J. Indian Inst. Sci., Mar~Apr. 1999, 79, 75-8
© Indian Institute of Science

Least-squares estimators in a stationary random field*

SWAGATA NANDI AND DEBASIS KUNDU
Department of Mathematics, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
Abstract

A particular two-dimensional model in a stationary random field, which has wide applications in statistical signal process-
ing and texture classifications, is considered. We prove the consistency and also obtain asymptotic distributions of the least-
squares estimators of different mode! parameters. It is observed that the asymptotic distribution of the least-squares estima-
tors is multivariate normal. Some numerical experiments are performed to see how the asymptotic results work for finite
samples. We propose some open problems at the end.
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1. Introduction

We consider the following two-dimensional model:

g
y(m,n ZA cos(m/”tU +n,uk)+X(m niiform=1,...M,n=1...,N, (1
k=1

where A,? 's are unknown real numbers, /1(}{'5 and u;'s are unknown frequencies. For

identifiability, we need to assume ).(}{ € (-m, n) and ,ug € (0, 7) and they are distinct. X(m,
n) is a two-dimensional (2-D) stationary random field described as follows:

Zsz] m—i,n—j). @)

Here {e(m, n)} is a two-dimensional sequence of independent and identically distri-
buted (i.i.d.) random variable with mean zero and finite variance. P and Q are arbitrary
positive integers, g, the number of components, is assumed to be a known integer Given a
sample y(m, n); m=1,..., M, n=1,..., N, the problem is to estimate A;'s, lo' 's for
k=1,.4q.

X(m, n) and y(m, n) are stationary and non-stationary random fields,-respectively. To
see how this model represents different textures, the reader is referred to Mandrekar and

Zhang1 or Francos et al.,’> who have provide nice 2-D image plots of y(m, n) for (i) grey level
at (m, n) proportional to y(m, n) and (i) when it is corrupted by independent Gaussian

"The paper is dedicated to Professor C. R. Rao on his 80th birthday.



76 SWAGATA NANDI AND DEBASIS KUNDU

noise field. So this model represents mixed textures of regular textures with noise pictureg
Our problem is to extract the regular textures from the contumxgutcd y(m, n). The problem i
of interest in spectrograph and is studied using group-theoretic methods by Malliavan > ¢
Francos et al.? considered the Wold-type decomposition of the random fields due to Helsoy
and Lowdénslager,s' 6 hut no concrete mathematical results were presented in it. Mandrekg
and Zhang' also considered the spectral analysis of this problem under the following statiop.
ary assumptions on X(m, 1)

X(m,n) = 2 Zb(i, Je(m—in—j), G)
[:-oaj=—=ae
where {e(m, 1)} is a double-array sequence of independent random variables such that

iilb(i’f)l<°°s E(e(m,n)):(), E(

fm—oe j

e(m, n)’r > < oo, 4

for some constant r > 2. They proved that the spectral estimators of A’s and ('s are consistent
estimators of the corresponding parameters when X(rm, n) satisties (3) and (4). Unfortunately,
the corresponding estimators of the linear parameters (4’s) are not consistent. Moreover, they
could not obtain the asymptotic distributions of the different estimators. Therefore, the rates of
convergence of those estimators are not known. Their results are mainly based on the work of
Lai and Wei’ which is quite involved mathematically. In this paper, we mainly consider the

least-squares estimators (LSEs) of the different parameters and study their large sample prop-
erties.

In the particular case, when {X(m, n)}’s are i.i.d. random variables on a 2-D plane, the
problem can be interpreted as ‘signal extraction’. It has wide applications in multidimensional
signal processing. See, for example, the works of Barbieri and Barone,® Cabrera and Bose,
Chun and Bose,'® Hua,'' Lang and McClellan,"”* Kundu and Gupta'' and the references
therein for different estimation procedures and their applications. It is interesting to observe
that model (1) is the 2-D extension of the one-dimensional frequency model which is a well-

studied model in time series analysis; see, for example, the works of Hannan'* and Walker”
in this context,

In this paper, we consider the LSEs of the unknown parameters of model (1) under As-
sumption (2) on X(m, n). It is well known that the LSEs play an important role in estimation
theory. It has lots of desirable properties like consistency, asymptotic normality, asymptotic
unbiasedness, etc. (see Rao'). But, nowhere, at least as known to the authors, the properties
of the LSEs of this model have been discussed under this general set up. It is important to
observe that it is a nonlinear regression model, but unfortunately it does not satisfy the stan-
dard sufficient conditions stated by Jennrich'” or Wu'® for the LSEs to be consistent. It may be
noted that when g=1, M=1 and /19( = 0, this model coincides with the one-dimensional fre-
quency mode] discussed in Hannan,' Walker,'* Kundu' and Kundu and Mitra. " It was
shown in Kundu'® that even the one-dimensional model does not satisfy the sufficient condi-
tions of Jennrich!” or Wu.'® Therefore, it is not immediately clear how the LSEs will behave
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in this particular case under this general set up. In this paper, it is observed that the LSEs are
consistent, unlike the spectral estimation method proposed by Mandrekar and Zhang,' where
the estimators of the linear parameters are not consistent. We obtain the asymptotic distribu-
tions of the least-squares estimators, which was not attempted before under these general
conditions for the two-dimensional model. The asymptotic distributions of the LSEs are mul-
tivariate normal and are useful to obtain the rates of convergence of LSEs of the unknown

parameters.

It may be argued that the assumption of Mandrekar and Zhangl on X(m, n) is somewhat
weaker than ours, because in our case P < e and Q < o as defined in (2). But since £ and Q
are arbitrary, therefore (3) can be closely approximated arbitrarily by (2) with sufficiently
large P and Q (see Fuller® ) Therefore, for all practical purposes they are equivalent. Moreo-
ver, Mandrekar and Zhang' use higher-order moment assumptions (r > 2) on e(m, n) to prove
the necessary consistency results, whereas we assume only the finite second moment of
e(m, n) to prove consistency and asymptotic normality of the LSEs of all the unknown pa-
rameters. In this paper, almost sure convergence means the usual Lebesgue measure and is
denoted by a.s. We will denote the set of positive integers by Z. Also, the notation a = O(b(M,
N)) means la/b(M, N)! is bounded for all M and N.

The rest of the paper is organized as follows. In Section 2, we prove strong consistency
and in Section 3 we obtain asymptotic distributions of the LSEs of the parameters of the
model (1), when g = 1. For g > 1, the results are obtained in Section 4. We perform some nu-
merical experiments and present those results in Section 5 and finally draw conclusions and
propose some open problems in Section 6.

2. Consistency of the LSEs

In this section, we obtain the consistency of the LSEs of the unknown parameters of the model
(1), wheng=1, i.e.

y(m, n) = A" cos(mA® + n/,lo) +X(m, n);form=1,..M,n=1..,N.

The LSEs are obtained by minimizing Q(6), where

M N 7
= 2 Z ()‘(m, 1)— A cos(ma + np))' ,

m=1 n=1

—
n
g

Here, 8= (A, A, 1), the true parameter value and the LSE of @ are denoted by §'=(4". 1°, ")

and 6 = (Ai [L), respectively. We make the assumptions explicit on X(m, n) as follows.

Assumption 1: Let {X(m, n); m, n € Z} be a stationary random field and each X(m, 1) can be
represented as (2), {e(m, n); m, n € Z} is a double array sequence of i.i.d. random variables
with mean zero and variance o

We use the following lemma to prove the necessary results.

Lemma 1: If the double array sequence {X(m, n); m, n € Z} satisfies Assumption 1, then
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M N

supwl—-l—z X(m, n) cos(max) cos(nf 250 when min{M, N} -
o,j N M 1

m=1 n=

Proof: See Appendix L.

Note that Lernma 1 is a very strong result. It extends JSome of the existing one d1men51onal
results of Hannan,* Walker," Rao and Zhao,” Kundu," and Kundu and Mitra®™ ® 0 the 2.p
case. It also generalizes the mult1d1mens1onal results of Bai et al.”* Rao er al.,** Kundu g
Mitra,2® and Kundu and Gupta® in some sense.

Consider the following assumption on the parameters of the model (1), when ¢ = 1.

Assumption 2: Let A° be an arbitrary real number not identically equal to zero, e 7
and i & (0, m).

Now we state the consistency result as the following theorem.

Theorem 1: Under Assumptions 1 and 2, the LSEs of the parameters of model (1) are
strongly consistent, when g = 1.

Proof: Expanding (5), with the help of Lemma I and using the similar technique of Baj e
al.,** the results can be obtained.

It is interesting to observe that although the errors are correlated the usual LSEs provids
consistent solutions. For the general linear or nonlinear models, the usual LSEs are inconsis-
tent if the errors are correlated.'®*” In the correlated case, we need to consider the generalized
LSEs which are consistent. On the other hand, Theorem 1 may not be too surprising, because
it is known® that the LSEs are consistent for one-dimensional frequency model, even if the
errors are correlated. In this respect, one or higher-dimensional frequency models are quite
different than the usual nonlinear models.

3. Asymptotic normality of the LSEs

In this section, we obtain the asymptotic distributions of the LSEs of the parameters of model

(1) when g =1. We use the following notations. The first derivative of Q(6) is a 1 x 3 vector
as

oy | 00(6) 30(6) 80(6)
Q(G)’[ MM }

and the second derivative is a 3 x 3 matrix as follows;

5%0(6) S%0(8) 50(8)
82 GAGA, " MAeu
iy _ 80(8)  &%0(e)  §%0(8)
0"(6)= 5z FYER Y
8*06) 8%0(6)  8¢l6)
L2 T
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Therefore, expanding Q’(@) around &, we obtain
Q'(e)-Q'(e°)= (e-e“)g”(@) 6)

where 8 is a point on the line joining the points 6 and 6. Note that Q’(é) =0 and consider
the 3 x 3 diagonal matrix D as follows.

|[M7INT? 0 0
D= 0 MNT?
0 0 MTINT2
L -
Now (6) can be written as
- —\1-1
(6-6°)=-06)0"(8)] %
if Q”(@) is a full-rank matrix (see at the end of this section). Equivalently,
0 - ‘ ’ nln -1
(6-0°)p =o (6°)p][po (@] @®)
Now, let us consider different elements of [Q'(8")D].
1 60(6°) 2
= X(m,n) cos m2,+n
WINE o e ;2« 1)
1 5Q(90) ) MY
3 = —3 X(m,n)Amsin(mA + ny
MINT 6L MIN? m2=1 ; ) ( )
1 80(6) 2
T = - X(m,n)Ansin(mA + ny
MIN? & MN? ;g ( )

Using the central limit theorem of the stochastic process (see Fuller?!), and using the follow-
ing results of Mangulis® for 80,

[y}

n—o 1 n—yeo 1

hm—-Zcos (1B)= hm—zsm (zB) =—1—
=1

11m———2tcos (:8) —hm———Etsm (18)=

n—yes J] n-sos 1

- 1 n ) ) . 1 n ) s _1
31_r)r;-n—32t cos (tﬁ)=,}f§l;3—z_;t sin (tﬁ)—g
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lim —L-irsin(rﬁ)cos(rﬂ) =0

f-yo0 J1-

it follows that [Q’(G“)D] tends to a 3-variate normal distribution with mean vector zero and
the dispersion matrix 26°cE, where

PoQ
c= iij:i—Qb(i, ) cos(z‘).” ) coS(j,Ll“) |,~§,j:, Qb(i, 7 cc)s(i/'L” ) sin(jy 0 )'
P g P 0 \

Z Eb(z',j) sin(iko)cos(_ju” )| Z Zb(i, j)sin(z’xl“)sin(j/,z ”/ o)

li=-Pj=-0 li==Pj=—(
and

1 0 0

$=0 _%A(’i %A“j )
0 1A% 1a”

Observe that because of Theorem 1, 9 converges to ¢ a.s. and

lim (DQ"()D)= lim (DO"(6°)D)=5. a

M N—oe M,N~—yo0
Therefore, from (8), we have the following result.
R
.Theorem 2: Under Assumptions | and 2, the limiting distribution of {A/FNZ(A—A“),
A Llfa L AN
M:N? (A— A0 ) M:N? (,u ~ )} as Min(M, N) — oo is a 3-variate normal with mean vector

. . ] - - ~ .
zero and covariance matrix 20°¢Z ™, when £”' has the following structure:

0 0
Sl ML 36 1 )
2z 7o T (12
_36_ 1 48 1
0 7400 T 407

Note that to prove Theorem 2, we use the fact that Q'(8 ) is a full-rank matrix a.s. for large ¥
and N. In fact, we have used DQ”( 8 )D as of full-rank a.s. (see (8)). Now from (11), it is clear
that for large M and N, DQ”(6)D is a full-rank matrix. Since the elements of the matrix

Q”(6) are continuous functions of @ and @ converges to & a.s., therefore DQ(8)D is a full
rank matrix a.s. for large M and N.
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i

From Theorem 2, it is clear that the LSE of the amplitude (As) is asymptotically inde-
pendent of the LSEs of the frequencies, whereas the LSEs of the two frequencies have a high
negative correlation. The asymptotic variances of the LSEs of A, 1 and y are proportional to

1/MN, 1/ MPNA® and 1/ MN?A®" | respectively. Therefore, it is immediate that the conver-
gence rates of 1 and [i are of the orders O(M™N"") and O(M"'N"?), respectively, and both of
them are faster than the convergence rate of A , which is O((MN)™"). Moreover, the asymp-

totic variances of A and [i are inversely proportional to A% . This may not be very surpris-

ing because if A" is small then it is difficult to estimate the frequencies.

4. Multiparameter case
In this section, we consider model (1) for any integer g. We use the following notations
(A17 )Ll’ !‘l])’ * [] (Aq’ q)q LP:":(G],..., eq)

The true parameter value and the LSEs of ¥ will be denoted by ¥° and ¥, respectively. We

investigate the consistency and the asymptotic properties of ¥, which is obtained by minimiz-
ing

2

ZZ y(m, 1) ZAA cos(mA; +ni; ) (13}

m=1 n=l k=1
with respect to '¥'. We need the following assumption.

Assumption 3: Let Af’, . AO be arbitrary real numbers, none of them being identically

equal to zero; /’L?, /10 € (—r, )y which are distinct; similarly, #1 e(0,m) are also

distinct.

The following result provides the consistency results of the LSEs of the model parameter
for the general case.

Theorem 3: Under Assumptions 1 and 3, ¥ isa strongly consistent estimator of ¥°.
Proof: It is quite similar to the proof of Theorem 1, so it is omitted.

To establish the asymptotic distribution of ¥ | we use the following notations. The 3¢ X 3¢
diagonal matrix V and the 3¢ x 3¢ block diagonal matrix @' are defined as follows.

D ... 0 ot .. 0

0 .. D 0 ..oc 2



82 SWAGATA NANDI AND DEBASIS KUNDU

where X' can be obtained from 5! defined in (12) by replacing A” with A% and sim.
tarly c’s can be obtained from ¢’s defined in () by replacing A% and 1 with 25, and y¢,

respectively.

. i 0 \Yy/-1
Theorem 4: Under the same assumptions as Theorem 3, (‘P—‘{’ )V converges to a 3¢
variate normal distribution with mean vector zero and the dispersion matrix 26707, where
V' and @' are as defined above.

Proof: The proof can be obtained quite similarly as Theorem 2, so it is omitted.

5. Numerical experiments and discussion

In this section, we present some results of the numerical experiments performed to see how
the asymptotic results behave for finite sample sizes. We performe% all the experiments in
Silicon Graphics, using the random deviate generator of Press et al.”® We considered the fol-

lowing model:
y(m, n) = 4.0 cos(2.0m + 1.0n) + 5.0 cos(2.5m + 1.51) + X(m, n). (14)

X(m, n) has the following form:
X(m, ny=e(m, n) +0.25¢(m - 1, n) + 0.25¢(m + 1, n) + 0.25e(m, n — 1) + 0.25¢(m, n+ 1)

le(m, n); m=1,..., M, n=1,..., N} are i.i.d. Gaussian random variables with mean zero and
finite variance o°. The stationary random field X(mn, n) has that particular structure which
indicates that the error at the point (m, n) is equally influenced by the four equidistant points
from (m, n). We considered M = N = 10, 20, 30, 40, 50 and o= 25, 0.50, 0.75, 1.0. For each
sample size and for each ¢ we computed the LSEs of A, A, A;, 4, 1; and 4, and observed
the average estimates and the average mean-squared errors (MSEs) over 500 replications
(Table I). We also report the asymptotic variances (ASV) for each parameter for comparison
purposes.

From the simulations it becomes very clear that as sample size increases or the variance
decreases, the average MSEs and biases of all the estimators decrease. It shows that all the
estimators are consistent and asymptotically unbiased. Biases are quite small even when the
sample sizes are quite small. It is clear that the MSEs of the estimators of the nonlinear pa-
rameters are smaller than that of the linear parameters even for small sample sizes. From the
experimental study also it is clear that the estimation of linear parameters is more difficult (in
terms of accuracy) compared to nonlinear parameters. Some of the asymptotic behaviors are
present even at small sample sizes. For example, if A; < A,, then it is observed that the MSEs

of fi, and A, are smaller than that of I, and il, respectively. It is also observed that as

the sample size increases, the MSEs become closer to the asymptotic variances, i.e. ASV-
MSE! decreases. Therefore, it is evident from the behavior of the MSEs that the asymptotic
results can be used to draw small sample inferences for the different model parameters. I
some cases, it is obs¢rved that the ASV is lower than the corresponding MSE. This may be
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Table I

M=N=10
0.25

0.50

0.75

M=N= 20
0.25

0.50

0.75

M=N=30
0.25

0.50

0.75

M=N=40
0.25

0.50

0.75

1.0
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Parameters

LSE
MSE
ASV
LSE
MSE
ASV
LSE
MSE
ASV
LSE
MSE
ASV

LSE
MSE
ASV
LSE
MSE
ASV
LSE
MSE
ASV
LSE
MSE
ASV

LSE
MSE
ASV
LSE

MSE
ASV
LSE

MSE
ASV
LSE

MSE
ASV

LSE
MSE
ASY
LSE
MSE
ASV
LSE
MSE
ASY
LSE
MSE
ASY

3.998
1I4ES3
1 4HE-3
4.0000
5.75E-3
S5.04E-3
3.992
1.25E-2
1.27E-2
3.989
2.15E-2
2.26E-2

4.000
1.24E-4
3.53E-4
3.999
5.48E-4
1.41E-3
3.997
1L.65E-3
3.17E-3
4.000
2.33E-3
3.64E-3

4.000
5.37E-5
1.57E-4
4.000
2.16E-4
6.27E-4
4.001
5.31E-4
1.41E-3
4.001
1.04E-3
151E-3

4.001
1.14E-5
8.31E-5
4001
6.47E-5
3.53E-4
4000
1.20E-4
7.93E-4
1001
1.74E-4
LAIE-3

3.001
6.30E-4
5.4E
4998
2.60E-3
2OIE-3
4.959
6.02E-3
453E-3
5.005
1.00E-2
8.06E-3

5.001
5.48E-4
1.26E-4
5.002
3.38E-4
5.04E-4
5.004
8.00E-4
1.13E-3
5.003
1.37E-3
2.01E-3

5.000
3.93E-5
5.60E-5
5.000
1L.51E-4
2.24E-4
5.003
3.76E-4
5.04E-4
5.001
7.13E-4
8.95E-4

5.001
1.60E-5
3.15E-5
5.000
7.66E-3
1.26E-4
5.001
1.78E-4
2.83E-4
5.000
2.81E-4
5.04E-4

2.000
1.22E-6
6.04E-6
2.000
3.12E-5
242E-5
2.000
6.63E-5
5A44E-5
2.000
1.16E-4
9.67E-5

2.000
381E-7
3.78E-7
2.000
1.57E-6
1.51E-6
2.000
3.15E-6
3.40E-6
2.000
6.82E-6
6.04E-6

2.000
8.19E-8
7.46E-8
2.000
3.09E-7
2.98E-7
2.000
6.55E-7
6.71E-7
2.000
1.21E-6
I.19E-6

2.000
249E-8
2.36E-8
2.000
9.57E-8
9.44E-8
2.000
2HET
212E7
2.000
3.70E-7
3.78E-7

Az

2.500
2.15E-6
1.38E-6
2.500
8.96E-6
5.53E-6
2.500
1.87E-5
1.24E-5
2.500
3.55E-5
2.21E-5

2.500
LIE-7
8.64E-8
2.500
3.TIE-7
3.45E-7
2.500
8.81E-7
1.7T7E-7
2.500
1.72E-6
1.38E-6

2.500
2.15E-8
1.71E-8
2.500
8.27E-8
6.82E-8
2.500
1.75E-7
1.54E-7
2.500
322E7
3713ET7

2.500
5.98E-5
540E-9
2.500
253E-8
2.16E-8
2.500
5.69E-8
4.86E-8
2.500
8.61E-8
8.64E-8

1.000

6.60E-6
6.04E-6
1.000 *
3.12E-5
242E-5
1.000

6.27E-5
544E-5
1.000

1.OBE-4
9.67E-5

1.000
3.69E-7
3.78E-7
1.000
1.65E-6
1.51E-6
1.000
2.94E-6
JA0E-6
1.000
6.63E-6
6.04E-6

1.000
7.96E-8
7.46E-8
1.000
2.80E-7
2.98E-7
1.000
7.19E-7
6.71E-7
1.000
1.24E-6
1.19E-6

1.000
2.37E-8
2.36E-8
1.000
9.58E-8
9.44E-8
1.000
2.04E-7
2.12E-7
1.000
3TIE-7
3.78E-7

28l

1.500
2.05E-6
1.38E-6
1.500
8.05E-6
5.53E-6
1.500
1.82E-5
1.24E-5
1.500
3.38E-5
221E5

1.500
LI6E-7
8.64E-8
1.500
36IE-7
3A5E-7
1.500
9.91E-7
7.77E-7
1.500
1.7T1E-6
1.38E-6

1.500
1.99E-8
L.71E-8
1.500
7.79E-8
6.82E-8
1500
1.69E-7
1.54E-7
1.500
297E-7
273E7

1.500
6.07E-9
S40E-9
1.500
J43E-8
2.16E-8
1.500
5.94E-8
4.36E-8
1.500
9.05E-8
3.64E-8

{contd)
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a Parameters A, As Al A M iy
VNS ) 1.000 1.500
5.000 2.000 2,500 .

- II\J/ISSPE ;Zgg;-s 1.37E6-5  O.05E-9  248E-9  H65E-Y 23309
ASV S564E-5  2.01E-5  9.67E-9  2210L9 U6TEY  22(KEY

0.50 LSE 4.000 5.000 2.000 2,500 1000 1.500
MSE 580E-5 485E-5  3.70B-8  L.O2E-8  3.50k-8  99TEY
ASV 226E-4  806E-5 3.87B-8  8§84E-9  3I8TL-S S84BE-9

0.75 LSE 4,000 5.000 2.000 2.500 1.006 1.500
MSE 1674  121E-4  9296-8  2I26-8  U.I4E-8  200L-8
ASV 5.08E-4  1.81E-4 870E-8  [OYE-8  STF0E-9 19013

1.0 LSE 3.999 4.999 2.000 2.500 1000 1.500
MSE 3.15B-4  2.34B-4  1.80E-7  3.76E-§  1.59E-7  3.895-8
ASV 9.02E-4 3.22B-4  155B-7  354E-8  1.55E-7  3.54E-8

due to sampling error as we have considered only 500 replications. (see Karian ang
Dudewicz.*!)

6. Conclusions

In this paper, we consider the estimation of the parameters of & two-dimensional model which
has wide applicability in statistical signal processing and in texture classification. We study
the asymptotic properties of the LSEs of the model parameters and show that the LSEs are
strongly consistent. We also obtain the asymptotic distributions of the LSEs which provide the
rate of convergence of the LSEs. This paper generalizes some of the existing one-dimensional
results to the 2D case. It generalizes some of the multidimensional results also in a certain
way. Numerical experiments suggest that asymptotic results can be used to draw small sample
inferences for linear and nonlinear parameters. We do not address one important problem,
namely, the estimation of g, which is very important in practice. We may have to use certain
information-theoretic criteria like AIC, BIC or use cross validation-type technique as pro-
posed by Rao’ for the one-dimensional case. Another important problem is to obtain an effi-
cient estimator of the different parameters by some non-iterative technique. Non-iterative
techniques are important for online implementation or to use as initial guesses for any itera-
tive procedure. More work is needed in these directions.
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Proof of Lemma 1: First we prove the result when X(m, n) is replaced by e(n1, n)

Consider the following random variables;

i

Z(m,n)

e(m,n) if lX m, n)[ ()

0

otherwise.

First we will show that Z(m, n) and e(in, n) are equivalent sequences. Consider

ZZP{em n) # Z(m.n)}= ZE {

m=| n=l|

e(m,n)| > (mn) }

=] ezl

Now observe that there are at most 2° k combinations of (m, n)'s such that mn < 2% therefore,

we have

Z Z P{|e(m, n)| 2 (mn)

£

|

3

P{‘e(m, n)|z }[here = |
ok

k=1 2 lgpen
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Here, C is a constant and note that it may represent different constants at different places.

Therefore, e(rm, n) and Z(m, n) are equivalent sequences. So
Ple(m, n) # Z(m,n) 1.0.}=0.

Here i.0. means infinitely often. Let U(m, n) = Z(m, nj — E(Z(m, n)), then
sup|—~—mzzE m, n))cos(ma) cos(nf ’<~———~22’E m,n))
m=1n=l m=l n=}
Since E(Z(m, n)) — 0 as M, N — o, therefore, as M, N — oo
2 E\E m,n)) = 0.
m-1 n=}
Therefore, it is enough to prove that

sup|-~——22 U(m, n) cos(ma) cos(nﬁ){

m=1 n=1

Now, for any fixede >0, -7w< o, B<mand 0<k< -, we have

3
2 MN):

m 1 n=t m=] n=1

Since lhU(m, n)cos(ma)cos(nB)l € 172, using e* < | + x + x° for lxi < 1/2, we have

M N .
26—-11MN5HH Eele(m,n)cos(lna)cos(nﬁ) < Ze—hMNs(l + hlo.’l )M‘N

m=l n=|

!
2 MN)

Now, choose 1= - therefore, for large M and N

M N
ZEU m,n) cos{m) cos(nﬁ)‘ L MN'”/“(C is a constant).

m=1n=

1R
‘N M

ZZU m, n) cos(mar) cos( nﬁ)' 2e g} < D hMNe HH oV men) costmer)cos(nf)
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Let K = M*N*, choose K points, 6y = (04, )., B= (0 B), such that for each point 9=
B) & (-, 1), we have a point §) satisfying

Note that

ZZUm’ {cos (ma) cos(nf) - cos(m(x )cos(uﬁ )}’

( m [ n=|

M N
—M%V-ZZMM]]\\Z m+n}-—90asM N = e,

m=1 n=l

Therefore, for large M and N, we have

jsup|~————22l/ m,n)cos(ma; cos(nﬁ!

m=! n=|

SP{ Bl e MZZU m,n cos(m(x )cos(nﬁj)l ILS CMQNQe”(MN)l*'S/Z

m=[ n=]

e 1 .
Since X217 <os, from Borel Cantelli’s lemma, we have

[ 1 g
sup| Vi 2 2 U(m, n) cos(mor) cos(nf8 ’ -0,

a.f m=| n=|

Therefore,

supl—-—-—~22 e(m, n) cos(mez) cos(nB ,_)0

m-l n=i

Since P <o, ) <o and Ip(j, j)l < oo, it proves the lemma.





