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Abstract

Sonrce localization by matched field processing (MFP) involves accurate modeling of the ocean and projection of the
replica pressure vectors for hypothetical source positions on to the array data vector or the noise subspace obtained by
etgendecoraposttion of the array data correlation matrix. The performance of all matched ficld processors 18 degraded
by the noncoincidence of the source coordinates with one of the grid coordinates of the search grid. A new method of
range-depth lacalization, called the replica subspace wmtersection (RESIN) method, is presented in this paper. The
RESIN method exploits the relationship between the rephca subspaces and the signal subspace. It 1s shown that the
RESIN processor is more tolerant to mismatch between source coordinates and the nearest grid coordinates than other
commonly used processors such as Bartlett and MUSIC This gridding mismatch tolerance can be exploited to increase
search grid spacing and thus reduce the computanonal complexity of the search.
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1. Introduction

Matched field processing (MFP) techniques of source Jocalization in the ocean have been
studied extensively both theoretically and experimentally.! The source coordinates are
estimated from the positions of the peaks of an ambiguity. function that is constructed by
projecting the replica vectors computed for different hypothetical source positions either on
(o the array data vector or on to the noise subspace obtained by eigendecomposition
of the array data covariance matrix. The performance of MFP depends on the accuracy with
which the environmental parameters are known. Satisfactory performance also requires
the use of a sufficiently fine search grid to ensure that one of the search points is sufficiently
close to the actual position of each source. The Bartlett processor has a greater tolerance to
mismatch than most other processors, but the former cannot be used for multiple source
localization. Subspace-based methods such as MUSIC™ ® are capable of localizing multiple
sources with high resolution, but they are very sensitive to mismatch. In this paper, we
propose a new method of range—depth localization of multiple sources, based on the concept of
replica subspace of Harrison.* Harrison projects the data vector on a weighted replica
subspace and obtains estimates of all unknown parameters by the maximum likelihood method.
Our method exploits the relationship between the replica subspaces and the signal subspace
derived by eigendecomposition of the armay data correlation matrix. It is shown
that the new method, called the replica subspace intersection (RESIN) method, can (olerate
a larger mismatch between the source coordinates and the nearest search-grid coordinates than
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either MUSIC or the Bartlett method. Greater tolerance to gridding mismatch permits the use
of a coarser gridding which can lead to a significant reduction in computational complexity.

In Section 2, the signal subspace of a linear vertical array is derived. The RESIN method of

range—depth localization is presented in Section 3. In Section 4, simulation results are pre-
sented for single- and multisource scenarios to demonstrate the robustness of the RESIN tech-

nique to gridding mismaich.

2. Eigendecomposition of the correlation matrix

The ocean is modelled as a horizontally stratified water layer of constant depth & overlying a
horizontally stratified bottom. Let J mutually uncorrelated narrowband sources of center
frequency f; be located at depths z and ranges r, j=1,..., J with respect to a vertical lincar
array of N hydrophones. Let the hydrophone depths be denoted by z;,n=1,---, N. The signal
at the nth hydrophone due to the jth source is given by

Sj,,(t)=pjnb-(t)e"'2#°', j=1-J;n=1- N (4]

where by(#) is a slowly varying zero-mean random function that accounts for the random fluc-
tuations of the source and the intervening medium, and the variance of b,(r) given by

o) = E[b} (1) @

is a measure of the strength of the source. Under far-field conditions, the signal amplitudes p,,
can be written in terms of the discrete normal modes of the channel®

M

pjn=zx/mwm(zr’s)' J=l-Jin=L- N (3)
m=l
N .
i =[Z”T) Ve raer)e ) @
n’;

v}lhere the mode functions (eigenfunctions) ;(z), the modal wavenumbers k,, and the attenus-
tion constants o, are all dependent on the frequency f;. The array signal amplitude vector due
to the jth source can be written as

P, )= [py - pal” (5)
=Pl - xad”
where

vilz) - walel)
Y| P X (6)
vileh) - walew)

The array signal-plus-noise vector y(£) = [y,() -] is given by
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¥(0) = Po(0)e ™ n(r), (7
where n(s) is the atray noise vector, and
b(t) = [Bi(® - bAD)Y, ®
P=[p(r, 2) - plrs, 7)) ®
=YX,
01’11 toXn ]
X=|: HE (10)
LIV -xIMJ

Assuming that N 2 M = J, the matrix ¥ has rank M, and the matrices X and P have rank J.

Assuming that all the signals and noise are mutually uncorrelated and that the noise is spa-
tially white, the array spectral correlation matrix at frequency f; can bewritten as

R=H5(/0)3" ()] (i
=psP*+ o1,
where J(f,) denotes the discrete Fourier transform at frequency f, of a filtered and sampled
version of y({),

S=diag(0‘,2,-~,o'3), (12)
o the noise variance, and I the identity matrix. The eigendecomposition of R is given by
X
R= Auut. (13)
=l
The eigenvalues may be ordered as A2 Ay 2 - Z Ay > Ay = - = Ay, where
v, +0” fori=1-J
(= (14)
o?  fori=J+1-N,
and vy, -, v, are the eigenvalues of the rank—/ matrix PSPY_ The eigenvalues A, -, 4, are

called signal eigenvalues and the corresponding eigenvectors ., u; form an orthonormal
basis of the signal subspace S defined as

$ =span{p(r1, 20 P(rs, 20} as
= span{uy,, Wy}
3. Replica subspace intersection method

In all matched field processors, the array spectral data vector fr(fo) is compared with a series
of replica vectors e(r, z), defined as the normalized signal amplitude vectors
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Fia. 1. Partitioning of the ocean depth d mto O equal sectors. oy, 1= 1y, Ly ¢ = L., @ represent the £, tewt depths in
the gth sector.

. p(r.2) (16)
«2) p(r.2) '

for different test positions (r, z) in the search region. It may be noted that e(r, 2) depend on fi
In the present method, instead of processing each replica vector separately, we process blocks
of L replica vectors. For this purpose, we partition the total ocean depth d into @ equal sectors
and choose L test depths z,1,++, 7,. at uniform intervals within each sector (Fig. 1), so that

Zg=[lg-DL+1-1/2)Az,
=10 1=1L; (17
Az=dIQL.
Thus, for each test range r and depth sector ¢, we have a block of L replica vectors e(r, 2»),

I=1, -, L, which are linearly independent if L < M. Let the replica subspace vg(r) be defined
as

Vy(r) = spanfe(r, zy)), -, e(r, 2g1)}. (18)

If L <M~ J, the replica subspace v,(r) and the signal subspace S = span{p(r, z\)., p(rs, 29}
intersect if and only if one of the test coordinates (r, z), I= 1, L coincides with one of the
source coordinates (r;, ), j=1,~, J. This subspace intersection property can be exploited to
estimate the range and the depth sector of each source.

A simple procedure to test whether v,(r) and S intersect or not is described below. Con-
sider the matrix Dy(r) with N rows and P = L + J columns, abtained by stacking together al} the
spanning vectors of U,(r) and the orthonormal basis vectors u,, -, u; of S, i.e.

D7)y =1le(r, z5) - e(r, zgz) wy -+ uy). (19
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The QR decomposition of D(r) vields®
D ()= QnRy(r), 20

where (,(r) is an N x P matrix with orthonormal columns and R,(r) is a P x P upper triangular
matrix. If v,(r) and 5 are non-intersecting subspaces, all the diagonal elemenis of R(r) are
non-zero. But if these subspaces intersect, at least one of the last J diagonal elements of R,(») is
equal to zero. Let R, ,(r) denote the jth diagonal element of R,(r), and define

-1
BRESlN(r):[min min R, . (r)J . @21

14<Q L+1<j<p ¢

The J highest peaks of Brpain(r) provide range estimates 7; and depth sector estimates g , of

the sources. A better estimate of each source depth can be obtained by carrying out an 1-
dimensional search within the identified depth sector at the estimated range F1 .

4. Simalation results

Computer simulation results are presented for a shallow Pekeris channel with the following
parameters: channel depth o =100 m, sound speed in water ¢,,= 1500 m/s, sonnd speed at
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Fi16. 2. Range ambigmty functions of the RESIN, MUSIC and Bartlert processors for a source at 4000 m range and
31 m depth. Source position comncides with a grid point.
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the bottom ¢; = 1700 m/s, bottom-to-water density ratio p= 1.5, bottom attenuation &¢=10.5
dB/wavelength, source frequency fo = 200 Hz. The number of discrete modes in the channel at
this frequency is A =12. A uniform linear array of N=20 hydrophones with 5-m spacing
spans the channel, the depth of the ath hydrophone being z,=5(n~1)+ 1.

In all the simulations, the search grid has 5-m spacing in depth. In range, the spacing is al-
lowed ta vary from 25 to 100 m. In RESIN simulations, the water column is divided into two
depth sectors; the grid points lie at depths of 1, 6,..., 46 m in the first sector and at 51, 56,...,
96 m in the second sector. The RESIN range ambiguity function is given by eqn (21). The
range ambiguity functions of the Bartlett' and MUSIC® processors, given by

By () = maxe” (r. 2)Re(r.2), (22)
and
TN -1
=gl H "
Byusc (D)= max{ > e 2uuf e(r,z)} (23)
Zz
n=j-1

are also plotted for comparison.
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FIG. 4. Range ambiguity functions for a source at (4000 m, 33.5 m) when the source is away from the nearest grid
point by 50 m in range and 2.5 s in depth.

The results shown in Figs 2~5 assume 10 dB SNR and a perfect knowledge of the correla-
tion matrix R (asymptotic or infinite-data case). Figure 2 shows the range localization of a
source at 4000 m range and 31 m depth by RESIN, MUSIC and Bartlett techniques. The search
grid has a 25-m spacing in range, and one of the grid points coincides with the source position.
The MUSIC ambiguity function has a very high peak (about 170 dB above the background)
with a very narrow base. The peak of the RESIN ambiguity fonction, at 110 dB above
the background, is lower than that of MUSIC but much higher than that of Bartiett which
rises less than 10 dB above the background. But the base of the RESIN peak is much wider
than that of the others. It is this combination of a high peak with a wide base that gives
the RESIN processor a high degree of tolerance to gridding mismatch. In Figs 3 and 4 the
source is at (4000 m, 33.5m). In Fig. 3, the range-spacing of the search grid is 70 m, and
the source is away from the nearest grid point by 35 m in range and 2.5 m in depth. The
MUSIC processor is unable to localize the source. The Bartlett processor is able to localize, but
some of the sidelobes are very high. The peak of the RESIN processor stands out very clearly.
In Fig. 4, the rangg spacing of the search grid is 100 m, and the source is away from the nearest
grid point by 50 m in range and 2.5 m in depth. Both the MUSIC and the Bartlett processors
fail to localize the source. The RESIN processor can still localize the source, though the peak is
lower and blunter than that in Fig. 3. Figures 5 and 6 illustrate the multisource localization
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FIG. 5. Range ambiguity fanctions for three sources at (3550 ra, 73.5 m). (5250 m, 33,5 w) and {6050 m, 23.5 i, All
sources arc away from the nearest grid point by 50 m intange and 2.5 m in depth.

capability of the RESIN processor. Bartlett ambiguity function is not included in these figures
since this processor cannot localize multiple sourzes. Three sources are present at (6050 m,
23.5 m), (3550 m, 73.5 m) and (5250 m, 33.5 m). The range spacing of the search grid is 100
m, and the sources are away from the nearest grid points by 50 m in range and 2.5 m in depth.
Figure 3 corresponds to the asymptotic case with 10 dB SNR and Fig. 6 to the finite-data case
with 30 dB SNR. In the finite data case, the correlation matrix R is estimated from 200 snap-
shots of the data vector. The plots in Fig. 5 are obtained by averaging 25 Monte Carlo simula-
tions. In Figs 5 and 6, the MUSIC processor is able to localize only two sources whereas the
RESIN processor localizes all the three.

5. Conclasions

A replica subspace intersection (RESIN) method of source localization is presented in this pa-
per. In MEFP, a source may not be localized if the search grid is not fine enough to ensure that
one of the grid points lies sufficiently close to the source. In the RESIN technique, replica
vectors are processed in blocks by forming replica subspaces and projecting them on to the
signal subspace. This procedure imparts greater tolerance to coarse range gridding as compared
to the existing MFP processors.
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FiG. 6. Range ambiguity functions for the finite data case. R 18 estimated from 200 snapshots. Other conditions are the
same as in Fig. 5.
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