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Abstract

Robustness of the performance of the automatic speech-recognition (ASR) systems has become important because of
the widespread deployment of ASR in various information technology applications. This paper addresses robusiness to
environment noise 1 the speech signal. The speech pattern matchimg 1s recast as a sequence of sub-pattein matching
problems in the time-frequency domamn. Each sub-pattern matching 1s formulated as a 2D matched filter, which is
known to be an opumum detector, This sequential detection 1s shown to provide robust recognition of the overall pat-
tern. The new approach to ASR 1s evaluated on a limited vocabulary, speaker-dependent, isolated word-recognition
task in an automobule acoustic environment and the results are promising.
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1. Introduction

Speech recognition has evolved from science fiction to applied research and commercial reality
in the last four decades. While research has contributed to the understanding of the human
speech communication process, digital signal processing (DSP) has provided the technology to
translate the research knowledge into practical systems. A simple block diagram of a speech-
recognition system is shown in Fig. 1. The short-time amplitude spectrum (or some transfor-
mation of the amplitude spectrum) represents the essential information in the speech signal. A
test speech pattern is compared with the stored ‘reference’ patterns in such a spectral domain
and the pattern classifier outputs the best match.

Much of the understanding of speech signal properties is gained through the spectro-
gram.' A more compact and effective representation that has spurred significant advances in
automatic speech recognition (ASR) is the source/filter model of the vocal tract using linear
prediction. A different approach to feature analysis involves modeling human auditory system
using a set of non-uniformly spaced, overlapping bandpass filters followed by other nonlinear
processing. Perceptual linear prediction (PLP)® has combined these two principles by applying
a lower-order LPC analysis to the speech processed by a perceptually motivated filter bank.
The other important block in Fig. 1 is the pattern classifier. The pattern classifier optimally
aligns the sequence of test pattern vectors with the reference pattern vectors, taking into
account the variability of speaking rate. Two important pattern classifiers in ASR are template
matching and hidden Markov modeling (HMM) techniques. In template matching, optimally
chosen reference speech pattern (template) consisting of a sequence of feature vectors is
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Fic. 1. Block diagram of speech-recognition system.

stored for each word of the vocabulary which is estimated during the training process. An
unknown (test) speech pattern is compared with all the reference patterns to find the best
match. Because of the variability in speaking rates, a dynamic time warping (DTW) technique
(attributed to Itakura®) is used to stretch or shrink the time axis to minimize the distortion
between templates. In contrast, an HMM' incorporates more information about variability of
the statistical speech patterns which is a particularly attractive approach to speaker-independent
ASR.

In this paper, we propose a novel approach to ASR using two-dimensional matched filter
(MF). Section 2 deals with the formulation of MF approach using a time-frequency representa-
tion (TER) of speech signal. In Section 3, we identify the issues in the application of MF to
noisy speech and address them at some length. In Section 4, we discuss two alternative time-
alignment techniques nsing matched filtering approach. We present the results of the new ap-
proach applied to a limited vocabulary, speaker-dependent, isolated word-recognition (SD-
IWR) task in Section 5, followed by concluding remarks.

2. Matched filtering for ASR

Figure 2a shows the time-domain plot of a speech signal, x(n), of the proper noun ‘John Smith’
spoken by a male adult, saropled at Fs =8 kHz. The short-time Fourer transform (STFT) of
the signal is given by

L-1
Xegrrllon) = Xgpr (e“”,n)]w_mm =Y aln-mpp(me ™Y < k< N1, (1)

The amplitede spectrogram of the speech signal obtained through STFT (with N =256,
L =128 and successive window overlap of 87.5%) is shown in Fig. 2¢. Figure 2b shows the
thresholded STFT plotied as an equilevel contour. The islands of high energy in the spectro-
gram are easily noticeable. Due to the Jarge amplitude dynamic range of speech signal compo-
nents, many components of the signal in the time-frequency domain have high SNR even at
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a Jow overall SNR and are likely to be less affected by the additive noise. The STFT being a
linear transform, there are no cross terms, unlike other transforms such as Wigner distribution.
Hence, the high-energy regions in the time-frequency domain are robust signal components,
albeit of limited resolution because of the STFT window function.

Considering an additive noise model of speech, given by x(r) = s(n)}+ ¥ (n), its STFT spec-
trurn can be viewed as an additive noisy pattern: & Xerrr(k, m? = 1Sk, 7)1 + €l[{n, k)%, under
the assumption of uncorrelated noise. While the time signal is highly fluctuating and of low
SNR, local regions of | Xsperl would be slow varying and of high SNR. Thus, for the purpose of
noisy speech recognition, it would be advantageous to focus on these local regions than on the
whole pattern. Also, for known signals in additive noise, matched filtering is an optimum de-
tector. Hence, we formulate an ordered set of matched filters, each of which is an optimum
detector of the local region of the whole speech pattern.

Let S(k, n) be a two-dimensional complex-valued signal (estimated speech pattern). Let
S(k, n) be corrupted by additive colored noise y (k, n) (of power spectral density Sy(a, @,));
thus,

X(k, n)=S(k, n) + Ak, n). @
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The matched filter for optimum detection of S(k,n) from X{k,n} is a 2D linear filter H(k,n) that
maximizes the output SNR.* The output of the matched filter is given by

Yk, ny=H(k, n) * X(k, n) (3)
where * denotes convolution. The optimum matched filter is given by
Hk, 1) = Tk, n) * X(—k, —n), where [(k, n) = F'{1/S (ax, @)}. 4)

The optimum matched filter theory provides for maximizing the power of the output signal
with respect to the power of stationary noise in the signal. In the context of the TFR of speech,
each of the local regions occupies a fraction of the signal bandwidth. If the local region is de-
fined over ky < k <k, and [(ky-k))/(F/2)] is small, we can assume Sy{ax, @,) to be uniform over
the local region. This assumption permits us to neglect the Tk, 1) term in (4) and use simple
Hkn) obtained from the local regions of the TFR of clean speech as matched filters to process
the test utterance. With this simplification, we get

Yik, 1) = §"(—k, ~n)*X(k, n) = Rys(k, n). 5)

For the case when there is a translational shift in the observed signal, the optimum matched
filter is modified to 8" (~k ~kq, 1 -ng), leading to the measure of Rys(k + ky, n+ ny). Often we
do not know (ko, ng); hence, the optimum matched filter corresponds to maxy, ,, { Rys(k, 1)}, for
best detection of the sub-paitern.

As indicated earlier, for each speech pattern we can extract several local regions of H, from
the clean signal, (see Fig. 2¢)

Hk, n) = Xsry(k, m). Wik, n) ®)

where . denotes element by element multiplication and W,(k, n) is a binary-valued function that
defines the local region. It may be noted that Ryg(k, n) can in general be complex valued and
we need (o combine the detection measures of several matched filiers cohesively. Hence, with-
out much loss of generality, we can define

y, = @”(M,M)iRXS, (Ak, An)‘ = MKy 0y ZE(X(k, ). W, (k, m})H, (k - Ak,n— An)
kon

» H1 > Z»m
] 3]
— b s
Ksrer o ® Y(n)
» Hk ; Zvnk

316. 3. Matched filtering of speech.
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=max 0| D O (X(kor). W, (k,m))S; (k — Ak~ An) @
k n

For speaker-dependent ASR pattern matching, we can simplify the above search to only the n-
axis because the frequency variations are minimal within the same speaker patterns. Thus, we
can write

¥4n) = yA0, n) = 1H(k, ny*X(k, n)i, Vn. ®)

If we have K such local regions over the STFT of the reference signal, we can formulate a
time-ordered set of matched filters, each of which is an optimum detector of the local region
and can realize the optimum ‘receiver’ as

X

¥(n)=Y v, (m) " )

=1

Equation (9) indicates that the optimum receiver is realized by ‘delay and sum’ of the time-
ordered output of matched filters. When y(n) are delayed by n,, the peaks are aligned and
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hence the summing operation yields a processing gain of MUY The structare of this signal
processor is shown in Fig. 3, which is reminiscent of the matched filter processor used in pulse-

compression radar.”

We now show some experimental results to demonstrate the efficacy of the MF approach to
ASR.

Figure 4a shows the waveform x(n) + ¥(n) (obtained by adding white Gaussian noise to
the signal shown in Fig. 2a) at an SNR of 0 dB, over the entire word. The corresponding am-
plitde spectrogram is shown in Fig. 4b. The output y,(n) from matched filtering the
STFT{x(n) + ¥ (n)] using H; is plotted in Fig. 4c. Even though Fig. 4c shows a single peak,
other peaks may occur if the word contains multiple instances of the TF pattern corresponding
to H;. If the time-aligned peak outputs from H, to Hy are summed together, the resulting signal
Y(n) will have a peak amplitude close to six (as plotted in Fig. 4d). Figure 5 shows the results
of the experiment with x(n) + %(n) (obtained by adding colored noise recorded in an automo-
bile). The resuits are similar to the experiments conducted with the white noise case; this vali-
dates the assumption of uniform distribution of Sy (@, @) over H,.
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3. Matched filtering of noisy speech

In Section 2, we have presented experimental results of adding noise to clean speech, where the
underlying speech signal remains identical. In real noisy speech recognition, difficulties arise
due to the variabilily in speaking rate and articulation effects.! Due to these factors, no two
speech utterances of the same word (even by the same speaker) are identical. In particular, the
matched filtering formulation is based on identifying high SNR ‘islands’ in the speech pattern,
At low overall SNRs, the *islands’ of noisy speech can be quite different (rom that of clean
speech.

For example, Fig. 6a shows the pattern of noisy speech (*John Smith’) recorded in a mov-
ing car and Fig. 6b the corresponding spectrogram. The similarity of the high-energy regions
with those of Fig. 2b is evident to the eye, not withstanding corruption by noise and variability
of speech, However, Fig. 6¢ shows y,(n) and Fig. 6d Y(n), which are much less promising than
those obtained when noise was added to clcan speech. We now analyse the reasons for this
poor performance and put forward some strategies for MF of noisy speech.

From the TFR of speech, we can see that specch can be represented as a sum of sinusoids
with complex lime-varying envelopes:
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P
S([):ZAX(t)[Cosa)A(Z)i—a‘ gD+, | (10)

=1

where A,(¢) is the amplitude of ih sinusoid, w(¢) the dominant frequency of the ith componeat,
a{hHg(f) the frequency modulation term, @, the constant phase shift anq P Vthc number of
components in the signal. We can also rewrite cqn (10) in analytical form for reference and test
signals, respectively:

$,er(1)= 3 4, O exp(w, (0 +a,(1)s,(1)+ ©;)

i=1

NGRS WHOES CHOREHOHORL HERQ) (1

i=1

where n(f) is the additive noise and the primes indicate distortion in test with respect to refer-
ence signal. As a first-order approximation, the distortions may be modeled as additive ervors
given by

2(f) = (1) + A(Y). (12)

In the context of speaker-dependent ASR, the main sources of error are variability in the utter-
ance and Lombard effect.’ The relative modulation function® of each component is given by
setting n(?) to zero in (11) and taking the ratios of the components:

RMF () = AA(Dexp(Am(t) + Aa(DAgAL). (13

RMF shows how close the test utterance is compared to the reference and tends to zero when
the reference and test signals are identical. We can interpret RMF as a mismatch in torm, i.e. if
H is the matched filter extracted from clean speech, the true matched filter of the test utterance
is H + § (RMF)). Such mismatches give rise 1o reduction in the peak output of the matched fil-
ter much in the same way as Doppler-shifted signals suffer losses in radar.” In the case of man-
made signals (as in radar waveform design, techniques are used to contain the losses within
acceptable performance limits over the expected Doppler shift. In the case of speech, all the
terms in (13) are, in general, non-zero. To alleviate the losses in y(n), we need to cither repre-
sent H(n) or Xszprin such a way that y(n) is not sensitive to RMF found in speech signals. One
such obvious choice is 1o use | Xgrey | because the RMF gets simplified to AA(1) provided the
frequency resotution is not very high and the ith component of the signal remains in the same
frequency bin corresponding to @,

Figure 7 shows the output ¥(r) obtained by matched filtering noisy speech and manually
time aligning y,(n) to account for the variability in the speaking rate. This indicates that MF of
speech is feasible if we choose TFR that is relatively insensitive to RMF and also take care of
the issues in time alignment. Our approach to addressing the issue of insensitivity to RMF is
motivated by the perceptual model of the humnan auditory system and we use EarlLyzer.” Bar-
Lyzer is a signal-processing algorithm that computes perceptually weighted power spectram of
speech with the following attributes.
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(a) Overlapping Mel-spaced critical band integration using DTFT over window lengths
marched to the bandwith. The overlap in the frequency reduces the sensitivity of the
amplitude spectrum to RMF.

(b) Equal loudness compensation.

(c) Dynamic range compression to approximate intensity 1o loudness conversion.

In Section 5, we report the results with EarLyzer front-end. To address the time-alignment
issues in matched filtering of speech, we present two novel ideas: one in the transform domain
and the other based on DTW.

4. Aligned matched filters
4.1. Transform domain approach
Consider the feature vector r, of size M given by
£, = (Fut, Pz Bt (14)
where ry is the energy in the kth filter at time n. We can stack T, to form an M X N matrix:
R=(r, r2... vy (15;
Now, consider a single row of R, which is the output of a single filter k for the whole pattern:
£y = (Figs Voo Tt (16)
We take the transform of ry, and select only a region of interest with the window W:
p=F{r}W umn

where p is the modulation spectrum of the output from the kth channel of the filter bank. The
columns of R correspond to the power output from the filter channels 1... M. We select the
region of modulation freguencies in the region 1 to 16 Hz as most of the information useful for
ASR lies in this frequency band.® We take the transform of all the channels 1... M, and obtain a
transformed M x L matrix R, Note that L is independent of the duration of the utterance.
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thereby eliminating the need for time alignment. For discrete transforms and efficient compu-
tation, T, is chosen such that the signal vector By is appended with zeros for the required reso-

lution. Defining

Rm=R s W (g

where . denotes element by element multiplication and W is & binary-valued matrix obtained by
thresholding R, ie.
wy= 1R Zrm
=() otherwise (19)

Thus, Ry forms the matched filter in the transform domain. We take the transfonm of the
columns of the test pattern matrix T to obtain the M x L omatrix T, . The recognizer output cun
be formulated as

i =arg 111ux{T;»R_§»'Alﬁ.]} [0

where v is the index of the vocabulary words. The surface plots for Ry and F are shown in
Figs 8a and b, respectively, for the vtterance *Joha Smith’.

4.2, Matched filtering with DTW (MF-DTW)

The problem assoctated with ‘spectral sequence comparison of speech arises from the fact that
different acoustic renditions of the same speech utterance are seldom realized at the same
speed over the entire utterance. In DTW, we define a dissimilarity measure do(R, T) based on
the optimum warping function ®(Pg,®r) as the accumulated distortion over the eatire ufter-
ances:'

K
dy(R,T) :——I—ZJ(KDR(k),d)T(k))ln(k) (21
P =i

where m(k) is a non-negative path weighting coefficient and My is a puth-normalizing factor; R
and T are the reference and test spectral sequences of differens lengths. The goul of DTW is to
minimize do(R, T) over all possible paths, subject to some path constraints. It is possible to
view DTW matching also as a form of matched filtering as follows. We used a 19-channel
EarLyzer with 83-feature vectors as the front-end with DTW for time alignment and patters
matching. The MF-DTW algorithm incorporates the 2D-matched filtering into DTW by re-
placing each feature vector by a matrix as given below.

— i
R,y = [y Xpataty - T Xty Tpue~| (22)
T by et s ety a1 (23)

This may be contrasted with the usual DTW which corresponds to £ =0; ¢ ) corresponds to a
feature mawrix of consecutive feature vectors which is sclected to be a matched filter. The
matched filter R, is defined by

R =R, W, o4
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where e denotes element by element multiplication and W, is a binary-valued matrix obtained
by thresholding R,, i.e.

will, /) =1 Ry, ) 2 Fireshora
=0 otherwise. 25)

The thresholding operation on the reference matrix results in high-energy regions to be used as
matched filters. For the DTW we use a correlation distance measure, given by d=1-1#r,
which effectively is similar to a matched filter, as shown earlier. The DTW also takes care of
alignment along the time axis; along the frequency axis, the EarLyzer output is relatively in-
sensitive to the articulation effects of speech.

5. Experimental results

We have evaluated the algorithms presented in Section 4 for a lmited vocabulary, speaker-
independent task. Moving automobiles is selected as the acoustic environment for assessing the
robustness of these algorithms. Reference patterns are obtained from clean speech recorded
with the automobile in a parking place and test patterns correspond to noisy speech recorded in
a moving vehicle with an average SNR of approximately 0 dB. The vocabulary size is 30,
which is typical in speaker-dependent ASR applications. The isolated words are end-pointed
manually. The results are summarized below.

Table I

Recognition scores for SD-ASR

Algorithm Test data stze Correct recognition
(#words, #speakers)  rate

Transform domain 30,1 70.00%

MFE-DTW, ( { =0) 360, 10 84.66%

ME-DTW, ({ =1} 300, 10 89.33%

MF-DTW, (£ =2) 300, 10 91.33%

ME-DTW, (£ =3) 300, 10 90.33%
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The transform domain algorithm is evaluated with only one speaker as it is gonsidered ade-
quate for a preliminary assessment at the level of 70% correct recognition performance level.
The MF-DTW algorithm yielded best recognition performance at £ =2. The poorer perform-
ance at £ =3 may be attributed to inclusion of non-stationary regions into the local regions
obtained by thresholding. We are currently working on an algorithm to adaptively change the
value of ¢ based on a measure of stationarity of the reference signal.

6. Conclusions

In this paper, we have formulated a new approach to speech recognition based on matched fil-
tering. This approach holds the promise of robust performance. We have presented the theo-
retical basis for applying the matched filter approach to speech recognition and demonstrated
its efficacy by adding noise to clean speech. The issues in matched filtering of speech in noisy
acoustic environment have been discussed and two possible approaches to time alignment are
suggested. Preliminary evaluation of these two approaches on limited-vocabulary SD-IWR
application, with noisy speech recorded in an automobile environment, shows that the matched
filtering formulation is promising. We are currently working on an algorithim to realize the
time-ordered matched filters and use automatic time-alignment techniques to gate the outputs
of each filter. We are also investigating the efficacy of matched filtering formulation 1w
speaker-independent recognition tasks.
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