
J. Indian Inst. Sci., Mar.-Apr. 1999,79, 75-8 
@ Indian Institute of Science 

SWAGATA NANDI AND DEBASIS KUNDU 
Department of Mathematics, Indian Institute of Technology Kanpur, Kanpur 208 016, India. 

Abstract 

A particular two-dimensional model in a stationary random field, which has wide applications in statistical simai process- 
ing and texture classifications, is considered. We prove the consistency and also obtain asymptotic distributions of the least- 
squares estimators of different model parameters. It is observed that the asymptotic distribution of the least-squares estima- 
tors is multivariate normal. Some numerical experiments are performed to see how the asymptotic results work for finite 
samples. We propose some open problems at the end. 
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1. Introduction 

We consider the following two-dimensional model: 

Y 

~ ( m ,  n) = A: cos(m/l~ + n p ; )  + X(m,n); for rn = 1,. . . , M, n = 1,. . . , N ,  (1) 
k = l  

where A:' s are unknown real numbers, A: ' s and p:' s are unknown frequencies. For 

identifiability, we need to assume E (-7c, n) and p: E (0, 3.r) and they are distinct. X(m, 
n) is a two-dimensional (2-D) stationary random field described as follows: 

P Q 
~ ( m ,  n)  = b(i, j)e(m - i, n - j). 

Here {e(m, n)} is a two-dimensional sequence of independent and identically distri- 
buted (i.i.d.) random variable with mean zero and finite variance. P and Q are arbitrary 
positive integers, q, the number of components, is assumed to be a known integer. Given a 
sample y(m, n); m = 1 ,..., M ,  n = 1 ,..., N, the problem is to estimate A:' s, A:' s, ji;' s for 

k = 1, ...q. 

X(m, n)  and y(m,, n) are stationary and non-stationary random fields,,-respectively. To 
see how this model represents different textures, the reader is referred to Mandrekar and 
2hang1 or Francos et al.,%ho have provide nice 2-D image plots of y(m, rz) for (i) grey level 
at (m, n) proportional to y(m, n) and (ii) when it is corrupted by independent Gaussian 

*The paper is dedicated to Professor C. R. Rao on his 80th birthday. 
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where {e (m,  n)) is a double-array sequence of independent randotn variables such that 

for some constant r > 2. They proved that the spectra). estimators of A's and 11's are consistent 
estimators of the corresponding parameters when X(m.  n )  satisfies (3) and (4). Unfortunately. 
the corresponding estimators of the linear parameters (A's) are not consistcnt. Moreover, ihey 
could not obtain the asymptotic distributions of the different estimators. 'Therefore, the rates of 
convergence of those estimators are not known. Their results arc mainly based on the work of 
Lai and wei7 which is quite involved mathematically. In this paper, we lnairlly consider the 
least-squares estimators (LSEs) of the different parmeters and study their l q e  sample prop- 
erties. 

In the particular case, when {X(m, n)) 's are i.i.d. random variables on a 2-D plane, the 
problem can be interpreted as 'signal extraction'. It has wide applications in n~ultidimensional 
signal processing. See, for example, the works of Barbieri and ~aronc,"~abrera and ~ o s e ?  
Chun and ~ o s e , ' % u a , ~ ~  Lang and ~ c ~ l e l l a n , "  Kundu and C3upt:1" and the references 
therein for different estimation procedures and their applications. It is ii~tercstillg to observe 
that model (1) is the 2-D extension of the one-dimensional frequency model which is a well- 
studied model in time series analysis; see, for example, the works of ~ a n n a n ' ~  and ~ a l k e r ' ~  
in this context. 

In this paper, we consider the LSEs of the unknown parameters of   nod el ( I f under As- 
sumption (2) on X(m, n). It is well known that the LSEs play an important role in estimation 
theory. It has lots of desirable properties like consistency, asymptotic normality, asymptotic 
unbiasedness, etc. (see ~ a o ' ~ ) .  But, nowhere, at least as known 10 the anlhors, the properties 
of the LSEs of this model have been discussed under this general set up. I t  is important to 
observe that it is a nonlinear regression model, but unfortunately i t  does not satisfy the stan- 
dard suficient conditions stated by ~ e n n r i c h l ~  or WU'' for the LSEs to be consistcnt. It rnay be 

noted that when q = 1, M = 1 and A: = 0, this model coincides with the one-dimensional fie- 
quency model discussed in ~ a n n a n , "  ~alker,'"undu'~ and Kundu ancl ~ i t r a . " '  It was 
shown in ~ u n d u "  that even the one-dimensional model does not satisfy the sufficient condi- 
tions of ~ennrich" or wu.l8 Therefore, it is not immediately clear how the LSEs will behave 
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in this particular case under this general set up. In this paper, it is observed that the LSEs are 
~onsistent, unlike the spectra! estimation method proposed by Mandrekar and ~ h a n ~ , '  svllere 
the estimators of the linear parameters are not consistent. We obtain the asyn~ptotic distribu- 
tions of the least-squares estimators. which was not attempted before under these general 
conditions for the two-dimensional model. The asymptotic distributions of the LSEs are mul- 
tivariate normal and are useful to obtain the rates of convergence of LSEs of the unknown 
parameters. 

It may be argued that the assumption of Mandrekar and Zhangl on X(m, n )  is somewhar 
weaker than ours, because in our case P < = and Q < = as defined in (2). But since P and Q 
are arbitrary, therefore (3) can be closely approximated arbitrarily by (2) with sufficiently 
large P and Q (see ~uller"). Therefore, for all practical purposes they are equivalent. Moreo- 
ver, Mandrekar and zhangl use higher-order moment assumptions (i- > 2) on e(m. n) to prove 
the necessary consistency results, whereas we assume only the finite second moment of 
e(ln, 1 1 )  to prove consistency and asymptotic normality of the LSEs of all the unknown pa- 
rameters. In this paper, almost sure convergence means the usual Lebesgue measure and is 
denoted by a.s. We will denote the set of positive integers by 2. Also, the notation n = O(D(M, 
N)) means lnlb(A4, N)l is bounded for all M and N. 

The rest of the paper is organized as follows. 111 Section 2, we prove strong consistency 
and in Section 3 we obtain asymptotic distributions of the LSEs of the parameters of the 
model ( I ) ,  when q = 1. For q > I ,  the results are obtained in Section 4. We perform some nu- 
merical experiments and present those results in Section 5 and finally draw conclusions and 
propose some open problems in Section 6. 

2. Consistency of the LSEs 

In this section, we obtain the consistency of the LSEs of the unknown parameters of the model 
( I ) ,  when y = 1, i.e. 

The LSEs are obtained by minimizing Q(@, where 

Here. 13 = (A,  /I, p), the true parameter value and the LSE of Bare denoted by $' = (A". A". poi 

and 6 = (ii, i, F),  respective1 y. We make the assumptions explicit on X(m. u i as follos s. 

Assumption 1: Let {X(nt, n):  nz, IZ E Z) be a stationary random field and each X ! m ,  1 1 )  can bc 
represented as ( 2 ) ,  {e(nz, 11); 1?7,  11 E Zj is a double array sequence of i.i.d. random variables 
with mean zero and variance 2. 
We use the following lemma to prove the necessary results. 

b m m a  1: If the double array sequence { X ( t n ,  17): m, E 2) satisfies Assun~ption 1, then 
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Proof: See Appendix I. 

sup 
a,P 

Note that Lemma 1 is a very strong result. It extends some of the existing one-dimensional 
results of H ~ ~ ~ ~ ~ , ~ ~  walker,15 Raa and ~hao , "  ~ u n d u , ' ~  and Kundu and ~ i t r a ' ~ ) ~ ' \ ~  h e , 2 . ~  
case, 1t also generalizes the multidimensional results of Bai Ct id..'' Rao et d.,'%undu and 
~ i t r a , * ~  and Kundu and ~ u ~ t a ' ~  in some sense. 

1 1  
M N 

-- ~ ( m ,  n)  cos(ma) cos(np 2 0 when rnin { M ,  N )  + m. 

N M  n=l n=l 

Consider the following assumption on the parameters of the model ( 1 ), whcn q = 1. 

Assumption 2: Let A' be an arbitrary real number not identically equal to zero, 2 E (-n, 4 
and po E (0, 7~). 

Now we state the consistency result as the following theorem. 

Thearem 1: Under Assumptions 1 and 2, the LSEs of the parameters of model (1) are 
strongly consistent, when q = 1. 

Proof: Expanding ( 5 ) ,  with the help of Lemma 1 and using the similar technique of Bai 
~ l . , ~ '  the results can be obtained. 

It is interesting to observe that although the errors are correlated the usual LSEs provide 
consistent solutions. For the general linear or nonlinear models, the usual LSEs are inconsis- 
tent if the errors are corre~ated.'~' 27 In the correlated case, we need to consider the generalized 
LSEs which are consistent. On the other hand, Theorem 1 may not be tcm surprising, because 
it is known'8 that the LSEs are consistent for one-dimensional frequency rncldcl, even if the 
errors are correlated. In this respect, one or higher-dirncnsional frcqucncy models are quite 
different than the usual nonlinear models. 

3. Asymptotic normality of the LSEs 

In this section, we obtain the asymptotic distributions of the LSEs of the parameters of rnodel 
( I )  when q = 1. We use the following notations. The first derivative of Q(0) is :i I x 3 vector 
as 

and the second derivative is a 3 x 3 matrix as follows: 
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Therefore, expanding ~ ' ( 6 )  around 80, we obtain 

where 8 is a point on the line joining the points 6 and 80. Note that ~ ' ( 6 )  = 0 and consider 

the 3 x 3 diagonal matrix D as follows. 

Now (6) can be written as 

if ~''(g) is a full-rank matrix (see at the end of this section). Equivalently, 

Now, let us consider different elements of [Q'(@)D], 

Using the central limit theorem of the stochastic process (see ~u l l e r~ l ) ,  and using the follow- 
ing results of ~ a n ~ u l i s ~ ~  for P # 0, 

1 1 1 
lim 7 C t cos2 (@) = lirn TC t sin2 ( tp)  = - 
n+- n t-1 

n+- n 
t=l 

4 



and 

Observe that because of Theorem 1, 8 converges to $' a.s. and 

Therefore, from (a), we have the following result. 

.Theorem 2: Under Assumptions I and 2 ,  the limiting disrribulion of [ M :  N ' ! ( A - A " )  

M ; N + ( ~ -  LO) ,  M + N + ( ~  as Min(M, N) cc is a 3-variote normal with mean vector 

zero and covariance matrix 2$&-', when C-' has the following stsuctuse: 

Note that to prove Theorem 2, we use the fact that ~ ' ( ' 8  ) is a full-rank matrix ass. for large M 
and N. In fact, we have used D Q " ( ~  )D as of full-rank a.s. (see (8)). Now from (1 I), it is clear 
that for large M and N, DQ"(@D is a full-rank matrix. Since the elements of the matrix 
Q"(@ are continuous functions of 0 and 8 converges to 8G as . ,  therefore DQr'(8 )D is a full- 
rank matrix a s .  for large A4 and N. 
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From Theorem 2. it is clear that the LSE of the amplitude (A's) is asymproricaliy inde- 
pendent of the LSEs of the frequencies, whereas the LSEs of the two frequencies have a high 
negarive correlation. The asynptotic variances of the LSEs of A, A and p are pruportiona! to 

1IMN I /  M'NA" and 1 / 'A'', respectively. Therefore, it is immediate that the conver- 
A 

gence rates of h and f i  are of the orders o(M'N') and O(IK1i\r'), respectiveiy, and both of 

them are faster than the convergence rate of i, which is 0((11i1\3-'). Moreover, the asymp- 

totic variances of and p are inversely proportional to A'' . This may not be very surpris- 

ing because if A'' is small then it is difficult to estimate rhe frequencies. 

4. Rlultiparameter case 

In this section, we consider model ( I )  for any integer q. We use the following notations 

The true parameter value and the LSEs of Y will be denoted by TO and %, respectively. We 

investigate the consistency and the asymptotic properties of '?. which is obtained by minimir- 
ing 

with respect to Y. We need the following assumption. 

Assumption 3: Let A .  A be arbitrary real numbers, none of them being identically 
0 equal to zero; I:, . . . A:, E (-ir, n) which are distinct: similarly, p y . .  . . p, E (0, T'I are also 

distinct. 

The following result provides the consistency results of the LSEs of the madel parameter 
for the general case. 

Theorem 3: Under Assumptions 1 and 3, '? is a strongly consistent estimator of YO. 

Proof: It is quite similar to the proof of Theorem I ,  so it is omitted. 

To establish the asymptotic distribution of @ ,  we use the following notations. The 3q x 39 
diagonal matrix V and the 3q x 3q block diagonal matrix 4?-' are defined as follows. 
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respectively. 

Theorem 4: Under the same assumptions as Theorem 3, (@- V-' converges to a 34- 

variate normal distribution with mean vector zero and the dispersion matrix 2 c h - 1 ,  where 
V-' and @-' are as defined above. 

Prmk The proof can be obtained quite similarly as Theorem 2, so it is omitted. 

5. Numerical experiments and discussion 

In this section, we present some results of the numerical experiments perforrned to see how 
the asymptotic results behave for finite sample sizes. We performed all the experiments in 
Silicon Graphics, using the random deviate generator of Press er al." We considered the f0l- 
lowing model: 

y(m, n) = 4.0 cos(2.0m + 1 .On) + 5.0 cos(2.5m + 1.5n) -t- X(m, r z ) .  (14) 

X(m, n) has the following form: 

{e(pn, n); m = 1 ,..., M, n = 1 ,..., N} are i.i.d. Gaussian random variables with mean zero and 
finite variance 2. The stationary random field X(m, n) has that particular structure which 
indicates that the error at the point (m, n) is equally influenced by the four equidistant points 
from (m, n). We considered M = N = 10, 20, 30, 40, 50 and o = 25, 0.50, 0.75, 1 .O. For each 
sample size and for each o w e  computed the LSEs of A, ,  A2, A,, A2, pi and ,u2 and observed 
the average estimates and the average mean-squared errors (MSEs) over 500 replications 
(Table I). We also report the asymptotic variances (ASV) for each parameter for comparison 
purposes. 

From the simulations it becomes very clear that as sample size increases or the variance 
decreases, the average MSEs and biases of all the estimators decrease. It shows that all the 
estimators are consistent and asymptotically unbiased. Biases are quite small even when the 
sample sizes are quite small. It is clear that the MSEs of the estimators of the nonlinear pa- 
rameters are smaller than that of the linear parameters even for small sample sizes. From the 
experimental study also it is clear that the estimation of linear parameters is more difficult (in 
terms of accuracy) compared to nonlinear parameters. Some of the asymptotic behaviors are 
present even at small sample sizes. For example, if A ,  <Aa, then it is observed that the MSEs 

of c2 and i2 are smaller than that of @, and a,, respectively. It is also observed that as 

the sample size increases, the MSEs become closer to the asyrnptotic variances, i.e. IASV- 
MSEl decreases. Therefore, it is evident from the behavior of the MSEs that the asymptotic 
results can be used to draw small sample inferences for the different model parameters. In 
some cases, it is observed that the ASV is lower than the corresponding MSE. This may be 
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due to sampling error as we have considered only 500 replications. (see Knrian and 
~udewicz.~')  

6, Conclusions 

In this paper, we consider the estimation of the parameters of a two-diint.nsicml rnodel which 
has wide applicability in statistical signal processing and in t cxlurc classification. We study 
the asymptotic properties of the LSEs of the model parameters and show that the LSEs are 
strongly consistent. We also obtain the asymptotic distributions of the LSEs which provide the 
rate of convergence of the LSEs. This paper gencsalizes somc of thc existing one-dimensional 
results to the 2D case. It generalizes some of the rnultidir~~cnsionnl iesultx :ho in  a certain 
way. Numerical experiments suggest that asymptotic results can bc used lo draw snlali sample 
inferences for linear and nonlinear parameters. We do not address one inps ian t  problem, 
namely, the estimation of y, which is very important in practice. We m y  have to ilsc certain 
information-theoretic criteria like AIC, BIC or u,sc cross valida~ion-typc ~cchnicluc as pro- 
posed by &!ao3' for the one-dimensional case. Another inrportnnt plrhlem is to obtai~i an effi- 
cient estimator of the different parameters by some non-i terut i ve teohniq lie. Non-iterative 
techniques are important for online implementation or to usc as i n i t i d  gucsses for any itera- 
tive procedure. More work is needed in these directions. 
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Appendix I 

Proof of Lemma 1: First we prove the result when X(m, 1 1 )  is replaced by dm, n )  

Consider the following random variables; 

Z(m, n)  = I 1 )  if I X ( I I I ,  tl)i < ( 1 1 1 1 1 )  ; 
= 0 otherwise. 

First we will show that Z(n2, n )  and e(nr, 1 1 )  are equivalent sequences. Consider 

Now observe that there are at most 2' k combinations of ( 1 1 1 ,  11)'s such that tm < 2'; therefore. 
we have 
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Here, C is a constant and note that it may represent different constants at different places. 
Therefore, e(m, n) and Z(m, n) are equivalent sequences. So 

Here Lo. means infinitely often. Let U(m, n) = Z(m, n) - E(Z(m, n)) ,  then 

1 1 M N  M h' 

supl--- E ( z ( ~ ,  n)) cos(ma) cos(np)lS -f--!- I E ( Z [ ~ ,  n))/. 
.,p * M N M  

m = l  n=l m=1 12=1 

Since E(Z(m, n)) -+ 0 as M ,  N =, therefore, as M ,  N + w 

Therefore, it is enough to prove that 

Now, for any fixed E > 0, -n< a, P < xand 0 < h 5 +, we have 
? ( M N ) i  

Since IhU(nl, ri)cos(,~za)cos(~~~)I 5 1 I?, using e" < I + r + .Y' for l.ri < I I?, we have 

Now, choose 17 = -A; therefore, for large M and N 
2( MN):  

1 I M N  
-(lW'iS&/? 

I ~ ( m ,  n) cos(ma) cos(np)/ 2 B \ s Ce (C is a constant). 
'F lw 

111=1 11=1 
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,*\. 

Let K = ~ ~ i v ' ,  choose K points, $1 = (al, PI),,.., ox= (C(h, PKL S U C ~  [hilt ~ O T  ~ ~ l l  point 0:. (a 
8 (-T, R), we have a point 6) satisfyi~lg 

3 

Note that 

Therefore, for large M and N, we have 

7 - r4  
Since ZL,t*e < w, from Bore1 Cantelli's lemma, we have 

Therefore, 

Since P < m, Q < m and lb(i, j)l < m, it proves the lemma. 




