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Abstract

Understanding of light propagation in fiber and 1ntegrated opticai wavegurdes 18 tmportant 1n designing efficient
guided wave optical structures. Depending on the complexity of the devices, various analyucal and numerical
methods of analysis have been developed by many groups Two of the popular methods are beam propagation
method (BPM) and coupled-mode theory. Qur group has, with certain modifications and mprovements. applied
these theories to study a few integrated optic (I0) devices. These mclude light propagation 1o planar und channel
waveguide bends, coupling of Light from fiber to IO waveguide and Cerenkov second harmonic generation Theo-
retical dertvarions and some results are reviewed in this paper.

Keywords: Beam propagation method (BPM). coupled-mode theory (CMT), mtegrated optic devices, opucal
fibers, s d lasers, ph ;.

1. Intreduction

The advent of optical fibers and semiconductor lasers was largely responsible for the
rapid and revolutionary changes in the whole gamut of communication, computing,
sensing and signal processing using photonics. A basic building block in photonics is the
optical waveguide which traps and transports light waves in the form of well-defined
modes. Two types of optical waveguides are important. The cylindrical-type single and
multimode fibers of silica glass are the most appropriate for long-distance transmission
and also certain sensing and signal-processing applications. Planar and channel
waveguides are the workhorse in integrated optics and optical ICs. The field of optical
communication has assumed tremendous importance in terms of high information-
carrying capacity. Integrated optics (10} is expected to play an increasing role in optical
signal processing at the rransmitting and receiving ends and at the point of regeneration.
Here one builds various functional devices and circuits like power splitter, modulator,
multiplexer, amplifier, switch, etc., using thin-film technologies. The study of light
propagation through waveguide structures is an important area-as it enables the design
and fabrication of well-defined single-mode waveguides and devices with precise per-
formance characteristics. Over the years the theory of dielectric optical waveguides has
become well established. The range of methods varies from direct methods when the
waveguides are simple {¢.g., planar step index waveguides) to coupled-mode theory and
other approaches which are reguired to tackle complex waveguides. Our group has been
active for over five years in the field of analysis and design of waveguides and
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waveguide devices. Two of the most commonly used methods in this context are the
beam propagation method (BPM) and coupled-mode theory (CMT). An outline of the
basic theory and some applications of BPM and CMT are presenied in this review,

2. Beam propagation method (BPM)

2.1. Fourier transform (FT) BPM

BPM is a transform technique where, given an input bearn y(x) at = = 0 along the propa-
gation direction, the output beam at = = L is obtained in two steps. In the first step the
field, w(x, L), that would have propagated in a homogeneous structure nf(.\*) is obtained.
This is easily done, for example, by multiplying the Fourier components of the input
beam by the corresponding phase factor exp(—jfz). In the second step, the resulting
propagated field is multiplied by a correction factor, exp(-jT). This is repeated in a
number of steps. We now present the essential formulas of BPM'? (for one propagation
step z =0 to Az).
The propagation of light in a medium can be described by a scalar wave equation

Vi +kn® (v, =0 M

where ko = w/c, o, the angular frequency of light, and Vl, the Laplacian operator. Next,
the refractive index n(x, ) is split into two parts and is written as

mx, 2y = nx, 2) + Andy, o) (2)

where n,(x, 2) is the refractive index of the homogeneous (unperturbed) medium and is
assumed to be constant. An(x, z) is taken ro be a small perturbation compared to n.(x, 2).

The solutions of the wave equation for the unperturbed medium can be readily obtained
by solving the wave equation

V29 +kin? (x,2) = 0. 3)

The required field y(x, z = A7) can be writlen as a product of the field &(x, z = Az)

propagated in the unperturbed medium and a correction factor I as below
(5,2 = A2) = E(x.2 = A)exp(~ T) @

where & satisfies the Helmholtz equation
V2§+k§n§(x,:)§=0< &)

Here it is assumed that wix, 0) = 5(.\', 0). Also &(x, Az) can be expressed as

ErA2) = 3 4,0, ) exp(~jB, Az) ®

=\
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Ay = | Ex000;, (. o

The correction factor I has been obtained using the paraxial approximation in the scalar
. 2
wave equation as’,

Ant{x,z
r=k} —%—)m =~ kgAnAz. ®)

Here &(x, Az) is the beam propagated in unperturbed medium n(x, z), An’(x, ) =
(nz—nf) and B, =2n/kn,, the propagation constant in the unperturbed medium. The
computations are done for a point in the interval (0, Az). Propagation in homogeneous

medium can be computed by replacing eqns (6) and (7) by an equivalent FT pair as be-
low:

E(x,Az)= éj: g(k‘ ,Az)exp(jk, x)dk, 9)
F(k,,0) = j; E(x0)exp(- jk,x)dx (10)
E(k,.0.) =&k, Orexp(-jac) an
where
B=(kin?-2)". (12)

To solve the above equations, Simpson's 1/3 rule can be used. But it would need 2N + 1
complex multiplications and additions for each value of &, where 2N is the number of
samples taken for integration. If &(k, ) is calculated 2N times, then 2N(2N + 1) complex
multipiications and additions will be needed. To reduce the number of complex multipli-
cations, we have used Simpson's 1/3 rule combined with fast Fourier transform (FFT) so
that the total number of complex multiplications reduce to 4N log N. Also the speed of
FFT and accuracy of Simpson's 1/3 rule is simultaneously achieved. We have applied
the above theory to bent waveguides, y-branches, directional couplers and X-switches in
IO form’. As an example, to find the field in integrated optic structures we have used
the modified BPM to study a bent waveguide. Figure 1 shows a typical field variation as
a function of propagation distance. The power in the waveguide region can then be cal-
culated using the field obtained. It is found that when the bent angle is large, most of the
power is radiated out of the waveguide. For example, when a Gaussian input beam
with a refractive index 5, =2.1398 and An=0.1 is used, and the output power after a
propagation distance of 150 ym with a bent angle of 3° is calculated, then nearly 70% of
the power is found to be within the waveguide. If we increase the bent angle, to about
10°, only 10% of the power remains within the guide. Thus BPM enables a proper de-
sign of integrated optic structures taking into account the possible losses at bents in
waveguides.
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It may be mentioned that the BPM described above solves the Helmholtz equation di-
rectly. A limitation of the method is that computations can be carried out only over a
limited propagation distance. Also, the refractive index variation must be small to keep
the errors within limits. We have developed a transform technique in place of BPM in
which such limitations can be overcome. The method converts the partial differential
equation into a set of algebraic equations in the transform domain which can be solved
on a computer®.

2.2. Finite-difference (FD) BPM

As mentioned earlier, the limitations of FT-BPM are that computations can be carried
out only over a limited propagation distance and limited computational window, and that
the refractive index variation must be small. An alternative approach to FT-BPM could
be FD-BPM. We have used this method to study the coupling of light from fiber to IO as
discussed below’,

The scalar Helmholtz equation can be written in the operator formalism as

v _ R
~-=Hy (13)
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where the operator / is given by

H= __!_[Vf -Irké(nz(x,y,z)-n,z)j. (14)

2 jkyn,
Here n, is a suitably chaosen mean refractive index, ky, the wave number in vacuum and
V., the Laplacian in transverse coordirates. Replacing the linear operator H by FD ap-
proximation, the paraxial wave equation can be approximated as an explicit difference
equation, given by

R X . - .
S T [V porg 6 W 3B W 20 by (15

where

» Ax,,(Axp -‘rAx,,,,}

B Y
Ax, (A, +Ax, )

P S
qu(qu +Ayl/")

(8, + B2

i“(l+ —a" -t =bT+ k,}(n?w -l }]

As shown in Fig. 2, for every poist in the z + Az plane, we need 3 points in the z-plane.
Hence this method is called the 5-point difference formula. In the above equation, ¥,
and n,, are the optical field values and the sampled refractive index values, respectively,
at X = X, y = ¥, in the computational window and Ax, = x, —.x,., and Ay, - Vgt

The above equation is solved numerically for specific cases. Both implicit and ex-
plicit FD algorithms were derived which were applied for the analfysis of evanescent
coupling between fiber and planar waveguidess, curved optical waveguides and elec-
trooptic waveguide modulator®. Figure 3 shows numerical simulation on the evanescent
coupling between the fiber and the planar waveguide. It is seen that there is a periodic
exchange of power from fiber to wavegunide along the propagation direction. The case
shown is for s = n,, i.e., planar guide index and fiber index are the same. From such
studies an optimum coupling configuration in terms of index profiles, interaction length,
etc., can be arrived at.

3. Coupled-mode theory and applications

Many physical systems can be modelled as an interaction between (or among) & number
of component systems. Such phenomera are cailed coupled phenomena and sach systems
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are called coupled systems. The essence of CMT is to determine the coupling coefficients
and coupling equations from the properties of component subsystems. For example, the
coupled conditions between two optical waveguides when in close proximity can be
analysed in terms of the normal modes of the two waveguides when they are far apart.
CMT can be applied to solve many problems in the field of fiber and integrated optics.
such as analysis of waveguide arrays, periodic, nonparallel, nonlinear and externally
perturbed waveguides. Various approaches have been reported for the derivation of the

coipled-mode equations’. We have considered a derivation of scalar coupled-mode
equations as outlined below.,

3.3. Coupled-mode equations from scalar wave equation

Consider an N-waveguide system. The eigen mode of such a system can be written as the
linear combination of individual interacting modes as follows:
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N
W(x,3,2) = 3 U 6,3 (16)

p=1
The functions y, and U,(z) are the individual mode fields and their weightages. Substi-
tuting the eigen-mode expression in the scalar wave equation, we obtain,

N 2

2 au, 2.2
2 uviv, +'E;§“‘I’p+ko” U, =0 an
p=1

where V% is the transverse Laplacian. Consider U, in terms of their envelopes, so that
U (2y=4,(2) exp(~if ,2). (18)

When variation of A, is small compared to exp(-ifB,z) which is true even for strong
couplings, second derivative of U, can be neglected (this is known as the slowly varying
approximation). We get,

v, (d*A, . dA, )
dz2‘" =[ a’zzp —Zzﬁp—d—z——ﬁ;Ap exp(—if,z)
dA
:(-2{[},}-—‘—1-21— ﬁﬁA,,Jexp(-ippzy (19
Tom eqn 18,
dA

dUu .
—IE’L=(~EZ-”—+iﬁPU,,}exp(tﬁpz). (20)
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Hence,
U
b +ﬁ,; 2 @1
Substituting for d*U,/d=" in eqn 17, we get
" . dU}.\
Z{(VZT i’ =B U, + 25U, - 2B, “_a,;’j‘f’n} =0. 22)
»

Since
2, @2
(V%» +k3nl‘, %ﬁ,,)ly[, =0

and n? =n, +Anp, and dividing with 2i8, throughout we get,

du, kg
i =0. (23)
Ep'{ " +iB U, + (2/3 ]An U }y” 0

Multiplying throughout with \(/: and integrating over the cross section, we get N equa-
tions (g = 1,2,..N) relating U,

av, %
Z(MW—JZLM,G”MWUPH[Zﬁ }W 1%: . 24

7
where

M, = j Yoy, ds. (25)

Ly = | a2y ds. (26)

These are the general coupled-mode equations. Coupled-made solutions for specific

cases can then be obtained. In the next section, we consider coupled-mode theoxy for
nonparallel waveguides.

3.2. Coupled-mode theory for inclined waveguides

In this section, a method for analysing coupling between inclined waveguides is dis-
cussed. The method consists of using different coordinate systems for cach of the indi-
vidual waveguide mades and alse the super modes.

The optical waveguide configuration under consideration is shown in Fig. 4. It
consists of two planar waveguides A and B separated by do in z=0 plane. The wave-

guide B is inclined at an angle € 1o the waveguide A. The coordinate transformation re-
lations are
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Fig 4 Schematic of wavegwdes and coordmate sys-
tem used 1 the CMT for inclined waveguides.
7 =zcos89 +(x —d,) sind
X' =z 8in8+ (x - d,) cos@ 27

where d, is the wavegunide separation at z = 0.

The normal mode profiles, the refractive index profiles and the perturbed refractive
index profiles of waveguides A and B for the simple planar waveguide coupler are given
by

) (n? | <w
m(x={ (28)

n; |x>w

2.2
5 - —dy ~ztan sec®
An; G = - Ry ix o Ztar61 < wsec (29)
otherwise
. c, cos(kfx) I <w

V(7)) = (30)

Here C, is the normalization constant, ks, o and C, can be determined once the numeri-
cai values for the structure are specified. Similarfy we can write expressions for the other
mode in x’~z" plane.

We can consider the interaclion 1o be along z-axis. The instantapeous supermode
profile in any z plane w(x, z) may be thought of as a combination of uncoupled Jocal
normal mode profiles y,lx, 2) and w(x', 27) with varying U2) and Uy(z) as below.

§x,2) = U, (2, (0™ P 2 Uy (2 (2)e ™ @Bn

Here, U/, and U}, determine the various characteristics of the mode interaction. These
are velated through the coupled-mode equations.
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For propagation in z-x plane the wave equation is,

2

Substituting eqn (31) in eqn (32), we get,

2 2
B, dJ =By
Uﬂ(z)_we ﬂuu"'Ub(Z)—z{Wb(“' Je By }

+v/a(x) {U @ }+8~{U,,(z)wh(x e P} (33)
+k5n2U,,(z)wae"/’«~ U, (e P =0

Simpljfying this, while noting that individual waveguide modes satisfy corresponding
wave equation in their respective coordinate system, we get,

kgAnz (z)wa(x)e"ﬁu:+k§An,§U,,(z)w,,(x'>e"ﬂ'F'

34)
-~ a —IB,,. dUb i P -1 (
Zlﬁa W, +2—~~dz 5 {wh(x Ye } =0.

Now we require the evaluation of y5 and its derivative in the common coordinate
system, i.e., in x-z coordinates. This can be readily done if the field variation in the
perturbed region is known. Since planar waveguides have exponentially varying fields in
the perturbed region we can proceed as below.

e g B Oy L B N it

(35)
=y, ()—iB, e P cosB+ dw’h ¢"P¥ (sin@).
v
Equation (34) can now be rewritten as
k§M2U (z)v/a(x)e“"“z + AR, () e
" (36)
_2,ﬁ a —rﬂmwa —Ziﬂ;ﬂe—'ﬁ":l}/b =0

dz
Now multiplying eqn (36) successively with \[/:(x)e"’s“Z and w;(x)e’m: and integrat-
ing with respect to x, we get
KU [ Ay e 0,9 a2

. AU, . o AUy ages [ 37
2iB, = [ ide=21g, e [ a0

and
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KU o ez and g aptn j Al whde+ k30, j A2 (O, (dx

38
—2iB, dZu o7 j‘ Wyw;;dx'—Qiﬂ/,%Jl;thdf: 0 o0
where

B =B,cos8—ia, sing

AB =B, ~B;, =B, — B, cosd+ia, sind

AP” =B, - By =B~ Brcosd-ia, sing

a, =0.cos0+iff,sin6

o* =0, cos@~if,sing. (39)

For identical planar waveguides the following are the expressions for coupled-mode
equations, coupling coefficients, etc.

Wa ik e bimawey, (40)
dz
d{lj],, = iK, ¢ e Yy 41
and
_ ks Swiamw,dx (42)
ab T 2
28, fyidx
& Typamy dx
Py BN v ——
28, ;‘I‘;if?",’ dx—’rcosé’h[/idx
ks Jwismyde 43

= 28,c088  [widy

If we consider the step-index planar waveguides, the following coupled-mode solu-
tions can be obtained. From coupled-mode equations we note that the required phase-
maltching condition is §, = B, cos8 = B, say. The coupling parameters K, and K, reduce
to those of the coupling coefficient for a directional coupler with the initial gap, f.e.,
K=K, =Ky, Assuming U, =1 and U, = 0 at z =0 we can solve egns (40) and (41) di-
rectly resulting in

K —zo, und
U, =cosq————|l—e )
“ s{a{ tam9( /
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.. K -z, tand
=i - I—e ™ .
Us Hm{a‘ tane( )}

The following approximations were made in deriving the coupled-mode equations
and the solutions given above.

av,
—,efc.
B~

This implies that U, varies slowly cempared to exp(—ifi,z) along 2.
J‘An‘fwfldx << J Anlylydy.

This is valid because in the region of first integration the function varies exponen-

tially whereas in the region of second integration one function is exponential and the
other is sinusoidal.

In our case, @ is small so that sin8= 6=0, tan8= 8=0 in comparison with cos
6= 1. But when sing or cos@ is multiplied by z we cannot neglect because = can be large.
The approximation is only for the sake of simplifying the final form of equations. The
theory of coupled-mode equations derived here is not dependent on this.

In solving the coupled-mode equations, we assumed slow variation of exp(~a, tan8z),
so that the expressions for U, and U, are simple.

3.3. Application to Cerenkov SHG

We have extended the coupled-mode theory to analyse the Cerenkov-type SHG. In this
case, the SHG wave propagates at an angle to the guided mode. Since the old CMT does
not consider the angle of propagation between the interacting modes, the overlap factor
between the fundamental and second harmonic modes obtained using old CMT is incor-
rect. The overlap factor can be improved by incorporating the angle of propagation as in
the present case. To do this we make use of the theory discussed in Section 3.2.

The perturbed wave equation is given by®,
& P
Vot -pe ét—ly/(x, )=l ;%—Z[PNL (x, :,r)]y. (44)

The total field for the present case can be written as the linear combination of fun-
damental wave ot © and the second harmonic wave at 2, ie.,

V2= U, (explitor— B, ]+ U, w0 hexplizar - B,20]  (45)
and the noniinear polarization is given by

[P (0.2,0)] = dUZ (W (5)exp(2er ~28,2) 146)
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where, respectively, Uy(z) and Uy(z) are the mode field amplitades of the fundamental
and the second harmonic pump fields, &, and &, the transverse field distributions of the

fundamental and the second harmonic modes, f§, and B, the propagation constants of
fundamental and second harmonic mode and d is the effective nonlinear coefficient.

Substituting eqns (45) and (46) in eqn (44) and following the same procedure as out-
lined in Section 3.1 the following equation can be derived,

o, ( ) "U”(Z) 4 Syt el i2ar- 7))

(€3] exp[i(a)t -8 az)]

= —4uow2dU3w3<x) expli2m-28,2)]. @7
Now, the second term on the left-hand side can be written as
7 , . ;
=y (exefiaan-p,2)]} =

,

2 fvstresficorn g} -2 v exli2on - £,

—iﬁ,,u/,,(x')exp[i(2wt—[3bz’)]cos9+aw”( cxp[(Ztot Byz’ )]sine. (48)

Substituting eqn (48) in (47), we get,

U, (z) 9U;,( )

W, (x')exp[i(th -8B ,,z')] cosf

~2if, 22y (expli{ar—B,2)] - 2B,

_29U@ 3‘[’ GO Al
¢;z ;x' exp[z(lcut—-ﬁ,,z )]sme
= ~4p,0*dUy (o expli2er ~28,7)] (49}

where 8 is the angle at which the second harmonic wave is radiated which is given by

2w

6= cos” ( 2 ), Ng;, the effective refractive index of the waveguide at the fundamental
wavelength, and nw the substrate refractive index at the second harmonic wavelength.

The term y,(x") and its derivative in the above equation can be transformed into the
common coordinate system, x-z, using eqn (27), by assuming a cosine variation of sec-
ond harmonic mode in the interaction region, as follows,

W, (eexpli2e - £,2)] ~
= E, cosfk, (xcos @ ~z5in)] exp{i{th — By(xsind+zc0s8)])
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_E eiln!{ ikox iBie | gmix e«iﬂ;z}
2

and

= Wb(x )exp[l(hue ,B),Z )]:—-e‘ @y { ik x -ﬁ;,z +e ﬁbzl

where
k, =k, cosf~ f, sinf
kZ=k cos8+f,sin8
= B, cos8+k, sinf
B = B, cos9~k, sind

Substituting eqns (50) and (51) in (49) and simplifying, we get,

2B, a(Z)

dUb(Z) s i2ar{ on ikix ~:ﬁz ~ikyx —tﬁz
S AT e

2y Kexpli{on= B,7)]

= 4,u”a)‘dU2yla(x) exp[ (200t~ 2,6,,1)]

By noting that k, cos8 = B, sin8 and denoting

—]2—EA. exp(ik] x) = yy(x)

! - ”

—Z—E_r exp{ikx) =y (x)
we have
U, (@)

oz

dU -t ~ wr-Bz
20 g 0y |

2B, w, () expli{ax - B,7)]

=4powsz2wa(x)epr (20t-28, z)]

(50

(&3]

(52)

(53}

54)

(55

Multiplying by y/"‘(x)expifi(Za)t—ﬂ;'z)] throughout and integrating over the wave-

guide cross section, we get,

23U du, (z)[ i(B5-B3)z
d

fwy [y (x)dee’ iRy r8 17 («‘C)‘I/b(x)dxil

= 4p,@°dU2 [y 2wy (dxexa] -2, - B, )]

(56)
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where we have used the approximation,

Jvawwiae << fupiex
Equation (56) can be written as

dUb(z) =—i2u,0 2aiU Febf

dz
where
(Wi 0wy (e
"B coars B3 Ty o]
AB=f87-28,.

Power generated at the second harmonic wave is given by
pre J'O W of dky
thus,

P2”=4/1,2,m4d2(P‘”)2I‘2N———— )
5

531

57

(58)

(59)

(60)

In the Cerenkov-type phase matching, the energy from the fundamental-guided mode
at @ is coupled to the continuum radiation modes at 2. Thus the generated second har-
monic intensity profile is the super position of these radiation fields. The new phase

mismatch factor is, A= B, ~28,.

To calculate the power at the second harmonic radiation mode in the case of Cer-

enkov configuration, the integral is changed to an easier form as follows:

j: & = j:dﬁ 5 J:dA,B.

From egn (52), we can derive the expression for dk) and dfj, and is given by

= dﬂb(sinﬂ—%mse)

4y, dﬁbkcos(?«fﬁ" smB)

iy =-dAB.
Thus,
(p),, coss—sine)

dk]'= dAﬁ~——-————-—-—.
(c056+ ’fv"sin 6)

61

(62)
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Solving eqn(59), we get,

(f" cosf — inH}
P2 =16ulmtd (P")F 2z ..
(cos@+ By gin 6)

(63)

For the limiting case of §=0, the above equation reduces to the result obtainable
using the old scalar coupled-mode theory. Figure 5 shows the plot of vartation of SHG
efficiency as a function of waveguide thickness. Solid line corresponds to the curve using
old scalar CMT, dashed curve to the improved CMT (present case} and dotied line to the
method given in Hashimuze et af ° It may be noted that the inclusion of angie factor in
the presenl theory gives rise to a lower efficiency than predicted by the old CMT as ex-
pected. Also due to the fact that at larger waveguide thickness, the angle between the
interacting modes is small, the predicted SHG efficiencies by all the three methods are
nearly the same. One can thus arrive at certain conclusions regarding the range of appli-
cability of the various theories. The present theory has also been used in the study of
SHG in crystal cored fibers'®

4. Conclusions

Two main methods of analysis are addressed in this review, viz., BPM and CMT. These
methods are suitably modified and improved so that light propagation through fiber and
integrated optic waveguide structures can be evaluated more correctly. Numerical simu-
lations have been done for some guided wave structures and some results arve presented.
Wherever possible the present results are compated with other known methods reported
in Hierature so that the usefulness or otherwise of the present theory can be preperly as-
sessed.
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