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Abstract 

In this paper, we propose a low bit rate image coding scheme using M-adic wavelet transform. M-adic wavelets arise fiom 
solutions to the dilation equation, @x) = & #(Ah - k ) .  The M-adic wavelet transform of an image is computed using tree- 
structured perfect reconstruction filter banks. The transformed image is coded into a compressed bit stream using a human 
visual system (HVS) model and a wavelet image model. HVS helps in removing perceptual redundancies, while the 
wavelet image model provides a framework to exploit the redundancies across different scales of the wavelet-transformed 
image. Two wavelet image models, namely, zerotree model and web model are generalized to be applicable to M-~dic 
wavelets. Using these models the paper describes algorithms for obtaining an embedded bit stream. Simulation results show 
that the proposed algorithms can cater to a wide range of applications. 
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1. Introduction 

Compression of images has a number of applications ranging from online product catalogues, 
browsing on the internet, image database, multimedia to virtual reality. In the recent past, 
there has been a tremendous development in the field of wavelet transforms. Wavelets are new 

families of basis functions that yield series expansions of the form f (x) = x j ~ x ~ E i '  

c;,~ t y ' ( ~ j x -  k )  to functions in L'(R). Unlike the Fourier series, the basis functions are not 

of infinite duration but are compactly supported in time, with a reasonable frequency local- 
ization. Wavelets arise frona solutions to the dilation equation, @x) = Ckck$(Mx - k). The 
case M = 2 yields dyadic wavelets. In this paper, we discuss some results for the general case 
M 2 2 in literature and present image compression algorithms using M-adic wavelet image 
models. 

In brder to perform image compression, it is useful to have a theoretical image model that 
highlights those aspects of an image that benefit compression. These models also help in the 
development of other image-processing algorithms in the compressed domain. The wavelet 
image models essentially hypothesize the dependencies across scales of a wavelet-transformed 
image. The human visual system (HVS) in wavelet domain has also been considered. In this 
paper, the compression of images is carried out using these models and an entropy coder. The 
algorithms considered here are embedded, i.e. all encodings corresponding to lower bit rates 
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2. M-adic wavelets 

Wavelets decompose the signals into channels that have same bandwidth in a logarithmic 
scale. Thus, high-frequency channels have larger bandwidth and lower ficquency channels 
narrow bandwidth. These characteristics arc well suited for the analysis of low-frequency sig. 
rials mixed with sharp transitions (spikes). The disadvantage howeva- is that if there are high. 
frequency signals with relatively narrow bandwidth, the decomposition is not well suited, 
order to overcome this problem, M-adic orthonormal wavelet bascs havc been Constructed by 
zimmermanl as a direct generalization of the dyadic wavelets of Warr bascs. M-adic wavelets 
help zoom in, onto narrowband high-frequency channels, while sirn~ltaneousl~ having 
logarithmic decomposition of frequency channels (Fig. I). 

Just as a two-channel unitary filter bank is central to the dyadic wavelet transform, a per- 
fect reconstruction (PR) M-band filter bank is central to the M-adic wavelet transform. Con. 
sider the M-band filter bank shown in Fig. 2. Equations 1 and 2 rnatherntttically represent the 
operations of an M-band filter bank. 

d, (n) = x(k)hi ( ~ n  - k), 
k 

For perfect reconstruction, the system should be lossless. If the filters h, and g, constitute a bi- 
orthogonal set and are complete, then one can get perfect reconstruction. It is easy to see these 
facts if filters are orthogonal, i.e. the discrete basis generated by the filters is orthogonal. 

2.1. M-band Harr system 

The Harr system is the simplest of the wavelet representations. Harr functions are piecewise 
constant functions. Using the indicator function XI,, ,,,(x), the dilation equation takes thc form, 

FIG. 1. Time-frequency tiling for M-adic MRA, M = 3. FIG. 2. M-Band filter bank 
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The Fourier transform Hda) of the conesponding scaling filter is given by: 

sin RO 

k=O sin no / A4 

In the dyadic wavelet transform the scaling function and the wavelet are closely related 
and once the scaling function is defined the wavelet function also gets defined. On the other 
hand, there is considerable choice in choosing the wavelet functions when M > 2. The 
wavelets defining the space 4, i.e. U:y1 WJ are not unique. ~immerman' generates a set of 

wavelets corresponding to the scaling function by setting Hk(o) = HO (W - +). The cone- 

sponding wavelet filters are nothing but DFT filter banks, i.e. translated versions of the low- 
pass filters. In this paper, we propose to use discrete cosine transform (DCT) generalization to 
generate the wavelet bases for some M  2 2. This is mainly to make the filter coefficients real. 
The M - 1 Harr wavelets generated using the DCT matrix are given by the following equa- 
tions: 

M-1 M-1 

y r ( x ) = z  -cos [R(2c ) f i # ( M x  - l )  = fi cos n(21 -I- l ) r  ( 5 )  
1=0 l=O 

where I. takes values 1 ... M - I 

Generalizations of Daubechies wavelets can be found in ~ e l l e r . ~  The multiresolution 
analysis in two dimensions (image) is carried out using separable filtering along rows and 
columns of the image as it is done for dyadic waveletsa3 

3. Wavelet image models 

In this section, the various wavelet image models we have used for image coding are de- 
scibed. 

Zerotree model4: The zerotree model states that if a wavelet coefficient in a particular 
scale is insignificant, then c,oefficients at the same location and orientation at finer 
scales are likely to be insignificant." 

Web model5: The web model states that if a wavelet coefficient is significant, then 
coefficients at finer scales at same location (a11 orientations) are likely to be significant. 

Human visual system model: This model describes the visual importance of various 
bands of the wavelet transform. Figure 3 shows the degree of quantization error that 
can be tolerated on various bands of a 4-band wavelet transformed image without any 
visual distortion. The graph has been obtained using experimental techniques. A 'set of 

"see tree representation in Fig. 4. 
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Bands Bands 

FIG. 3. HVS model for a 4-band wavelet tlansformed image. 

checkered patterns of different sizes and orientation were used in the experiment. M- 
adic wavelet transform of these images was computed and the image was reconstructed 
using the quantized coefficients. The allowable quantization noise in each band with 
no perceptual distortion in the reconstruction yielded the perceptual model. The 
wavelet-transformed image is first quantized using thc WS model and then processed 
into a bit stream using the other models. 

4. Zerotree model 

4.1. Embedded coding 

This section addresses a two-fold problem: (a) obtaining the best quality image for a given bit 
rate and (b) accomplishing this task in an embedded fashion i.e. in such a way that all encod- 
ings of the same image at lower bit rates are embedded in the beginning of the bit stream for 
the target bit rate. 

4.2. Sign$cance map encoding 

Significance map is a binary decision, which tells whether a coefficient (in this case the inner 
product with the basis function) has a zero or a nonzero quantized value. The cost of specify 
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ing this map an terms of bitrate is very hag .4 AS the target bit rate decreases, the probability 
that a coefilcient is zero increases (one uses fewer and fewer bits to represent a coefficient) 
and it has been shown4 that no matter how optimal the transformation is in decorrelating the 
data, the cost of determining the positions of a few significant coefficients takes away a large 
fraction of the bit budget. Image models help in specifying these significance maps at low bit 
rates. 

4.3. Compression of significar~ce maps 

The zerotree model has been used to improve the cornpression of significance maps of wavelet 
coefficients. A wavelet coefficient x is said to be insignificant with respect to a threshold T if 
k l i  T. The zerotree is based on the hypothesis that if a wavelet coefficient at a coarse scale is 
insignificant with respect to a given threshold T, then all wavelet coefficients of the same ori- 
entation in the same spatial location at finer scales are likely to he insignificant. Empirical 
evidence suggests that such an hypothesis is often true. Even though the image is passed 
through a decorrelating transform, the occurrence of insignificant coefficients is not inde- 
pendent events." More specifically, in a hierarchical subband system (such as Mallat tree de- 
composition), with the exception of the highest frequency subbands, every coefficient at a 
given scale can be related to a set of coefficients in the next fincr scale. 

The coefficient in the coarser scale is called the parent and all coefficients in the next finer 
scale of similar orientation are called children. For any given node at some level that node 
will have M? children except the leaves and the root nodes. Root nodes have M~ - I children. 
For a given parent, the set of all coefficients at all finer scales of similar orientation corre- 
sponding to the same location is called descendants. Similarly, for a given child, the set of all 
coefficients at the same scale and same orientation at coarser scales is called ancestors. For an 
M-adic-tree structured decomposition the parent-child relationship is shown in Fig. 4. 

4.4. Algorithmfor image coding 

The occurrence of insignificant coefficients is predicted using the zerotree model. The 
wavelet-transformed image is scanned in such a way (see Fig. 4) that no child is scanned be- 
fore its parent. Given a threshold T and an element x one can determine whether or not x be- 
longs to the zerotree, if all descendents of x are insignificant with respect to the same thresh- 
old T then x belong to a zerotree. If x itself is not a part of any other zerotree rooted above x 
(no ancestor of x is in the zerotree) the x is said to be the zerotree root. However, if x is in- 
significant but all its descendents are not insignificant, then x is predictably insignificant but 
does not form a zerotreee. 

The following algorithm which describes how the zerotree model can be used to get effi- 
cient representation of the wavelet-transformed image without sacrificing high bit rate is 
specifying a significance map. 

Wo to the set of all nodes 
GI to Q1 

b coefficients across scales are related by location and orientation. 
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FIG. 4. M-adic wavelet image (M = 3) and scan order. 

To = Max12 
i = O  
while bit rate not exceeded. 

Vx E wi \ 

if 1x1 < Ti and x cz descendents of Ci 
if 3 a zerotree rooted at x. 
Encode End of sub-tree symbol 
ci = Ci u x 

else if x E descendents of Ci 
continue. 

else 
Encode magnitude and sign of x. 
wi = Wib 

endif 
end V 
i = i +  1 
ci = # 
r, = Ti - J2 

endwhile 

The algorithm essentially prunes the M-adic tree and considers o ~ l y  those branches which 
have significant coeficients. At every refinement step (Ti = T, - ,/2), only those branches that 



j, A wavelet web 

This section describes an image-coding i i lgor i th~~~ ~ising the web model. Kashyap and Monis 
report that the magnitude of the ~wvc1et  transfi31-m coefficients, when sorted, lie almost ex- 
actly on the curve l/sU. Expcsirncnts indicatc that thc hypothesis is true for M-adic wavelets 
also, A data structure called 'wcb' (slightly different from Moni and ~ashya$)  has been de- 
fined to order the wavelet cocfficicnts. The coeflicicnts can be chosen from the web in their 
order of importance. The wcb chscntinlly predicts both the position and magnitude of the 
wavelet coefiicients. 

5.1. Tree of l D  M-udic wivcllrts 

The wavelet basis functions ciiil he rcpmsented as yLl = '(A4 i x  - k) where r varies from 1 

to M- 1, j and k are integers. For c x h  wuvelct cocfficient(basis function) in the tree, the chil- 

dren correspond to its M dilates given by y;.+,l,n, to ly;+ . 

The web is a two-dimensional data structura. A two-dimensional node d =  ( d l ,  4) is an or- 
dered pair of two one-din~ension;~l nodcs (1, and d?. As mentioned earlier, the one-dimensional 
wavelets are indexed on :z trcc and e:lch node has M children (root level nodes will have M - 1 
children). The children of a two-dimensio~~aI node are defined as follows: (x, y) is a child of 
(dl, dz) if x is a child of dl and J i:, a child of il:, or if .s = dl and y is a child of dl or if y = d? 
and x is a child of it,. This amounts to saying that the children of ( d l ,  d2) are the cross product 
of the two sets of dl,  children of' dl and dl, and children of L& ixcluding the node (dl ,  4 ) .  

The rationale behind defining the children in [his manner is the following: To go from an 
approximation in VI to V, -I- I at 2 pnrticul~~r point in the image, one needs to precisely use all 
the children defined as above. 

With such a representatioil ;i node may have up to a maximum of M' + 2M children (Tile 
maximum number of elements in the two sets is M + 1 and their cross product can be a 
maximurn of (M + 1)'). Also, a tlo& can have up to three parents. Also, note that the root 
node has no parents at all. Wc call set of nodes B a 'weby if for every node d E B at least one 
Parent of d E B. The only exception to this is the root which has no parents at all. Thus, this 
structure is similar to a tree with the exception that there can be inultiple parents, and there 
are common children too, 
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FIG. 5 .  Sorted and web-ordered data. 

5.3. Web-based selection 

e$ ordered coefficients 
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The problem of encoding the significance map and the value of the signiticwt coefficients e 
tackled using the web. The children of a web B are defined as Ibllows: Chib(ll) is the set of 
nodes that are children of nodes in B but are not themselves in 8. The algorithm for choosing 
nodes adaptively using the web is given here. The algoriihrns start with a set of root nodes 
(the nodes corresponding to the inner product with the scaling function gr ) )  and then add 
nodes to it. At each stage the resulting set of nodes is still a web. 

o Set B = root nodes. 
e let 2 E child(B), which has the largest magnitude. 

S e t B = B u i .  
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The last two steps are iterated till the desired number of nodes is chosen. For each node 
chosen we assign a web index. If the node is chosen at step k it gets a web index of k.  

5.4. Observation on web-based selection 

Figure 5 shows a plot of the coefficient magnitude vs web index (for M = 4 and M = 3). This 
shows that most of the wavelet coefficients lie on the curve of the form y = llxff. The web in- 
dex can be equated to sorted index and the error in doing so is shown to be b o ~ n d e d . ~  We can 
see that if we transmit the largest 500 or so coefficients with full precision, then we can get a 
good bound on the error in the estimate of the magnitude of the remaining coefficients. The 
value 500 simply corresponds to the knee of the web-ordered curve. 

5.5. Compression algorithm 

A compressed representation having about 20,000 nonzero coefficients is usually very close to 
the originaL7 The algorithm enables control of both the number of wavelet coefficients en- 
coded and the peak-signal-to-noise ratio (PSNR). 

5.5.1. Brief outline 

As suggested in the previous section, we split the web into two parts for the purpose of encod- 
ing. The first part consists of coefficients whose sort index is less than some number Linitial and 
the second part contains the remaining coefficients. In our experiments, we used Linitial to be 
between 500 and 1000 as this captures the main error region. Each of the two parts uses a 
different method for coding the magnitude and sign of the significant coefficients. In the first 
part, magnitudes and signs are encoded to full precision (nearest integer) and in the second 
part only an approximation to the magnitude is coded. Both the encoding schemes utilize a 
predefined scanning scheme which scans nodes only after its parents have been scanned as 
shown in Fig. 4. 

5.5.2. Coding with full precision 

Coding the positions 

The Linitial nodes are obtained by sorting the image and hence the position of these coefficients 
and their magnitudes must be encoded. The position is encoded by encoding the scan index. 
This scan index itself is efficiently run-length encoded. 

Coding the magnitudes 

Since the positions are encoded in decreasing order of magnitude, the magnitudes are differ- 
entially encoded. The sign of these coefficients is separately run-length encoded. 

5.5.3. Approximation s rep 

Before we explain the algorithm, we define the following: 

C: the candidates. These are nodes which are yet to be encoded, but are children of 
some encoded node. 
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E: the encoded nodes. These are the nodes that have already been encoded. We stanby 
initializing it to Linitial. 

The set W, corresponds to quantization regions along the web index. In the magni t~d~  
sus web-index plot, the magnitude axis is divided into Q quantization levels and the members 
on the web-index axis in ith level E Wi. 

Coding the positions 

The algorithm for encoding the positions is given below: 

Set E = {the nodes 1 .  
fo r i=  1: Q { 

forj  = 1: N~ { 
Let dj be the jth coefficient scanned 
i f d j ~  (W,nQ{ 
(i.e. is a candidate to be encoded) 
if Coeff > 0 encode + sign. 

else if Coeff < 0 encode - sign 
update: E = E U dj. 

update: C = C U (child(dj) \ E) 
1 

else if dj = w,' { 
(is a candidate but Absent or has different N) 
encode Absent 
1 

I 
I 
Notice that this algorithm never considers the possibility of encoding a node not being a can- 
didate (i.e. nodes e C). The reason is that these nodes can never appear in the web and hence 
it is unnecessary to scan them. Thus, a large number of scale space positions are eliminated 
from being scanned. It is clear that the scale space positions are scanned in an adaptive man- 
ner, adapting to the nature of the image. 

Approximation of magnitudes 

In each quantization bin, a straight line optimal in the least square sense is fitted and its pa- 
rameters are encoded. The decoder can evaluate the value of the straight line for that index, 
The straight line parameters are transmitted before sending the scale space positions. This 
will ensure partial reconstruction to the decoder even if the bit rate gets exhausted while cod- 
ing the scale space positions. 
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Compression ratio 66: 5 ,  Psnr 29dB 

FIG. 6. Reconstructed images, compressed using zerotree model. 

6. Conclusion 

The above algorithms were tested on a wide range of grey scale images of 8-bit precision and 
the results are presented in the form of reconstructed images. The distortion metric PSNR, 
used to evaluate the images, was in the range 25db to 45db for the reconstructed images using 
the zerotree and the web model. 

Needless to say, due to perceptual quantization, the PSNR can be low and the image qual- 
ity can be good. 

The zerotree algorithm achieves a high compression ratio with a linearly increasing dis- 
tortion. Since the zerotree-based algorithm is a successive approximation algorithm, images at 
moderate compression ratios are almost lossless. Figure 6 shows reconstructed images of some 
standard images. 

The web-based algorithm achieves very low bit rate coding, but is not asymptotically 
lossless. The least squares approximation of the wavelet coefficients cannot be refined in a 
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FIG. 7. Reconstructed images, compressed using web model. 

systelnatic manner as in a zerotree. However, the web-based approach has applications where 
bit rate is very critical.' In our simulations, Ihe best possible imagc at very low bit iates was 
produced by the web model. Figure 7 shows reconc;tructed images compressed using the web 
model. * 

In conclusion, M-adic wavelets with suilable image model can cater to a wide range of 
applications. However, the mathematics for obtaining a bound on thc crror using these mod- 
els, for some given image characteristics, remains open. 
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