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Abstract 

A projection on convex sets (POCS) approach to design an M-channel near-perfect reconstruction (NPR) banks is d e  
scribed. The method is conceptually simpkr than previously reported methods and allows the design of high-stopband 
filterbanks. 

i i Keywords: Approximation mellwds, channel bank filters, convergence of numerical methods, equiripple filters, iterative 
Pau a, methods, Nyquist filters, quadrature mirror filters, signal samplinglreconstruction. 

1. Introduction 

The theory of pseudo-QMF banks, their applications, and an optimization procedure to design 
a prototype filter is described in vaidyanathan.' The main disadvantage of the spectral fac- 
torization approach to design of equiripple pr~totypes,~ large reconstruction errors in the 
neighborhood of w = 0 and a= q is overcome by the method of Jayasimha and Hiremath." 
~ ~ u ~ e n ~  describes a constrained nonlinear nlinimization algorithm to optimize a quadratic 
objective function to obtain a prototype that is very close to being a spectral factor of a 2Mth- 
band filter. Such designs are termed near-perfect reconstruction (NPR) designs, where the 
reconstruction error is of the order of { M  times the stopband error. However, in this NPR de- 
sign procedure: the maxinium stopband ripple is in the immediate vicinity of the transition 
band. In many applications, where the maxi~num stopband ripple is an important measure of a 
filter's selectivity (in particular, those applications that require cascaded sub-band decompo- 
sitions), the procedure described here yields better results. The method is based on projection 
on convex sets (POCS);" i t  does not use the Reniez-exchange equiripple design procedure 
used in the earlier method.?he POCS rpcthod%as two important advantages compared to 
the Parks-McClellan procedure." 

1. The NPR constraint can be incorporated into the POCS scheme, provided its projection 
into the chosen set (time or frequency) is convex. 

2. The method can be extended to design multidimensional (non-separable) filters. 

An added advantage of the POCS method (compared to the method earlier reported3) is 
that both odd- and even-length prototypes (corresponding to DCT-I1 and -1V modulations) 
can be designed, whereas the previous design method3 obtains only odd-length prototypes. 
Another method7 to obtain weighted (in the stopband) minimax M-channel filterbanks is more 
complex than the proposed method. 



126 S.  JAYASIMHA 

2. Frequency domain specification of initial lineax-phase prototype 

A filter whose impulse response, g(n), satisfies: 

is called a 2Mth-band filter. Its frequency response, G(&'?, satisfies:' 

Let ~ ( d w )  be a equiripple zero-phase low-pass spectral factor of a 2Mth-band FIR filter of 
length N, i.e. G ( ~ ~ W ) = H ' ( ~ O )  is also an equiripple zero-phase low-pass 2Mth-band FIR filter of 
length 2N-1, whose impulse response satisfies (1). Since ~(e j " ?  is zero-phase, it takes only 
real values for 0 5 w 5 IG, and ~(4")akes only non-negative real values. 

Define H(&? as an equiripple low-pass filter with passband ripple 4 and stopband ripple 
4 Then (see, for example, Fig. 1, where M = 2), G'(?) = E!''(eiW) - 6,?12, with passband rip- 
ple = 26, and stopband ripple = ~ ~ ~ 1 2  is a zero-phase equiripple filter that can be made ap 
proximately 2Mth-band by selecting: 

0, SW, =- 
2 ~ '  

Now, 

is a 2Mh-band filter with non-negative stopband ripple. Therefore, 
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is a linear-phase spectral factor of Cidf*h The NPR design problem is to obtain an HI(&? such 
that (2) is satisfied (to within a small error). 

3. Iterative design by POCS 

In the 1-dimensional case, the initial filter's time-domain coefficients can be obtained using 
Parks-McClellan procedure5 employing pass- and stopband weights according to (3) (des- 
cribed earlier in detail'). In the multidimensional case, the initial filter is the inverse Fourier 
transform of the desired frequcncy,response. Note from (3) that the error in meeting (2) for 

0 < o < w, is of the order of 6:. If 6, is small, then most of the error in meeting (2) is due to 

transition band mismatch. The idea is to correct this mismatch using, ideally, a band (to the 
transition band) and a time-limited (to the support of the initial filter) correction sequence 
applied in frequency domain. Howcver, this ideal cannot be met by the first iteration's correc- 
tion sequence; during subsequent iterations this ideal is met to an increasing degree of accu- 
racy and the desired filter results. The frequency response, ~'(d'?, of the zero-phase filter .is 
required to be within prescribed upper and lower bounds in its pass- and stopbands as follows: 

where H',d(f?w) is the ideal filter response, &(@)a positive function of w, which takes values in 
F,, where F,. is the union of the pass- and stopbands. Usually, for the NPR prototype, 

where F, and F, are the pass- and stopbands, respectively, and 

where 4, and 4, satisfy (3). 
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i hid (n), if i z  E I 
hl, (n) = 

0, otherwise. 

Each iteration consists of applying successive temporal and frequency-domain constraints to 
the current iterate. The kth iterate consists of the following steps: 

Compute the zero-phase frequency response of the kth iterate h ( n )  on a suitably dense 
grid of frequencies using FFT algorithm. 
Impose frequency-domain constraints as follows: 

(a) the equiripple constraint in the pass- and stopbands consistent with (3). However, if 
the initial filter already conforms to (3) (using Parks-McClellan procedure5 of Jay- 
a s i d a  and Fliremath3), the equiripple constraint need not be applied to the passband 
as, in many applications, the requirement is to obtain NPR prototypes with a prescribed 
stopband ripple. 
(b) the 2Mth-band spectral factor constraint in the transition band using a 'smooth' er. 
ror allocation function for symmetrically paired (about d 2 M )  frequency components. 
One choice of allocation is the complement of the standard sigmoid, f(z) = 1 - (111 + 
e"", where z is a distance measured from the center of the transition band (d2~)  
and a a parameter that determines the rise rate of the sigmoid. Another function 
that behaves similarly is the complement of the inverse tangent tinction, 
g(z) = i-i tan-'az. The choice of such functions is predicated by the desire to allo- 

cate more error (of the order of 6,') to frequency components near the passband edge 
(where the ripple is of the order of S;2 to begin with) and the desire not to disturb the 
relative frequency responses of adjacent frequency bins near the transition band edges. 

Compute the inverse Fourier transform of H\+l(e'w). 
Zero out the inverse Fourier transform outside the support I to obtain h'x+l ( 1 1 )  . 
Exit if a convergence criterion between the iterates lz\(tz) and I l i . , l ( t ~ )  is met. The 
choice of a suitable convergence criterion is provided in the next section. 

The flow diagram of this method is shown in Fig. 2. It can bc proven that tile iterative FIR 
filter design program is globally convergent. The proof is based on POCS." ' The frequency 
and time-domain constraints define two convex sets in the set of square suinmable sequences 
and the imposition of frequency and time-domain ckstraints :re orthogonal projections on to 
these sets. If the sets intersect, then the iterates converge to a member in the intersection set. 
If the specifications are too tight, then the two sets do not intersect and the algorithm does not 
converge. In such a case, either the filter support is progressively enlarged or the stopband 
specification is progressively relaxed. In one-dimensional cases, an empirical fo rm~la '~  re- 
lates the filter support to pass- and stopband specifications, without the spectral factor of 
2Mth-band filter constraint. The latter constraint does not appreciably change the formulae' 
The iterative algorithm is implemented using a power-of-two size FFT that is greater than 10 
times half the chosen support. 
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RG. 2. Flow diagram of the iterative design. 

4, Filter design example 

The design procedure is illustrated for an NPR 32-band example prototype filter H'(z) with the 
following specifications (where normalized frequency is defined as dn): 

M = 3 2  
1 3  

Passband cutoff frequency (normalized) = - - - 
64 256 

J 

Stopband cutoff frequency (normalized') = 2- + - 
64 256 

Stopband ripple 6, = -80dB 
Number of taps = 5 11 

The search procedure described in Section 2 of the previous method3 was used to find the 
optimum relative stop-to-passband weight, K, to obtain an initial approximate spectral factor 
of a 2Mth-band filter. K is 12.6624& and the peak overall distortiona is -39.903dB, while the 
actual stopband ripple is -77.15dB. The evolution of the designed parameters, the maximum 
stopband gain, the peak overall distortion and the maximum deviation from the 2Mth-band 
condition, using the procedure shown in Fig. 2 (with the convergence criterion disabled) are 
graphed in Fig. 3. 

%e peak overall distortion is the maximum deviation of T,(~'O) from unify. 

Hk ( z ) i k  (z). .  &(z) are M cosine modulated filters obtained from the prototype Hi?). ik ( 2 )  are 
0 

time reversals of the real HL(Z)." 



FIG. 3(a). Evolution of maximum overall distortion (solid 
line) and stopband ripple (dashed line) with iteration index, 
and (b) Evolution of deviation from 2Mti1-band condition 
with iteration index. 

Fw. 3. Overall distortion and prototype response for de. 
sign exrtrnple (the vertical line in (b) indicates the stopband 
edge). 

It can be observed from Fig. 3 that convergence is quite rapid for all three design parame- 
ters initially. However, since the constraint convex sets do nor intersect", there will be a trade- 
off between stopband ripple and deviation from the 2Mth-band condition. In Fig. 3, with a (in 
the standard sigmoid) chosen as 4, the trade-off favors meeting the 2Mth-band co~ldition at 
the expense of stopband performance. Thus, a suitable convergence criterion is met when 
stopband ripple no longer decreases with iteration index and reaches a constant value. 

Figure 4 shows overall distortion and magnitude response of a prototype tiller designed 
using this stopping criterion (see appendix for MALTAB listing). The maximum stopband 
ripple is -74.87dB, only 2.25 dB worse than the original prololype filter. However, the worst 
case reconstruction error has improved from -39.903dB to -67.45dB. 

5. Conclusion 

A simple method of designing filterbanks using the FFT algorithm and projection on to the 
constraint convex sets is presented. One contribution consists of modifjing the frequency do- 
main projection6 to meet the 2Mth-band spectral factor constraini. The other contribution 
consists of applying constraint corrections to the prototype in such a manner that they are 
largely band-limited to the transition band. 
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Appendix X 
MATLAB code for design example 

% Design a 5 1 I -length 32-band equiripple filterbank 
% using POCS to improve 
clear; 
hold off; 
M=32; 
N=5 10; 
ds=le-4; 
delta=3/256; 
fftN=16384; 
f=[O (1/(2*M))-delta (1/(2*M))+delta I ] ;  
m=[l 1 0 01; 
wtz12.6624; 
b=remez(N,[O 1/(2*M)-delta 1/(2W)+delta 1],[1 1 0 0],[1 
wt*ds]); 
factor=sqrt((l/(2*M))/(( 1/(2*M))+(ds:Vs/2))); 
b=b*factor; 
c=conv(b,b); 
disp('Maximum deviation from the 2Mth band condition'); 
disp(max(abs(c(N+2:"M+1:2%4:2*N+l)))) 
figure(]) 
[rerrl,magl]=plerr(wt,2*M,N,b); 
mg 1 =max(ahs(ahs(mag 1)- 
l))*sqrt(((l/(&M))/(( I l(4*M))+((dsA2)/2)))); 
rcerr1=2@*laglO(mgl); 
disp('Initia1 Reconstruction error (dB)'); 
disp(rcerr1 j; 
title(TO(z) without improvement'); 
xlabel('normdized frequency'); 
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ylabel('lTO(z)l (dB)'); 
% find actual stopband ripple 
theta=2*piA(0:fftN-l)*N/(2*fftN); 
x=real(fft(b,fftN).*exp(i*theta)); 
sb-edge=fftN/(4*M)+fftN/(2*(l/delta)); 
ds=max(abs(x(sb-edge:fftN-sb-edge))); 
for 1=1:150; 

%Calculate zero phase frequency response 
theta=2*pi*(O:fftN-l)*NI(2*fftN); 
x=real(fft(b,fftN).*exp(i*theta)); 
disp('Maximum stopband ripple (dB):'); 
sb~rip(l)=20~log1O(max(abs(x(sb~edge:fftN- 

sb-edge)))); 
disp(sb-rip(])); 
if (1>20) 

if (sb-rip(l)>sb-rip(1- I)) break; 
end; 

end; 
% impose equiripple constraint in stopband 
x(sb-edge:fftN-sb-edge)=rnin(x(sb-edge:ff- 

sb-edge),ds); 
x(sb-edge:fftN-sb-edge)=nm(x(sb-edge:fft- 

sb-edge),-ds); 
% Impose the 2Mth band constraint on the first 
subband 
% (the passband) and its image. Note that for 
2Mth band 



% condition sum-over-k H ( e * Y w t 2 P i * k W  
1. 
err(l:fftN/(2*M))=sum((reshape 

(~."2,fftNi(2W),2*M))')- I; 
% dump all error into passband 
pb-edge=ffN(4J'M)-fftNI(2'h(1/delta)); 
x(l :pb-edge)=sqrt(x(l:pb-edge)% 
err(1 :pb-edge)); 
% split up errors in transition band 
tbm=ltfftNI(4*M); 
tbl=tbm-ffN/(2*(lldeltaj); 
tbh=tbmtfftNl(2*(I/delta)); 
factor=(OS-((tbl:tbh)-tbm)l(tbh-tbl)); % linear 
factor 
factors1 .l(l+exp(-exp(4)"(factor-0.5))); 

, % sigmoidal factor 
x(tbl:tbh)=sqrt(x(tbi:tbh)."2-factor.$er)); 
% dump all error into first subband 
(passttransition) 
% x(l:lffftNI(4*M)) = 
sqrt(x(1 :l tfftNI(4*M)),"2- 

err@ ltfftN/(4*M))); 
x(fftN:-l:ffW2t2)= x(2:fftNi2); 
% Calculate the new t i e  domain impulse re- 
sponse. 
r=real(ifft(x.lkexp(-Ptheta))); 
bl=r(l:Ntl); 
cl=conv(bl,b 1); 

disp('Rcconslnctic,n cmr with lmproyelnent 
(dB)'), 
disp(rcew(1)); 
titlc("f0(i) with inyovemenf); 
xlubcli'nominlizc'd frcqm.xcy'); 
ylabel('lTO(zil (dB)'); 
b=bl; 
subplotQ, 12): 
x1=2"O:fftN-1)lfStN; 
y l =20610g lO(absi Ift(h,ifrN j)); 
y l=rnin(yl,l); 
y l=max(yl,- 100); 
plot(xl(l:SfiN/l,), y l ( 1  :fttN/2]); 
hold on; 
~ i = ( l l ( 2 ' ~ M ) ) t ( l l (  litlzlta)); 
xl=jxl xl]; 
yi=[-100 I]; 
plot(x l ,y 1 ,'b'): 
hold off; 
axis([0 1 -100 11); 
tiric('Prototype responsc (with improvement!); 
xhbelCnormalized frequcncy'); 
ylabel~lHp(iplz)l (dB 1'); 

end; 
figure(2); 
subplot(2,I ,I ); 
plot(rcerr); 
hold on; disp('deviation from fie 2Mth band condition'); 

max_dev(l)=max(abs(c1(N+2*Mt1:2*M:2*NtI) plot(sb-rip, '--'I; 
)I; xlabcl(,'Maxirnum disrurtion iind sropband ripple'); 
disp(max-dev(1)); ylabel('dB'); 
subplot(2,l,l); hold o f t  
[rerrI,magl]=plerr(wt,2%,N,bi); subplot(2,1,2); 
mgl=max(abs(abs(magl)- plot(max-devj; 
l))%~ft(((~1(4'W))I((11(4W))t((d~~)12)))); xlabcl('Deviation from 2Mtil-b;md condition'); 




