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Abstract

A projection on convex sets (POCS) approach to design an M-channel near-perfect reconstruction (NPR) banks is de-
seribed. The method is conceptually simpler than previously reported methods and allows the design of high-stopband
filterbanks.
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1. Introduction

The theory of pseudo-QMF banks, their applications, and an optimization procedure to design
a prototype filter is described in Vaidyanathan.! The main disadvantage of the spectral fac-
torization approach to design of equiripple prototypes,” large reconstruction errors in the
neighborhood of ®=0 and @= 7, is overcome by the method of Jayasimha and Hiremath.’
Nguyen® describes a constrained nonlinear minimization algorithm to optimize a quadratic
objective function to obtain a prototype that is very close to being a spectral factor of a 2Mth-
band filter. Such designs are termed near-perfect reconstruction (NPR) designs, where the
reconstruction error is of the order of VM times the stopband error. However, in this NPR de-
sign procedure,” the maximum stopband ripple is in the immediate vicinity of the transition
band. In many applications, where the maximum stopband ripple is an important measure of a
filter’s selectivity (in particular, those applications that require cascaded sub-band decompo-
sitions), the procedure described here yields better results. The method is based on projection
on convex sets (POCS);" it does not use the Remez-exchange equiripple design procedure
used in the earlier method.® The POCS rpethod6 has two important advantages compared to
the Parks-McClellan procedure.”

1. The NPR constraint can be incorporated into the POCS scheme, provided its projection
into the chosen set (time or frequency) is convex.

2. The method can be extended to design multidimensional (non-separable) filters.

An added advantage of the POCS method (compared to the method earlier reported’) is
that both odd- and even-length prototypes (corresponding to DCT-II and -IV modulations)
can be designed, whereas the previous design method® obtains only odd-length prototypes.
Another method’ to obtain weighted (in the stopband) minimax M-channel filterbanks is more
complex than the proposed method.
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A method to incorporate the constraint that the prototype be a spectral factor of a 2.
band filter into the POCS iteration scheme is described. In dpmg so, equiripple NPR designg
are obtained (rather than the pseudo-QMF designs’). The design method is illustrated through

an example.

2. Frequency domain specification of initial linear-phase prototype

A filter whose impulse response, g(n), satisfies:

0, n=(ON-2)/2+42pM (p=%1%2,.)

=1 L o n-22 Y
oM

is called a 2Mth-band filter. Its frequency response, G(e'™), satisfies:’

M-
GO ™IMYy = 2 Me(0) = 1. (2)
k=0

Let H(¢® be a equiripple zero-phase low-pass spectral factor of a 2Mth-band FIR filter of
length N, i.e. G(e/9)=H(¢") is also an equiripple zero-phase low-pass 2Mth-band FIR filter of
length 2N-1, whose impulse response satisfies (1). Since HE®) is zero-phase, it takes only
real values for 0 < < , and G(£) takes only non-negative real values.

Define H(¢) as an equiripple low-pass filter with passband ripple J, and stopband ripple
&, Then (see, for example, Fig. 1, where M =2), G'(¢) = H*(e”) - §,/2, with passband rip-
ple =28, and stopband ripple = §%/2 is a zero-phase equiripple filter that can be made ap-
proximately 2Mth-band by selecting:

0)P+60S=—2—[“7. (4)
Now,
N . 2 /
G(eJm)=tG’(em’)+~6—s} UM ey —2M B
2 J(uram)+(52 12) (1/28)+(82 /2)

is a 2Mth-band filter with non-negative stopband ripple. Therefore,

1/2M

H(el?y= j@ 7
s )‘](1/2M)+(5§/2)



DESIGN OF NEAR-EQUIRIPPLE NPR BANKS 127

(WEPGT2 o

P
S ' | (re)s “"‘"f\f >
i
| o 1
? e TRV 1
- o curs ok ot R
L o 4z TEE g .
N 041 d F o 0 02 04 06 08 1
ormalized Frequency .
Normalized Frecprency

@
®

FIG. 1. Specification of (a) H'(w) such that (b) G’() is approximately an equiripple 4th-band filter.

is a linear-phase spectral factor of G(&“). The NPR design problem is to obtain an H'(e®) such
that (2) is satisfied (to within a small error).

3, Iterative design by POCS

In the 1-dimensional case, the initial filter’s time-domain coefficients can be obtained using
Parks—McClellan procedure” employing pass- and stopband weights according to (3) (des-
cribed earlier in detail®). In the multidimensional case, the initial filter is the inverse Fourier
transform of the desired frequency response. Note from (3) that the error in meeting (2) for
0 < w< @, is of the order of & 2. 1f &, is small, then most of the error in meeting (2) is due to
transition band mismatch. The idea is to correct this mismatch using, ideally, a band (to the
transition band) and a time-limited (to the support of the initial filter) correction sequence
applied in frequency domain. However, this ideal cannot be met by the first iteration’s correc-
tion sequence; during subsequent iterations this ideal is met to an increasing degree of accu-
racy and the desired filter results. The frequency response, H &), of the zero-phase filter is
required to be within prescribed upper and lower bounds in its pass- and stopbands as follows:

H' (&) — Ef0) < H(e®) < H'((€°) - E{w) w € F, (8)

where H',/(e’®) is the ideal filter response, E,(@)a positive function of ¢, which takes values in
F,, where F. is the union of the pass- and stopbands. Usually, for the NPR prototype,

LifweF, ©
H. W)=
(@) 0, ifweF,
where F, and F, are the pass- and stopbands, respectively, and
6, fwekF
Ed(co):{ ! g (10)

155., ifweF,

where g, and §, satisfy (3).
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The iterative method begins by the initial prototype, hj(a), which is the inverse Fourier

transform of H (), hign) = F [Hia(@)] truncated to support J:

hy(n), ifnel

ho(n) ={ (11)

0, otherwise.
Each iteration consists of applying successive temporal and frequency-domain constraints g
the current iterate. The kth iterate consists of the following steps:
¢ Compute the zero-phase frequency response of the kth iterate /(n) on a suitably denge
grid of frequencies using FFT algorithm.
e Impose frequency-domain constraints as follows:

(a) the equiripple constraint in the pass- and stopbands consistent with (3). However, if
the initial filter already conforms to (3) (using Parks-McClellan procedure’ of Jay-
asimha and Hiremath®), the equiripple constraint need not be applied to the passband
as, in many applications, the requirement is to obtain NPR prototypes with a prescribeg
stopband ripple.

(b) the 2Mth-band spectral factor constraint in the transition band using a ‘smooth’ er-
ror allocation function for symmetrically paired (about m/2M) frequency components,
One choice of allocation is the complement of the standard sigmoid, fiz) =1~ (1/1+
¢™), where z is a distance measured from the center of the transition band (/2M)
and g a parameter that determines the rise rate of the sigmoid. Another function
that behaves similarly is the complement of the inverse tangent function,

g(z)=+-Ltan""az. The choice of such functions is predicated by the desire to allo-

cate more error (of the order of 8) to frequency components near the passband edge

(where the ripple is of the order of 52 10 begin with) and the desire not to disturb the
relative frequency responses of adjacent frequency bins near the transition band edges.

e Compute the inverse Fourier transform of H'y,(¢'®).
e Zero out the inverse Fourier transform outside the support / to obtain /'y, (1) .

s Exit if a convergence criterion between the iterates h'(n) and h'y (n) is met. The
choice of a suitable convergence criterion is provided in the next section.

The flow diagram of this method is shown in Fig. 2. It can be proven that the iterative FR
filter design program is globally convergent. The proof is based on POCS.™ * The frequency
and time-domain constraints define two convex sets in the set of square summable sequences
and the imposition of frequency and time-domain constraints are orthogonal projections on to
these sets. If the sets intersect, then the iterates converge to a member in the intersection set
If the specifications are too tight, then the two sets do not intersect and the algorithm does not
converge. In such a case, either the filter support is progressively enlarged or the stopband
specification is progressively relaxed. In one-dimensional cases, an empirical formula” re-
lates the filter support to pass- and stopband specifications, without the spectral factor of
2Mth-band filter constraint. The latter constraint does not appreciably change the formulae.
The iterative algorithm is implemented using a power-of-two size FFT that is greater than 10
times half the chosen support.
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FiG. 2. Flow diagram of the iterative design.

4, Filter design example

The design procedure is illustrated for an NPR 32-band example prototype filter H'(z) with the
following specifications (where normalized frequency is defined as @/7):

M=32

1 3
Passband cutoff f n lzed) = —— -
assband cutoff frequency (normalized) T
Stopband cutoff frequency (normalized) = -lz + 5—2—6—

Stopband ripple & = -80dB
Number of taps =511

The search procedure described in Section 2 of the previous method® was used to find the
optimum relative stop-to-passband weight, K, to obtain an initial approximate spectral factor
of a 2Mth-band filter. K is 12.66246;, and the peak overall distortion® is —39.903dB, while the
actual stopband ripple is —=77.15dB. The evolution of the designed parameters, the maximum
stopband gain, the peak overall distortion and the maximum deviation from the 2Mth-band
condition, using the procedure shown in Fig. 2 (with the convergence criterion disabled) are
graphed in Fig. 3.

“The peak overall distortion is the maximum deviation of To(e'®) from unity.
__(N_ 1) M—I . -
; ZHL— (2)Hy(2)._ H(z) are M cosine modulated filters obtained from the prototype H(2). Hy(2) are
0
time reversals of the real H,(z).*

To(z) =3
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Fici. 3(a). Evolution of maximum overall distortion (solid  FiG. 4. Overall distortion and prototype response for de-
tine} and stopband ripple (dashed line) with iteration index,  sign example (the vertical line in (b) indicates the stopband
and (b) Evolution of deviation from 2Mth-band condition  edge).

with jteration index.

Tt can be observed from Fig. 3 that convergence is quite rapid for all three design parame-
ters initially. However, since the constraint convex sets do not intersect?, there will be a trade-
off between stopband ripple and deviation from the 2Mth-band condition. In Fig. 3, with g (in
the standard sigmoid) chosen as 4, the trade-off favors meeting the 2Mth-band condition at
the expense of stopband performance. Thus, a suitable convergence criterion is met when
stopband ripple no longer decreases with iteration index and reaches a constant value.

Figure 4 shows overall distortion and magnitude response of a prototype filter designed
using this stopping criterion (see appendix for MALTAB listing). The maximum stopband
ripple is -74.87dB, only 2.25 dB worse than the original prototype filter. However, the worst
case reconstruction error has improved from -39.903dB to -67.45dB.

5. Conclusion

A simple method of designing filterbanks using the FFT algorithm and projection on to the
constraint convex sets is presented. One contribution consists of modifying the frequency do-
main projection® to meet the 2Mth-band spectral factor constraint. The other contribution
consists of applying constraint corrections to the prototype in such a manner that they are
largely band-limited to the transition band.
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Appendix I
MATLAB code for design example

% Design a 511-length 32-band equiripple filterbank
% using POCS to improve

clear;

hold off;

M=32;

N=510;

ds=le-4;

delta=3/256;

ffiN=16384;

f=[0 (1/(2*M))-delta (1/(2*M))+delta 11;
m=[1100];

wi==12.6624;

b=remez(N,[0 1/(2*M)-delta 1/(2*M)-+delta 11,[1 1 00],{1
wt¥ds]);
factor=sqrt((1/(2*M)/((L/(2*M))+(ds*ds/2)));
b=b*factor;

c=conv(b,b);

disp('Maximum deviation from the 2Mth band condition’);
disp(max(abs(c(N+2*M+1:2*M:2*N-1))))

figure(1)

[rerrl,magl]=plere(wt,2*M,N,b);
mgl=max(abs(abs(magl)-
DY*sqre(((L/(EF M4+ M))+((ds"2)/2))));
reerr1=20%log10(mgl);

disp('Tnitial Reconstruction error (dB)'");

disp(rcerrl),

title("T0(z) without improvement');
xlabel('normalized frequency);

ylabel(1TO(z)| (dB)");
% find actual stopband ripple
theta=2*pi*(0:fftN-1)*N/(2*{ftN);
x=real(tft(b,f{tN).*exp(i*theta));
sb_edge=fiN/(4*M)-+fIN/(2%(1/delta));
ds=max(abs(x(sb_edge:fftN-sb_edge)));
for 1=1:150;
%Calculate zero phase frequency response
theta=2%pi*(0:fftN-1)*N/(2*ftN);
x=real(fft(b,fftN). *exp(i*theta));
disp("Maximum stopband ripple (dB):");
sb_rip(1)=20*1og 10(max(abs(x(sb_edge:fftN-
sb_edge))));
disp(sb_rip(D));
if (>20)
if (sb_rip(1)>sb_rip(l-1)) break;
end;
end;
% impose equiripple constraint in stopband
x(sb_edge:fftN-sb_edge)=min(x(sb_edge:fftN-
sb_edge),ds);
x(sb_edge:fftN-sb_edge)=max(x(sb_edge:fftN-
sb_edge),-ds);
% Impose the 2Mth band constraint on the first
subband
% (the passband) and its image. Note that for
2Mth band
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% condition sum_over_k H(e**(w+2*pi*k/M))=
1.
e L:TIN/Z*M))=sumf(reshape

(x A2 EENIQFM),24M)) )1
% dump all error into passband
pb_edge=fftN/(4*M)-FRN/(2%(1/delta));
x(1:pb_edge)=sqrt(x(1:pb_edge).*2-
err{1:pb_edge));

% split up erors in transition band
thm=1+fN/(4*M);
thl=the-fENAZ*(1/dslta));
thh=thm-+tN/(2*(1/delta));
factor=(0.5-{(tbL:tbh)-tbm)/(tbh-tbl)); % linear
factor
Tactor=1/(1+exp(-exp(4)*{factor-0.5));

. % sigmoidal factor
x{tbl:thh)=sqri(x(tbl:Abh).A2-factor. err{{bl: bh));
% dump all error into first subband
{pass+ransition)

% x(L1+NIARM)) =

sqre(x(L: 1+ffNK4*M)).A2-
err(1:1+EN/(4*M));

X(FAN:-LAfEN/24+2)= x(2.80N/2);

% Calculate the new time domain impulse re-

sponse.

r=real(ifft(x. *exp(-i*theta)));

bl=r(LN+1)

cl=conv(bl,bl);

disp('deviation from the 2Mth band condition’);

max_dev(l}=max(abs(cl(N+2¥M+1:2¥M:25N+1)

)3

disp(max_dev(l));

sabplot(2,1,1);

[rerr],mag]j=plerr(wt,2*M,N,b1);

mgl=max(abs(abs(mag|)-

DPsari((LAAMY(LEMM{(ds 2H2)));

reerr(D=20%log 1 0(mg1);
disp('Reconstruction error with i IMprovemen
(dB));
disp(rcerr(l)y;
title("TO(z) with improvement',
xlabel{'normalized frequency');
ylabel(1T0(z)! (dB)Y;
b=bl;
subplot(2,1,2);
x1=2%(0:f tN 1)/ﬁ‘t’\l
yl~7()*l%l W absife(b, TTINY));
yl{=min{yi,1);
yl-max(yl 100y,
plot(xF(LAfINA), yI(:TN/AY),
hold on;
xI=(1/2¥M))+ (1 | /delta));
xl={x1 x1Y;
yi=[-100 1};
plot(xLy1,b);
hold off;
axis(f0 1-100 [y
title('Prototype response (with improvemeny,
xlabel(‘normalized frequency');
ylabel(Hp(z)l (dB)");
end;
figure(2);
subplot(2,1,1;
plot(rcerr);
hold on;
plot(sb_rip, -');
labd Maximum distortion and stopband ripple’)
ylabel('dB');
hold off,
subplot(2,1,2};
plot(max_devy;
tlabel(Deviation from 2Mth-band condition');





