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Abstract 

Robustness of the performance o i  the automatic speech-recognition (ASR) systems has become important because of 
the widespread deployment of ASR in vmous information technology applicat~ons. This paper addresses robustness to 
environment noise m the speech signal The speech patten? matchmg is recast as a sequence of sub-pdttein matching 
problems in the time-frequency damao. Each sub-pattern matchins is foriliulated as a 2D matched filter, which is 
known to be an optmum detector. This sequential detection 1s shown to provide robust recogmtian of tile overall pat- 
tern. Thz new approach to ASR 1s evaluated on a limited vucabulary, speaker-dependent, isolated word-recognition 
task in an automobile acoustic envlron~nent and the results u e  promising. 
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1. Introduction 

Speech recognition has evolved from science fiction to applied research and commercial reality 
in the last four decades. While research has contributed to the understanding of the human 
speech communication process, digital signal processing (DSP) has provided the technology to 
translate the research knowledge into practical systems. A simple block diagram of a speech- 
recognition system is shown in Fig. 1. The short-time amplitude spectrum (or some transfor- 
mation of the amplitude spectrum) represents the essential information in the speech signal. A 
test speech pattern is compared with the stored 'reference' patterns in such a spectral domain 
and the pattern classifier outputs the best match. 

Much of the understanding of speech signal properlies is gained through the spectro- 
gram.' A more compact and effective representation that has spurred significant advances in 
automatic speech recognition (ASR) is the sourcelfilter model of the vocal tract using linear 
prediction. A different approach to feature analysis involves modeling human auditory system 
using a set of non-uniformly spaced, overlapping bandpass filters followed by other nonlinear 
processing. Perceptual linear prediction (PLP)' has combined these two principles by applying 
a lower-order LPC analysis to the speech processed by a perceptually motivated filter hank. 
The other important block in Fig. 1 is the pattern classifier. The pattem classifier optimally 
aligns the sequence of test pattern vectors with the reference pattern vectors, taking into 
account the variability of speaking rate. Two important pattern classifiers in ASR are template 
matching and hidden Markov modeling (HMM) techniques. In template matching, optimally 
chosen reference speech pattern (template) consisting of a sequence of feature vectors is 
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Fio. 1. Block diagram of speech-recognition system. 

stored for each word of the vocabulary which is estimated during the training pl-oci'ss. An 
unknown (test) speech pattern is compared with all the referencc patterns to find the best 
match. Because of the variability in speaking rates, a dynamic time warping (DTW) technique 
(attributed to Itakurz?) is used to stretch or shrink the time axis to minimize the distortion 
between templates. In contrast, an HMM' incorporates more infonniltion about variability ol" 
the statistical speech patterns which is a particularly attractive approach to speaker-indcpendent 
ASR. 

In this paper, we propose a novel approach to ASR using two-dimensional mntched filter 
(MF). Section 2 deals with the formulation of MF approach using a rime-Sreyuency representa- 
tion (TFR) of speech signal. In Section 3, we identify the issues in the application of' ME to 
noisy speech and address them at some length. In Section 4, we discuss two alternative time- 
alignment techniques using matched filtering approach. We present the results of the new ap- 
proach applied to a limited vocabulary, speaker-dependent, isolated word-recognition (SD- 
IWR) task in Section 5, followed by concluding remarks. 

2. Matched filtering for ASR 

Figure 2a shows the time-domain plot of a speech signal, x(n), of the proper noun 'John Smith' 
spoken by a male adult, sampled at Fs = 8 kHz. The short-rime Fourier transform (STIT) of 
the signal is given by 

The amplitude spectrogram of the speech signal obtained through STFT (with N =256, 
L= 128 and successive window overlap of 87.5%) is shown in Fig. 2c. Figure 2b shows the 
thresholded STFT plotted as an equilevel contour. The islands of high energy in the spectro- 
gram are easily noticeable. Due to the large amplitude dynamic range of speech signal compo- 
nents, many components of the signal in the time-frequency domain have high SNR even at 
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FIG. 2. Est~mation of matched liltcr; a. clean speech signal, b. lhresholded Fpectrogram, and c specnogram. 

a low overall SNR and are likely to be less affected by the additive noise. The STFT being a 
linear transform, there are no cross tenns, unlike other transforms such as Wigner distribution. 
Hence, the high-energy rqgions in the time-frequency domain are robust signal components, 
albeit of limited resolution because of the STFT window function. 

Considering an additive noise model of speech, given by x(n) = s(n)+ y (n), its STFT spec- 
trum can be viewed as an additive noisy pattern: &IXs,dk, n)12 = lS(k, n)12 + &Inn, k)12, under 
the assumption of uncorrelated noise. While the time signal is highly fluctuating and of low 
SNR, local regions of l X ~ ~ m l  would be slow varying and of high SNR. Thus, for the purpose of 
noisy speech recognition, it would be advantageous to focus on these local regions than on the 
whole pattern. Also, for known signals in additive noise, matched filtering is an optimum de- 
tector. Hence, we formulate an ordered set of matched filters, each of which is an optimum 
detector of the local region of the whole speech pattern. 

Let S(k, n) be a two-dimensional complex-valued signal (estimated speech pattern). Let 
S(k, n) be corrupted by additive colored noise y (k, n) (of power spectral density S~(Q.W,,)); 
thus, 

X(k, n) = S(k, n) + Hk, n). (2) 
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The matched filter ior optimum detection of S(k,n) from X(k,n) is a 2D linear filter H(k,n) that 
maximizes the output S N R . " ~ ~  output of the matched filter is glven by 

Y(k ,  11) = lKk .  n )  * X(k, n )  (3) 

where * denotes convolution. The optimum matched fiiter 1s glven by 

The optimum matched filter theory provides for maximizing the power of the output a~gnal 
with respect to the power of stationay noise in the signal. In the context of the TFR of speech, 
each ot'the locnl regions occupies a fraction of the signal bandwidth. If the local region is de- 
fined over kl < k < k2 and [(k&)l(F+'2)J is small, we can assume S l ( q , r & , )  to bc unifonu over 
the local region. This assumption permits us to neglect the Q k ,  n )  term in (4)  and usc simple 
H,(k,n) obtamed fiom the local regions of the TFR of cleiln speech as matched filters to process 
the test utterance. With this simplifical~on, we gct 

Y(k, n) = S"(-k, -n)*X(k, n )  = RXs(k, n). (5) 

For the case urhen there is a translational shift in the observed signal. the optimum nutchcd 
Yilter is modified to s'(-k -ko, -n -no), leading to the nreasore of R,(k i- ko, n +I?,,) .  Olien we 
do not know (ko, no); hence, the optimum matched filter corresponds to rnax,~,,,,  [Rxs(k, n ) ] ,  for 
best detection of the sub-pattern. 

As indicat6d earlier, for each speech pattern we can extract several local regions of' Ha f r o r  
the clean signal, (sec Fig. 2c) 

where. denotes element by element multiplication and W,(k, n)  is a binary-valued fimction that 
defines the local rcgion. It may be noted that R,(k, n )  can in general he complex valued and 
we need to conibinc the detection measures of seveval matched filters cohesively. Hence, witli- 
out much loss of general~ty, we c m  de6ne 

'iG 3 Matched filtering of spaech. 
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For speaker-dependent ASR pattern matching, we can simplify the above search to only the n- 
axis because the frequency variations are minimal within the same speaker patterns. Thus, we 
can write 

y,(n) = y,(O, n) = IH,(k, n)*X(k, n)l, Vn. (8) 

If we have K such local regions over the STFT of the reference signal, we can formulate a 
time-ordered set of matched filters, each of which is an optimum detector of the local region 
and can realize the optimum 'receiver' as 

Equation (9) indicates that the optimum receiver is realized by 'delay and sum' of the time- 
ordered output of matched filters. When y,(n) are delayed by n,, the peaks are allgned and 
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PIG. 4. Example of malched filtering m white noise; a. clean speech plus white noise, b. spectrogram, c. y(n), d. Y(n) 
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hence the summing operation yields a processing gain of M""'. The structure of this aignnl 
processor is shown in Fig. 3, which is reminiscent of the matched filter processor used in pulse- 
compression radar.' 

We now show some experimental results to demonstrnte the efficacy of the MF approach to 
ASR. 

Figure 4a shows the waveform x(n) + grl) (obtained by adding white Gaussian noisc to 
the signal shown in Fig. 2a) at an SNR of 0 dB, over the elltire word. The corresponding nm- 
plitudc spectrogram is shawn in Fig. 4b. The output yl(n) from matched filtering the 
STFT[x(n) + ~ ( n ) ]  using HI  is plotted in Fig. 4c. Even though Fig. 4c shows a single peak, 
other peaks may occur if the word contains multiple instances of the TF pattern corresponding 
to H,. If the time-alignedpeak outputs from HI  to H6 are summed together, the resulting signal 
Y(n) will have a peak amplihrde close to six (as plotted in Fig. 4d). Figure 5 shows thc results 
of the experiment with x(n) + y,(f~) (obtained by adding colored noise recorded in an nutomn- 
bile). The results are similar to the experiments conducted with the white noise case; this vali- 
dates the assumption of uniform distribution of Sv(mk, a,) over H,. 
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Fro. 5. Matched filming in coloured noise; a. speech plus colorcd nmse, b. spectrogram, r. .&), d Y(n). 
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3. Matched filtering of noisy speech 

In Section 2. wc have pi-esented expcriniental rcsolts of adding noise to clean speech, where the 
underlying cpecch signal remains identical. In rcal noisy speech recognition, ditliculties arise 
due to the variabilily in spcking rate and articulation effects.' Duc to these factors, no two 
speech ucterancc.: of the same word (even by the same speaker) are ident~cal. In particular, the 
matched iillering lortnulatinn is based on identifying high SNR 'islands' in the spccch pattern. 
At low overall SNRs, the 'islands' oT noisy speech c m  be quite diflel-en1 from that of clean 
speech. 

For cxainple, Fig. 6a \bows thc pattcln of noisy speech ('John Sm~th')  recorded in a nlov- 
ing car and Pig. hb the corrcipond~ng spec!rogram. The similarity of the high-energy regions 
with thosc oSFig. 2b is cvident to the eyc, not withstandmg col-ruption by noise and variability 
(d' specch. However. Fig. 6c hhows )',(I!) and Fig. 6d Y(n) ,  which are much less promising than 
those ohlained when noise was added to clcan spccch. Wc now analysc ~ h c  reasons for this 
pool perlorn~ance and pul Sorward some strategies Tor MF of noisy speech. 

Firm the 'TFK of spcecli, we can see that specch can be represented as a sum of slnusoids 
with complex Liine-vasyiog envelopes: 
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whcre A,([) is the amplitude of ith sinusoid. o,(l) the dominant frequency of Lhc i h  conrponeot, 
u,(t)g,(t) tbc Frequency modulation temi, 0, the constant phase shift and p the number of 
components in the signal. We can also rewrite cqn (10) in analytical form for reference and test 
signals, respectively: 

S,,,(t) = ~ : ( t ) e x ~ ( w : ( r ) + a : ( t ) ~ j ( t ) + ( ~ , , ) + n ( t )  ( I  I )  
i=l 

whcre n(t) is the additive noise and the primes indicalc distortion m tcst with respect lo rcfw- 
ence signal. As a first-order approximation, thc distortions may be modeled as midirive errors 
given by 

~ ( t )  = d l )  + A(t). (12)  

In the context of speaker-dependent ASR, [he main sources of error arc variability in the utter- 
ance and Lombard effect.' The relative modulation Cunction6 of each component is givcn by 
setting n(t) to zero in ( I  I) and taking the ratios of the components: 

RMF shows how close the test utterance is compared to the reierencc and tends to zero whcn 
the reference and test signals ate identical. We c m  interpret RMF as a misnxilch in tcrm, i.e. il 
H i s  the matched filter extracted from clean speech, the true marched filter or the test utteral~ce 
is H t c(RMI;). Such mismatches give nise to reduction in the peak output of the matched fil- 
ter much in the same way as Doppler-shifted signala suffer losses in r a d. '11. .' In the casc of man- 
made vignals (as in radar wavefonn design, rechniques are used to contain the losses within 
acceptable performance limits over the cxpected Dopplcr sh~it .  In the care of speech, all the 
terms In (13) are, in general, non-zero. To alleviate the losses in g(ri), we need Lo ciiher rcpre- 
sent H(n) or X S T F T ~ ~  such a way that p(n) is not sensitive lo RMF found in speech signulu. 0111: 
such obvious choice is to use I Xsnr I because the R M F  gets simplified to M , ( t )  provided the 
frequency resolution is not very high and thc ith component of the signal remains in the s;mc 
frequency bin corresponding to 0,. 

Figure 7 shows the output Y(n) obtained by matched filtering noisy speech and menually 
time aligning y,(n) to account for the variability in the speaking rate. This indicates that MF of 
speech is feasible if we choose TFR that is relatively insensitive to RMP and also take carc of 
the issues in time alignment. Our approach to addressing the issue of insensitivity to R b f F  is 
motivated by the perceptual model of the human auditory system and we use ~ a r L ~ z e r . '  Ear- 
Lyzer is a signal-processing algorithm that compntes perceplnally weighted power spectrum of 
apeech with the following attributes. 
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Fro. 7 Manuall! aligned Yin)  ri.itb magnitude processing 

(a) Overhpping Mel-spaced critical band integration using DTFT over nindow izngthc 
matched to the banduiith. The overlap in the frequency reduces the sen?itivity of the 
amplitude spectrum to RMF. 

(b) Eqoal loudness compensation 

(c) Dynamic range compression to approximate intensit) to loudness conversion. 

In Section 5. we report the results with EarLyzer front-end To address the time-alignment 
issues in matched riltering of speech, we present two novel ideas: one in the transfoim domain 
and the othcr based on DTU'. 

4. Aligned matched filters 

Conrider the fea:ure vector r,, of size M given by 

r,, = (rJZi, KO,.. r,,,dl (14) 

where ,;,n is the energq in the kth filter at lime iz. TVc can stack r., to form an M XNmatrix: 

R = (r:, r;... r , , ~ .  (15j 

Now. consider a single row of R, which is the output of a single filter k for the whole pattern: 

r: = (rli. ri;... r.~,.).  116) 

We rake the transSorm of rk and seiect only a region of interest with the uindoiv U': 

Q= F(r)lV (17) 

where g is the modiilation spectrum of the outpnt from the Hh channel of the filter bank. Thc 
columns of R cvrrecpond to the power output from the Cilter channels I... M. We select the 
region of modulation frequencies in the region 1 to ! 6  Hz 3 b  lnost uf the infomation useful for 
XSR lies in this fi-equency band."\\ie take the lransform of all the channels I... M ,  and obtain a 
transformed A4 x L matrix R,. Note that L is independent of <he duration of rhc utterance. 



thereby clinl~natlng tile need f ~ ~ r  timi: dignnient. For d~scrctc l!.l~~riol-ni\ ;rm! clUiii:w! cmnpu- 
hlion. 7. is then hllCil chat the signal vccnrs r!, is uppendcd with ;.crw lor the I-cql!~rcti reso- 
liitio~i. Dcfi~?ing 

&, = R, w I 1x1 

u,hrre . de~iotcc element by clernenl mdtipllcat~on and M':s :I hi~xiry-b:ililt.rI m:ilris ohln~tici! hy 
thresholdinp R,. i.e. 

w,) = I ~f R,(i, j )  Z q ,,I 

= 0 olherwise IiW 

Thus, R;,,,,,, lbrrns !hi: matched filtcr in the trnnsform doniai~i. Wc t:ihr' tile Ii;r~isli~r~ti of thc 
columns of Ihe lest patleni rnaLr1.u T to ribtain the M i  1, mett-ih ~ L ' ,  . 'l'lic ~ I . C O ; I I ~ / C ~  o i ~ l ~ i ~ t  call 
be ihs~nuiatcd as 

whe~e  I. is the index of the vocabulw words. The surlace plots ilrr K,,;!!, :i~iil 'l', :irc i l ~ ~ r a n  in 
Figa Xa and b. rzspcctivsly. for the uttsrance 'ioI111 Smith'. 

The prohlem associated with specllal sequence conpariwn zrt hpccch :irises Ir.ot11 thc Ihct 1lr;it 
diKerent acoustic renditions of the same spcrch udcrancc arc seldom r c ~ l i i r d  :it thc snniu 
spccd wcr  the cnlil-c uucrance. in UTW, we define a dissimilarity ~ ~ i c i ~ s u l r  d,l,(K, 'I') h:iwd OII 

!hc optimum u8arplng function O(QR,QI) ah the accumulated di\tosi~on w c r  111c entire I I ! ~ I . -  

irllcesl 

&,here rw(k) is a non-negative path weighting coeff~cient and Mmis a ~ ; ~ t l i - r i r l r ~ ~ i : ~ l i / i ~ ~ ~  S:ICLII~: R 
and T arc the reference and test spectral sequences of dif/Er<11/ ie~ig~lis. Thc gxil of 1)7'W is to 
minimize d&, T) over all possible paths, siibject lo some path constraints. It is possiblc to 
view DTW matching also as a form of matched filtering as f~)llowc. Wc uscil n 19-ch:tnncl 
EarLyze~ with 83-feature vectors as the front-end with DTW for time nlig~irricnt and pnttcro 
~nalcliing. The MF-DTW algorithm incorpo~atcs the 2D-matched filtering into LYTW by rc- 
placinp each featurc vector by a matrix a5 given below. 

This may he contrasted with the usual DTW which correspo~lds to F =0; i' 50 corresponds to a 
feahlre matrix of consecutrve feature vectors wh~ch is selected u~ be n matched filter. The 
matched filter R, is defined by 
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(a) (b) 

FIG. 8a. Transform of R afkr ihrcsholding, b. tmnsform of T. 

where * denotes element by element multiplication and W,, is a binary-valued matrix obtained 
by thresholdmg R,,, i.e. 

The thresholding operation on the reference matrix results in high-energy regions to be used as 
matched filters. For the DTW we use a correlation distance measure. given by ( I =  l - t'r, 
which effectively is similar to a matched filter, as shown earlier. The DTW also talccs care of 
alignment along the time axis: along the frequency axis, the EarLyzer output is relatively in- 
sensitive to the articulation effects of speech. 

5. Experimental results 

We have evaluated the algorithm presented in Section 4 for a limited vocabulary, speaker- 
independent task. Moving automobiles is selected as the acoustic environment for assessing the 
robustness of these algorithms. Reference patterns are obtained from clean speech recorded 
with the automobile in a parking place and test patterns correspond to noisy speech recorded in 
a moving vehicle with an average SNR of approximately 0 dB. The vocabulary size is 30, 
which is typical in speaker-dependent ASR applications. The isolated words are end-pointed 
manually. The results are summarized below. 

Table I 
Recognition scores for SD-ASR 

Algorithm Teat dava sue Correct recognition 
(#words, #speakers) rate 

Transform domain 30 , 1 70.00% 
MF-DTW, ( e =o) 300% 10 84.66% 

MF-DTW, ( =I) 300 3 lo 89.33% 

MF-DTW, ( & =2) 300 2 10 91.33% 

MF-DTW, ( e 4 )  300, l o  90.33% 
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The transform domain algorithm is evaluated with only one speaker as it is considered ade- 
quate for a preliminary assessment at the level of 70% correct recognition perforn~ance level. 
The MF-DTW algorithm yielded best recognition performance at 1 = 2. The poorer perform- 
ance at ! = 3 may be attributed to inclusion of non-stationary regions into the local regions 
obtained by thresholding. We are currently working on an algorithm to adaptively change the 
value of C based on a measure of stationatity of the reference signal. 

6. Conclusions 

In this paper, we have formulated a new approach to speech recognition based on matched fil- 
tering. This approach holds the promse of robust performance. We have presented the theo- 
retical basis for applying the matched filter approach to speech recognition and demonstratrd 
its efficacy by adding noise to clean speech. The issues in matched filte~ing of speech in noisy 
acoustic environment have been discussed and two possible approaches to time alignment are 
suggested. Preliminary evaluation of these two approaches on limited-voc;ibulary SD-IWR 
application, with noisy speech recorded in an automobile environment, shows that the rnatched 
filtering formulation is promising. We are currently working on an algorithm to realize the 
time-ordered matched filters and use automatic time-alignment techniques to gate the ouiputs 
of each filter. We are also investigating the efficacy of matched filtering formulation to 
speaker-independent recognition tasks. 
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