h e a r  operator H hy FD ap- 
proximaiion, the paraxial wave eqiidtion can be approximated as an explicit diffcrenre 
equation, given by 

where 

As shown ii; ?IS. 2. for every point in the z i A: plane, we need 5 points !n the z-plane. 
Hence this method is called the 5-poinr difference formuia. In the above equation, Y , , ~  
and n,>, are the optical field values and the sampled refractive inde;,vnlues, respectively, 
at .T = s,,, g = y ,  in the computatjonal window and AT,, = x ,  -.I,, and A!, = y, - yq-, .  

The above equation is sohed numcricaliy for specific caies. Both implicit and ex- 
p!icit FD algorithms were derived which were applied for the analysis of evanescel?t 
coupling between fiher and planar waveguides5, cuived optical waveguides and elec- 
troupric waveguide modulator! Figure 3 shows numerical simulation on the evanescent 
coupling between the hbcr and the planar waveguide. It is seen that there is a pertodic 
ekchange oP power from fihcr to waveguide along the propagation direction. The case 
chown is for ni= n,, i .e. ,  planar guide index and fiber icdex are the same. From snch 
stkdies an optimum c o u ~ l i n g  configorzt~on in terms of indeh prcliiles, inrerection length. 
ex . ,  can be arrivzd at. 

htan;. p i~y~ica l  syslems can be modelled as an inteiartion hetwcen (or among) 8 number 
ofcomponeni systems. Such phenome::l are cailed coupled ptenon~ena and suc!l systems 



FIG. 2 .  5-pam finite-difference scheme 

are called coupled systems. The essence of CMT is to determine the coupling coefficients 
and coupling equations from the properties of component subsystems. For example, the 
coupled conditions between two optical waveguides when in close proximity can be 
analysed in terms of the normal modes of the two waveguides when they are far apart. 
CMT can be applied to solve many problems in the field of fiber and integrated optics. 
such as analysis of waveguide arrays, periodic, nonparallel, nonlinear and externally 
perturbed waveguides. Various approaches have been reported for the derivation of the 
coupled-mode equations7. We have considered a derivation of scalar coupled-mode 

, equations as outlined below. 

3.1. Coupled-mode equatrons from scalar wave equufion 

Consider an N-waveguide system. The eigen mode of such a system can be written as the 
h e a r  cornhination of individual interacting modes as foilows: 
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FIG. 3.  Evanescent couplmg between fiber and planar waveguide. (a) field amplirude in z-y p!ane, and (b) field 
arnplitudc in z-x plane. 

The functions vp and &(z) are the individual mode fields and their weightages. Substi- 
tuting the eigen-mode expression in the scalar wave equation, we obtain, 

where 5': is the transverse Laplacian. Consider Up in terms of their envelopes, so that 

When variation of A, is small compared to exp(-ifi,z) which is true even for strong 
couplings, second derivative of U, can be neglected (this is known as the slowly varying 
approximation). We get, 

F:om eqn 18, 
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Hence. 
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Substituting for d2~,, /d:'  in eqn 17, we get 

and n' = n z  +An;, and dividing with 2i0, throughout we get, 

Multiplying throughout with yi and integrating over the cross section, we get N equa- 

tions ( q  = 1 A . N )  relating U,,, 

where 

These are thc general coupled-mode equations. Coupled-mode solutions for specific 
cases can then be' obtained. In the next section, we consider coupled-mode theory for 
nonparallel waveguides. 

1.2. Coupled-mode iheory for- indined norrguides 

In this section, a method for analysing coupling hetween inclined waveguides is dis- 
cussed. The method consists of using drtfcrent coordinate systems for cach of the indi- 
vidual waveguide modes and also the super modes. 

The optical waveguide conhguratiorr under consideration 15 showil in Fig. 4. It 
consists of two planar waveguides A and B separated by d,, in : = 0 plane. Thc wave- 
guide R is inclined at an angle 0 to the waveguide A. Thc coordinate transf<>rmation re- 
lations are 
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z' = z cosd + ( x  - d , )  sin8 

x' = -2 sin0 + (x - 4,) cos8 

whe~e  4 is the wavegoide separation at  z = 0. 

The ~iormal :node proiXes, the refractive index profiles and the perturbed refractive 
index profiles of waveguides A and B for the simple planar waveguide coupler are given 

by 

Here C ,  i s  the normalimtion constant. k,. at and C, car) be determined once the numeri- 
cal values hi the structure arc specilicd. Similarly we can write expressions for the other 
mode in x'-L' plane. 

7 7 *e can c~nside; the interaction io be along z-axis. The instantaneous supermode 
profile in any z plane Hx, z )  may be thought of as a combination of uncoupled local 
normal mode profiles tp& z) and v&', z') with varying U&) and Udz) as below. 
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For propagation in z-x plane the wave equation is, 

Substituting eqn (31) in eqn (32), we get, 

Simpljfying this, while noting that individual waveguide modes satisfy corresponding 
wave equatlon in their respective coordinate system, we get, 

Now we require the evaluation of fi and its derivative in the common coordinate 
system, i . e . ,  in x-z coordinates. This can be readily done if the field variation in the 
perturbed region is known. Since planar waveguides have exponentially varying fields in 
the perturbed region we can proceed as below. 

Equation (34) can now be rewritten as 

k,?h?U, ( z ) ~ ,  ( ~ ) e - ' ~ * '  + k;A$U, (~)ij7,e-'~~' 

-2ip, dLl,e-~~a~y -zip; %e-i~i:yrh = 0, 
(36) 

dz dz 

Now multiplying eqn (36) successively with y r " ,~ )e '~"~  and y/~(x)e'Bh and integrat- 
ing with respect to x, we get 

and 
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For identical planar waveguides the following are the expressions for couplrd-mode 
equations, coupling coefficients, etc. 

and 

If we consider the step-index planar waveguides, the fo:iowing coupled-mode solu- 
tions can be obtained. From coupled-mode equations we note that the req~iired phase- 

matching condition is Po = W cos8=  $. say. The coupling paramelers KOh and K,,, reduce 
to those of the coupling coefficient for a directional coupler with the initial gap, i .e . ,  

K = = &,,. Assuming 11" = 1 and Uh = 0 at z = 0 we can solve eqns (40) and (41) di- 
rectly resulting in 



A. SELVARAJAN AND R. BALASLlBRAMANlAN 

The following approximatims were made in deriving the coupled-mode equations 
and the solutions given above. 

This implies that U ,  varies slowly compared to exp(-ifl,:) along z .  

This is valid because in the region of first integration the function varies exponen- 
tially whereas in the region of second integration one function is exponential and the 
other is sinusoidal. 

In our case, 9 is small so that s ine=  O =  0, tang-  8=  0 in comparison with cos 
6 Z 1. But when sine or cos0 is multiplied by 2 we cannot neglect because : can be large. 
The approximation is only for the sake of simplifying the final form of equations. The 
theory of coupled-mode equations derived here is not dependent on this. 

In  solving the coupled-mode equations, we assumed slow variation of exp(-a, tan&). 
so that the expressions for U ,  and U ,  are simple. 

3.3. Application to Cerenkov SHG 

We have extended the coupled-mode theory to analyse the Cerenkov-type SWG. In this 
case, the SHG wave propagates at an angle to the guided mode. Since the old CMT does 
not consider the angle of propagation between the interacting modes, the overlap factor 
between the fundamental and second harmonic modes obtained using old CMT is incor- 
rect. The overlap factor can be improved by incorporating the angle of propagation as in 
the present case. To  do this we make use of the theory discussed in Section 3.2. 

The perturbed wave equation is given by8, 

The total field for the present case can be written as the linear combination of fun- 
damental u;l\i. .I[ (I) and the second harmonic wave at 2 0 ,  i.e., 

and the nonlinear polarization is given by 
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where, respectively, U d z )  and UI,(Z) are the mode field amplitudes of the fundamental 
and ihe second harmonic pump fields, 4, and {b ,  the transverse field distributions of the 
fundamental and the second harmonic modes, p, and ,bh, the propagation constants of 
fundamental and second hasmonic mode and d is the effective nonlinear coefficient. 

Substituting eqns (45) and (46) in eqn (44) and following the same procedure as out- 
lined in Section 3.1 the following equation can be derived, 

Now, the second term on the left-hand side can be written as 

Substituting eqn (48) in (47), we get, 

-zip,  ~ i y , ( ~ ) ~ x ~ [ i ( m - ~ ~ ~ ) ] -  & 2 i ~ ~ ~ y ~ ( x ' ) e x p [ i ( 2 w t - ~ ~ z ' ) ] c o s 9  aZ 

where 9 is the angle at which the second harmonic wave is radiated which is given by 

% = coii($+), h$,, the effective refractive index of the waveguide at the fundamental 

wavelength, and np, the substrate refractive index at the second harmonic wavelength. 

The term yr,(x') and its derivative in the above equation can he transformed into the 
common coordinate system, x-z, using eqn (27), by assuming a cosine variation of sec- 
ond harmonic mode in the interaction region, as fo!lows, 
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where 

Substituting eqns (50) and (51) in (49) and simplifying, we get, 

By noting that k ,  cos0 = P b  sine and denoting 

Multiplying by y ~ ( x ) e x p [ - i ( 2 a - ~ ~ z ) ]  throughout and integrating aver the wave- 

guide cross section, we get, 
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where we have used the approximation, 

Power generated at the second harmonic wave is given by 

thus, 

In the Cerenkov-type phase matching, the energy from the fundamental-guided mode 
at w is coupled to the continuum radiation modes at 20.1. Thus the generated second har- 
monic intensity profile is the super position of these radiation fields. The new phase 
mismatch factor is, AD= P;-2Po  

To calculate the power at the second harmonic radiation mode in the case of Cer- 
enkov contiguration, the integral is changed to an easier form as follows: 

From eqn (52) ,  we can derive the expression for dk; and dp,", and is given by 

Thus, 



Solving eqn(59), we get. 

For the limiting case of 8= 0. the above equation redxes  to the result obtai!iablc 
using the old scalar coupied-modc theory Figure 5 shows :he plot of \,ariation of SNG 
efficiency as a function of waveguide thickness. So!id line corresponds to the culvr %in&? 
old scaiar CMT, dashed curve to the ~mproved CMT (prewnl casc) and dotced line to thc 
method given in Wahimuze er ai' It may be noted that the i~iclusion of angie factor ?n 
inc present theory gives rise to  a lower efficiency than predicted by the old CMT as ex- 
pecled. Also due to thc fact that at larger waveguidl: thickness, the :ingle hetween the 
interacting nlodes is small, the predicted SHG effictexies by all the three methods are 
nearly thc same. One can lhus arrive at ccnain conciusionr regerding the :-an& of appii- 
cnbility of the various theories. Tnc prescnt theory has also been used In the study of 
SIIG in crybial core$ fibers"'. 

4. Conclusions 

Two main methods of ana!ysis are addressed in this review, ~ k . ,  BPM and CMT. These 
mzzhods arc suitably rnodiried and improved so tirat iiglif propagatlon through f ~ b c r  and 
integrated optic waveguide structures can be evaluated more correctly. Nunteruxl ~ i n i u -  
lations have been done for some guided wavz sfruclures and some i r e d t s  are presented. 
Wherever possibk the present rewits are compatcd with other known methods reported 
in :i!errture so thar the usefulness or otherwise of :he present theory can be propcrly as- 
aesed.  

x 
, 1 
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