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Abstract 

This paper addresses the problem of color image restoration, di,torted by intra- and inter-channel blur, and COITupted by 
additive noise. The image is modeled as Markov random field, and color image restoration is cast as a maximum a POSlt:­

riori (MAP) estimation problem. We propose a first-order interchannel interaction model for restoration. We compare this 
model with the results when interaction is not considered. The proposed model is fairly general. and the result,; are satisfac­
tory even when interchannel degradation parameter is unknown. 
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1. Introduction 

The aim of image restoration is to recover the original from the degraded image, corrupted by 
noise. Typically, degradation is modeled by a linear blur. Sources of blur are motion blur, out­
of-focus blur, atmospheric turbulence, and others. Noise may arise from digitization and 
quantization, transmission and recording medium, thermal noise, etc. Classical methods of 
image restoration 1.2 assume the blurring operation is exactly known a priori. Observed image 
is then de-convolved using known blurring function. This approach basically involves solution 
to Fredholm integral equation of the first kind, which are usually ill-conditioned.3 Such ill­
conditioning can be overcome by regularization procedures," 

Restoration of monochrome images, when the blurring function is knO\vTI, is ,,:veIl ad­
dressed in the literature. Some of the techniques are listed elsewhere. 5

-
7 Results for color im­

age restoration are not all that satisfactory mainly because the psychology of color image per­
ception in human beings is not fully understood, 

Nonlinear model for color images has been reported in literature. Panjwani and Heall 
propose a scheme for segmentation, wherein a color pixel at each location (i, j) is a linear 
combination of color componeRts of the neighbors. The neighborhood includes both within 
and across the channel neighbors, In the above, the number of parameters involved is large. 
Galatsanos et al. 9 extend the model given by Andrew and Hunt 1 to include the interchannel 
parameters in H. They use a 'weighted 3D operator defined by 3 x 3 x 3 convolution mask' 
and use a least squares approach for energy minimization, Here again the number of parame 
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tefs is large. Zhu and Galatsanos lo use the model proposed by Galatsanos et al.') They use de­
terministic multichannel filters and compare the results obtained by cross-validation methods. 
Tom et a[.11 use the same model of Galatsanos et al. 9 for identification and restoration within 
and across the channel blurs. They use maximum likelihood objective functions and then the 
expectation maximization algorithm for optimization. Markov random field (MRF) model for 
color images was suggested by DailyI2 for segmentation. 

We propose a simplified model I3 using lesser number of parameters. We use a probabilis­
tic approach and global minimization, namely, simulated annealing. The parameters for OUT 

purpose can be estimated by the method of N anda et al. 14 

In this paper, we assume color planes interact with each other. To account for the inter­
channel blurring. we propose an interchannel interaction model. the iirst-order interchannel 
interaction (FOll). Then. a probabilistic approach is used by modeling the color image as 
MRF. Restoration problem is then cast as a maximum a posteriori (MAP) estimation prob­
lem.!S The proposed model is quite robust and works well even when the amount of inter­
channel degradation is not taken into consideration, or when the degradation takes place in 
some other coordinates. In general, the energy function will be nonconvex with multiple local 
minima and nonunique global minima. We use simulated annealing (SA) algorithm with in­
verse log cooling schedule for energy minimization. 

2. Image model 

Let X be the lexicographically ordered (row-transposed stacking) vector for an M x M image. I 

Definition 1: X is a Markov random field ifand only if 

P[X,} == Xi,j I Xk, 1= Xk, b "J'Ck, 1) ;t: (i, j)] = P[Xi,j = Xi.J I Xk• 1 == Xk,l, (k, /) E 1]i) (1) 

where P[ lJ is the conditional probability and l]iJ is the neighborhood of (i, j). The neighbor­
hood condition is translation independent except at boundaries where a free boundary as­
sumption is made. 

Now, according to the Hammersly and Clifford theorem, 15. I(, P[X == xj can be written as: 

1 
P[X = x] ==-exp(-U(x». 

Z 

The normalizing constant Z (the partition function) is given by 

Z == L exp(-U(x)) 
all config.x 

and U(x) is the (Gibbs) energy function given by 

U(x) == LYe (x) 
CEe 

(2) 

(3) 

(4) 

with_ e bei~g the set of all cliques.
16 

A typical unconditional problem would be to estimate a 
configuratIOn x, such that P[X == x] is maximized, or equivalently. U(x) is minimized. I? 
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We extend the monochrome image observation model as given in Andrews and Hunt I for 
the color image as: 

y ::: HX" + N for c ::: I, 2, 3 (5) 

where c is the color plane. For a color plane c, Y is the observed image, x: the original im­
age, and N' the corrupting noise vector which is assumed to be independent of .'X.'. H is the 
blurring matrix which is assumed to be the same for all color planes. Note that for an image 
of size M x M, XC, 1'\ and N, all are lexicographical-ordered column vectors of size 3M2 x 1. 

The structure of X is 

(6) 
where 

Xi,}= [x'U.j) x-Vj) iU,j)]T, 0::; i,j::; M-1. (7) 

The structure of Y and N is similar to that of X. 

H is a 3M2 x 3M2 matrix, whose structure is similar to the one given in Galatsanos et al,9 
and Bhat and Desai.ls The exact structure of H is as given below 

'H; HI HI 0 HI II , 
HI H~ 0 HI 

H::: , (8) 

HI HI HI HI H, 
" 

where 
(-
H~ HI HI HI HI , -
HI H~ H] HI 0 HI 

H. ::: (9) 
; 

HI HI 0 HI HI H;) 

apd H] is 3 X 3 identity matrix. 

Structure of HI will be the same as that of H; with H; replaced by HI' The H matrix is 

appropriately normalized. 

The term; decides the amount of interchannel blurring operation. At the pixelle\'el. the 
above model can be re-written as 

/(i,j)::: L h(k,l)xc(i-k,f-l)+nc(i,j) (II) 

(k'/)eS 

where S is the support of the point spread function (PSF). 

Let X;:: [i X2 X21T, and Y = [yl y2 Y2f, We assume that X is an MRF; thus, X has the 
probability distribution given in eqn (2). Pictorially, the interchannel blurring (for red color 
plane) is shown in Fig. 1. 
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/' 

/ 

FrG. 1. Degradation model. 

With color image observation model as described above, the color image restoration prob­
lem can be cast as: 

Estimate X such that P[X :::: xlY:::: y] is 
maximized with respect to xc, c :::: 1, 2, 3, 

We further make the assumption that N:::: [N1 N2 N3f is normally distributed with zero 
mean and covariance matrix c?! (I being a 3M2 x 3M2 identity matrix). Moreover, N is statis­
tically independent of X. 

In general, the a priori energy function U(x) will have the three color planes, Xl, X2 and 
X3

, nonlinearly interacting with each other. Moreover, to take care of disc.:ontinuities in the 
color planes, one could also incorporate horizontal and vertical line fields if> corresponding to 
each color plane. Thus, the most general form for the a posteriori energy (Up(x)) function 
could be expressed as 

IIY-HXf 
UD(x)=U(x,l,v)+ ") 

2(j'~ 

with 

V( I ) - jf 1 2 3 Zl [2 [3 I 2 )3 X, , V - \x, X , x, , , ,v, v ,t ) 

where lC and V
C represent, respectively, horizontal and vertical1ine fields con'esponding to the 

color plane c, 

We propose to solve Vex, I, v) by two different methods: 

1. In this form we assume that the color planes are uncorrelated: 
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3 

U1(x,l,v) = I.U1(X C ,ZC,V C
) (12). 

c=1 

and 
U1(X

C
, ZC, V

C
) == 

L.i,j.u[ (xL - XL_l)2 (1- vL) + (xL - xf~I,J t (1-IL )J+ r[IL + vL] for c == 1,2,3, (13) 

where 

IL == l(lxL -Xf-l,J 1- ef) and vL = l(lxL -XL-ll- e~ 
with e's being the respective thresholds. t The term in the first bracket of the energy function 
signifies the interaction between the neighboring pixels. The second bracket term provides the 
penalty for every discontinuity created and prevents spurious discontinuities. 

2. In this form, we take into account first-order interchannel interaction between the color 
planes. 

U? (x, I, v) = ,,3 ,,3 " .. .u[{(x~. - xC_I' )(xd
. - X~l . )(I-I~. )(l-l~.)}+ - .L..c;l .L..dod L..;1,j I,] I,J l,] l,J I,] t,) 

{(I-vL )(l-vfj )(xL - XL-l )(xtJ -XfJ-l )}]+r[I~J +vL +li~J +vtJ] for c = 1,2,3. (14) 

Minimization of the a posteriori cost function can be done using a variety of minimization 
algorithms. We opted for the simulated annealing algorithm because it guarantees conver­
gence in probability. 

3. Simulation 

We have considered a linear blur of size 5 x 5. Then, the observation model (11) can be re­
written as (for ~= 1) 

yr (i,j) == _1 ~(k.I)"'5 [h(k', l)xr (i -k,j -Z)]+xg (i,j)+xb (i, j)+ nr (i,j). (15) 
27 ~(k.l)=O 

This is the equation 'for the red plane. Similarly, equations for green and blue planes are also 
defined. 

Here, we report the simulation results for the FOIl energy functions given by (14) and 
compare its performance with the usual linear energy function given by (13). 

For simulation purpose, we used a uniform, space invariant blur. White Gaussian noise 
was added (with (5 = 10) separately on R, G and B. This generates blurred noisy (degraded) 
image. We have worked on a 64 x 64 synthetic image and 128 x 128 Lisa image. Values of 11, 

rand e~ = e~ == e, respectively, were 0.025, 200.5 and 15 for synthetic image and 0.75, 150 

tl(Z) = 1 if z > 0 and 0 otherwise. 
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FIG. 2. Simulation results. 
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Lisa in RGB Domain 
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and 20, respectively, for Lisa image. The number of iteration-stopping criterion for SA was 
1250 for both the images. The initial temperature was 5.15 and inverse log cooling schedule 
was used. The value ~ selected was 1. All the parameters were selected by trial and error 
method. Even though the value oj ~ = 1 was selected during the degradation process, while 
restoring, ~ was selected to be 0 (zero). Simulation results are shown in Fig. 2. 

To validate the performance, signal-to-noise ratio (SNR) of degraded and estimated im­
ages is computed as (x being the estimated value of x): 

SNR == 10 log , 
x-xll-

(16) 

The results of our simulation are listed in Table 1. 

4. Discussion 

As can be seen from Table I, the proposed FOIl performs better than the linear model. How­
ever, when the degradation' on each color plane is independent of the other (~::: 0), it is found 
that the performance of the proposed model is almost similar to the linear model, which is 
expected. 

The proposed model also works satisfactorily when degradation was done in other color 
coordinates. We linearly degraded in the YIQ and Ohta et al.'s 1j, h, h coordinates. 19 The 
resulting image was transformed to RGB domain. This effectively will do the interchannel 
blurring with; unknown. Even then, satisfactory results were obtained with FOn model. Re­
sults are tabulated for synthetic image. Thus, the FOIl model seems to be fairly general, inde­
pendent of the value of ~. 

Table I 
Results of simulation 

s: Synthetic image, L: Lisa images 

Table II 
Synthetic image degraded in Ohta et at.'s (0) and YIQ (Y) coordinates 
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Table III 
Lisa image degraded in Ohta et al. 's (0) and YIQ (Y) coordinates 

Methodology R G B 

S L S L S L 

Degraded images 26.26 26.37 27.45 28.10 23.55 23.70 

Linear 26.53 27.26 27.61 28.25 23.83 23.99 

FOrr 27.29 27.29 28.98 29.92 25.04 25.14 

As mentioned earlier, ~ = 1 was selected during degradation, and ~:: 0 during restoration. 
It is found that the proposed model is quite robust. It is also found that the proposed algorithm 
works well irrespective of the exact knowledge of ~. 

However, this one is not an optimal model. The SNR improvements are not all that satis­
factory for highly textured images (like wings of parrot and mandril image). This may be due 
to some of the information being irrecoverably lost because of the 5 x 5 blur. However, for 
comparatively smooth image (faces, for example) the proposed algorithm works satisfactorily. 
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