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1. Introduction 

Packel-switched networks can bc viewed as networks of queues, the most fundamental 
component being a single server queue. Accordingly, the peifonnance analysis of a single 
server queue has been a focal point of com~nunication research for several years. One of 
the i~nportant questions often raised by network planners and designers is: Is an accurate 
and useful tral'fic model in The form of a simple stochastic process with minimum number 
ofpararnelers available, which, when fed to a single server queue, gives the same performance 
as thal of a real traffic stream? Such a h-affic model will be very useful in network design 
tools or in toola supporting I-eal-time traf<ic management. Desplte an exhaustive research dur- 
ing the last two decades,' there i s  no consensus on such a model. Ne~wtheless, significant pro- 
gress has best1 made over the ye:s in nnderstanding the characteristics of such ;I traffic. We 
intern1 here to use tlic fact that the interamvat correlation plays s major role in imitating the 
self-similar Dehavmur in irnsrenlents of the corresponding counting process, and wish 
to ~nakc  a contribution towards a consensus on this key upecl of brvndband leletraffic model- 
ing. 

In litersure, the following models for cellc-level traffic have been repoited: Poisson, Ber- 
uwlii, and D-MAP.' Researchers have used the lhllowing analyiicai models for traffic at burst 
levci: on-off processes, non-renewal Markov chain (MC),?, intempted Poisson process 

"celldonules fixed length packet. 



(IPP)? Markov-modulated Poisson piocess (MMPP),~. " and gaussian r n o d ~ l s . ~  The above 
models are essentially short-range-dependent (SRD) and rely heavily on modulating process 
for their correlatio~i in increments. 

The discovery of long-range dependence (LRD) in Ethernet traffic in ~e l l co re \ s  consid- 
ered to be one of the most significant contributions in the area of teletraffic modeling. Further 
studies confirm that metropolitan area network (MAN) traffic," wide-area network (WAN) 
traffic. and variable bit rate (VBR) video traffic2 also exhibit LRD (or self-similar. or fractal) 
characteristics. Moreover, it has been firmly concluded by teletraffic researchers that positive 
correlation is dominant in real-world Ethernet traces." (Paxson and Hoydl '  state: "If we re- 
quire fixed rates only over 10-minute intervals. then SMTP and FTPDATA burst arrivals are 
not terribly far from Poisson, though neither is statistically consistent with Poisson arrivals, 
and consecutive SMTP interanival times show consistent positive correlatitm.") Also, it has 
been empirically established that positive correlation degrades the queueing perrormence.'2 It 
is well known that self-similar processes with 0.5 5 H < 1.0 (where H is the Hurst pxamcter*) 
have positively correlated increments. 

In this paper, we propose a model called correlated interarrival time Poison process 
(CIPP). In CIPP, the interanivds form a First-order Markov sequence. We will see in later sec- 
tions that the CIPP does exhibit self-simiiarity over a !range of time scales of intercsr. It is also 
analytically tractable (see, for instance, Manivasakan et a1.I3). (Note that the empirical models 
based on self-similarity and long-range dependence proposed in the literature". "L'%re not 
analytically tractable except that they have some hounds on their queueing performance.) In 
addition, CIPP has positive correlation in increments. Manivasakan er crl.'%ave shown urza- 
lytically that in CIPP positive correlation degrades the queueing performance. 

In this paper, we miU restrict our discussion to modeling broadband teletraffic by CIPP. 
leaving its implications on queueing theory to a separate paper. We evaluate some properties 
of CIPP which are of significance to teletraffic modeling like the index of dispersion for 
counts (IDC), index of dispersion for intervals (JDI) and hurstiness measure.' We examine the 
self-similar nature of the CIPP process using wavelet analysis. The paper is organized as fol- 
lows: In Section 2, we describe the CIPP process. In Section 3, fitting the CIPP model to real- 
world traffic trace and self-similar property of CIPP are presented. Section 4 concludes the 
paper. 

2. CIPP 

2.1. Mutherna!ical hackgrozrnd and properties 

We need to define a counting process Nit) which retains as far as possible all the nice proper- 
ties of the Poisson process, but has correlated interarrivals. Typically, we would like to have 
interanivals being exponentially distributed apart from being correlated. Motivated by the 
analytical simplicity of the method of generating stationary correlated exponential sequence 
(first-order exponential autoregressive process (EAR(1))) developed by Gaver and ~ e w i s , "  we 
present the following formalism to define the CIPP. 

* H u t  parameter quantifies the degree of self-similarity. 
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Considcr the arrivals occurrin:: in lime on the interval (0,  -1. For t > 0, let iV(i) be the num- 
ber of arrivals that have occurred in the half-open interval (0, r] .  Consequently, N(t) and 
N(t + h)- N(t) (h > O) assume only non-negative integer valucs. Wc now statc the following 
axioms. 

Axioms: 

1. Since we bcgin counling arrivals at time 0, we define N(0) = 0 

2. Correlation stnrctuse for interarrivals: Let X,, be the interarrival time between the nth arrival 
instant (T,,) and (n  - l ) th anival instant (T,.,). Then, 

where {t,,}':? is an iid sequence, with E,,, n > I .  being a product of Bernoulli random vari- 

able ( R )  with parameter p and exponential random variable (I/) with parameter A. R is sta- 
tistically iadependent of V. (X , , }  forins a stationary sequence with the expoilendal distribu- 
tion characterized by parameler A. Observe that XI = 7; -To whcre To is the 0th arrival in- 
stant. 

3. The counting process N(t)  is strictly stationary, that is. for any r = 1, 2, ... thejoint distribu- 
tion 01' {N(/L + r,,d - N(tii), iV(h + t,?) - N(td ...., N(h + t,,,) - NUi,) } is independent o l  h, f o ~  
any h > O and 0 < tIl < < rlz < iU2 < ... < ti, <I,,, < m. 

Definition: A counting process {N(t) ,  t >  O] satisfying Axioms 1 lhrough 3 is called a CIPP 
wilh parameter A and p. 

Remark 1: Axiom 2 is more ,spec$ic and the following properties of the coonting process N(t) 
dimclly follow from it. 

For any t > 0, 0 < P I {  N(t) > 0 )  < I. It means that in any intcrval (no matter however small) 
there is a non-zero probability that an anival will occur. 

For any t Z 0, 

In other words, in sufficiently small intervals, at most one arrival can occur, i.e. it is not 
possible for arrivals to happen simultaneously. The process is orderly, in the sense of Daley 
et al." 

Remark 2: The main difference between the axiomatic definition of a Poisson process and 
CIPP is thc addition of Axiom 2 and the relaxation of the independer~ce assumpti011 111 Axiom 
3. 

Let I',,(t)A Pr(N(t) = n }  be the probabilily that the numbcr of arrivals in the interval (0. t] is - 
n. 

Lermna 1. ClPP wiilz pnrarneter A and p has the di.strihution 
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Proof: See Appendix I for proof. 
It is worth noting that the mean of the process, E { N ( t )  1, can be shown to be h." 

Remark 3: The prime reason for assuming (1) for the intemival sequence is to mimic the 
self-similar behaviour in increments for the corresponding counting process. Note that to 
mimic a self-similar process with 0.5 < H < 1 it is necessary that the increments should have 
positive  correlation^.'^ The reason for this particular correlation is that (1) introduces strong 
positive correlation than other models based on moving average structure like EMA(1) pro- 
posed by Lawrance and Lewis2' and the one proposed by  inch." We will s ee  in later s w  
tions2* that, as p increases, the estimated local Hurst parameter (denoted by H )  increases. 
Secondly, the correlation slntcture (1) allows one to derive a closed-form expression for P,,(t) 
with reasonable simplicity which is not possible with the other aforementioned models. 
Thirdly, the correlation structure (1) is analytically simple which allows one to develop the 
corresponding queueing theory.'3 Finally, the sequence (X,] is oblained as an additive random 
linear combination of random variilbles and is thus easy to simulate on the computer. 

Remark 4: The distribution (3) is count-stationary in the sense of Lawrance and ~ewis.'" An 
interval-stationary version (again in the sense of Lawrance and Lewis) can also be derived. 
Here, we give only the result. 

Remark 5: For both the foms  (3) and (4), as the limit p i  0, we obtatn the Poisson case. 
Thus, the Poisson distribution is approached continuously From the ClPP d~stribution. 

Remark 6: We contend here that the introduction of correlation in the interarrival sequence is 
more appropriate in the context of modeling broadband teletraffic rather than lo introduce cor- 
relation in the count sequence (as done in Heyman et ~ l . ~ % n d  Xu et aL2' for VBR 
modeling) or to introduce correlation by the modulating Markov chain as in SRD models. 
The introduction of correlation in the interarrival sequence in the context of broadband 
teletraffic modeling is a new concept and is the main contribution of this paper. We defend our 
claim that the interanival correlation is more appropriate. The correlations in inter- 
anivals necessarily imply the correlations in the number of counts; however, the converse 
of this statement is not necessarily true. A good example would be a renewal process. In 
this context, we would like to mention that the discrete version of (I), the discrete auto- 
regressive model of order 1 (DAR(1)) is used in Heyman et a P 3  and Xu et aLZ4 to model 
the frame size of the VBR traffic. Needless to say that the correlation here is in the count 
sequence. 
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Remark 7: Thc number of parameters needed to exhibit the self-similar behaviour is minimal 
m CIPP ah colnparcd lo thc conventional SRD models like MMPP, DBMAP, ON-OPE', 
etc. For example, In MMPP, the number of parameters is N' for N scale MMPP (N' - N for 
infinitesim~l generator and N for the intensity matnx A) while in CIPP it is always 2. The 
authors believe that thc reason for this phenomena is thal in CIPP, self-similar behaviour ema- 
nates liom interarrival correlalion rathcr than from correlation due to modulating Markov 
chain. 

Remark 8: We will see in Section 3.3 that there exists an empirical relalionship between the 
correlation pilramelar p and the degree of self-similarity (measured by estimated local Hurst 
parameter ( H  1 of the corresponding CIPP trace). Note that in sharp contrast, in conventional 
SRD models too many parameters decide the degree of (pseudo-)self-similarity. Moreover, one 
does not know which of them plays a prime role in exhibiting sclf-similar behavioor. The 
above fenlure of ClPP makes it more suited for pract~cal purposes, when one nerds to l i ~  CIPP 
to a real-world data sequence (say a video sequence) of given Hurst parameter. 

Remark 9: For many reasons, using an excessive number of parameters 1s undesirable, espe- 
cially hccause it increases the uncertainty of the statistical inference and the parameters 
are difficult to interpret. In our case, CIPP has only two parameters, p and A, and as we 
mentioned, both of them have a nice physical inlerprelation. A denoles the asrival rate while 
p quantifies the correlation in interarrival times. While /I can be estimated from the mean of 
the process, p can be estimated from higher-order statistics. In this work, we use aulocorrela- 
tion as a measure for fitting the model to capture the dependence structure in the real-world 
traffic. 

Remark 10: CIPP is nor a special case of Neuts process.2s 

Remark 11: We derived CIPP, by first generating conclated exponential scquence and then 
constructing the counting process over it. The whole exercise can he repeated in discrete time 
domain, by considering correlated geometric sequence generated by discrete AR(1) model.'$ 
But the result does not seem to yield a closed-lonn expression and will not he quoted any fur- 
ther in this paper. 

3. Applications of CIPP to broadband teletraffic 

In this section, we justify the CLPP model for modeling broadband telctraffic. In particular, we 
undertake expcrimcnlal check on the 'goodness of fit" of the CIPP for various video se- 
que11ces~~ and for Bellcore Ethernet traffic datasets." 

3.1. Fitting the CIPP model to real-tra& datu 

In order to show that a proposed statistical process models well the real world data, we have 
to 'fit" the model to the data. This fitting procedure usually involves the estimation of pa- 1 
rameters of the model. One way to accomplish this is to estimate the firsthigher-order statistics ? 

of data and to equate this to the corresponding moments (which are usually a function of 
parameters of the model). (Note that, here in CIPP case, one may use the elegant method of 
estimating the parameters, namely p and A, as given in Gaver and ~ewis . "  Here, however, wc 
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FIG. 1. Experimental check an the 'goodne~s of Clt' of 
rhe ClPP as compared to MC: model for viirious video 
sequences." (a1 soccer, fb)  rtam~arr, and (c) MrBeaii 
wdeo sequences with autocorrelat~on as 3 mensure. 

are more interested in capturing the LRD of the real-world data. Hence, we use correlation 
measure in some form or the other for our fitting procedure). We estimate the parameters 
of the model with a measure based on any of the following second-order properties: ( I )  
autocorrelation of counts { u d i ) ] ,  (2) index of dispersion for intervals (IDI), and (3) index 
of dispersion for counts (IDC). Of the above three, CIPP has analytical expression only for 
IDI. 

3.1.1. Autocorrelatio~z of counts { u d i ) )  

Time-dependent statistics are crucial in the case of video traffic because correlations in the 
video streams can affect the performance of the statistical multiplexer (in a typical broadband 
nerwork). In particular, a positive correlation in the traffic process (which is the case with CIPP 
streams) degrades the performance of statistical 

Let {u,(ij)L, denote the number of arrivals in ith slot on the positive real axis where each 

time slot is of equal length, Ttime units. Then the correlation coefficient is defined by, 

Note that for Poisson process Mk) = 0 for all k # 0. 

We now attempt to fit a CIPP model to MPEG-I-encoded video trace. GOP sizes (sum of 
frame sizes of one GOP) in the frame size trace from MPEG-I-encoded video sequence can be 
thought of as the number of (cell) amvals (after segmentation of frame size trace) { u d i ) )  in a 
GOP time slot (TOO?). We fit a C P P  by using the following algorithm. 

"This in just to avoid computational overflow while estimating the correlation coeificient of the data. 
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1. segment" the bits in each frame into cells (of size 53 bytes). 

2. Estimatc the correlation coefficient of this count process of cells. This is the correlation 
coefl'icient 5$::, (.) to which we intend to match the correlation coefficient of the CIPP 

3. Algoritlm~ to estitnutr tlw puruinrtm of CIPP 

Sel the rate h,,,, of CIPP equal to the ratio of total number of cells to the duration (total 
number of GOPs limes Too?) of the video sequence. 

Algorithm to esfirnutr p,,, of CIPP 
begin 

rnin = 99999999.9 
step = 0.000 I 
for i = 1 :9999 

estimate thc correlation coefficient 5gp (.) for CIPP by reasonably large reali- 

zations. 

computc the mean square error (P) between 5F2 (.) and 52p (.) 

if(min > P) 
min = P 

end 
end 

elid 

The correlation coefficient $,, (.) is plotted along with the correlation coefficient 

5;2, (.). For comparison, we also plot the result by fitting a Markov chain (MC)' to the GOP 

size process (our procedure is very similar to Roberts et ~ 1 . ~ ) .  The number of states M in MC is 
taken to be Gn,,,luc:, where G,,, denotes the size of the largest GOP and UG the standard de- 
viation of the GOP sizes. Thus, the size of quantization interval is DO. Note that it is conven- 
tional to consider the autocorrelation function (or equivalently correlation coefficient) of the 
GOP sizes since it is difficult to get a clear picture of the long-range correlations of video traf- 
fic stream from frame-level correlations. 

We consider the frame-size trace from MPEG-1-encoded video sequence corresponding 
to video sequences with various H parameters (ranging from 0.77 to 0.96) like soccer 
(H = 0.77), starwars (H= 0.85) and MrBeunans (H = 0 . 9 6 ) ~ ~  (Fig. 1). One can notice that for 
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FIG. 2. ID1 of 'Bellcore damm' and the approximating 
CIPP mode!. 

soccer (H = 0.77), although both the models show almost the same good approximation qual- 
iq ,  the MC model is more optimistic; however, for higher H-parameter video sequences like 
stanvars and MrBean, the CIPP performs substantially better than the MC model. 

3.1.2. Discussion 

Note that the correlation function corresponding to MC model decays very fast which 

is a feature of Markov models. In contrast, the count sequence, {ur( i )} ,  in CIPP case, 

may have more complex correlation structure (may not even be a first-order M;lrkov chain), 
despite the fact that the interanivals form the first-order Markov chain. We strongly believe 
that this is the reason for non-exponential decay of autocorrelation of counts for CIPP (and we 
will see in a later section that this also accounts for self-similar behaviour to a range of time 
scales.) 

We use the variance of the sum of n random variables normalized by the factor ~ E ' ( X )  as a 
measure of the variability of packet arrival processes.28 The sequence of values 

with n = 1,2, ... is called IDI. It can be shown that for CIPP, J, is given by 

Then, 

Jk l im .T,=l+p. 
n i -  1 - P  

Since the CIPP has an analytical expression for J,, the modeling procedure becomes simple. 
We have to just estimate p from the data using ( 5 ) .  F'igure 2 shows the ID1 plot for Bellcore 
August traffic datasetg and CIPP model with p = 0.997. CIPP does show reasonably good ap- 
proximation to the BeUcore dataset. 
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3.1.3. IDC 

For packet counts, we can define a function similar to the index of dispersion for 
IDC at time t is the variance of the number of arrivals in an interval of length t divided by the 
mean number of arrivals in t: 

where N(t) indicates the number of arrivals in an interval of length t. IDC has been defined in 
this manner so that its value for a Poisson process is 1, for all t. 

In estimating the IDC of the measured arrival processes, we will only consider the time at 
discrete, equally spaced instants, z, (i 2 0). Denoting the number of arrivals in T =  z, - z,_,, by 
udi), we have, 

where &j) is the autocorrelation coefficient of the sequence {udi) J at lag j. Note that, in gen- 
eral, I, will not be a constant for renewal processes where counts in the disjoint intervals 

FIG. 4. C,(r) vs Irl for CIPP. 



are correlaled (exception is the Poisson case). While we can estilnatc var(N,)/E(N,), the repre- 
sentation on the RWS oE (8) ib valid only if the data are stationary. 

Figure 3a shows the IDC plot for raLe video sequence and the corresponding ClPP match. 
CIPP again exh~bits better approxilnation property. Thz corresponding plot for Bellcore data- 
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set is shown in Fig. 3b. Here the approximation is not very good, possibly because CIPP is a 
pseudo-self-similar process, as discussed in Section 3.3. 

3.2. Bwrstiiless measure 

We consider the burstiness measure as defined in Saito et al.' We repeat it here for conven- 
ience 

where X' is the mean intera~~ival time. Ch = E{(X, - A-')(xki1 - h?)) denotes the correlation 
with lag k for the interarrival times and XI, Xz, ... form a sequence of interarrival times. C,,(z) 
includes the complete information for the second moment of interarrival times. For Poisson 
process. C,,(;) = I for all z. For a renewal arrival process, CJz) = (squared coefficient of varia- 
tion in the renewal process) for all z .  For an MMPP, burstiness measure has been discussed in 
Saito e ta / . '  For CIPP, it can be shown that the correlation with lag k of interarrival times (Ck) 
is given by CL = ph, lpl < 1. As a result, C,,(z) = &. Figure 4 shows CJz) versus e. One can 

see that CIPP does display burstiness for large p. 

3.3. Se(Jlsinli1arpropertj of CIPP 

To compare the hehaviour of CIPP with Bellcore August dataset (pAux.TL), we generate sam- 
ples which are equal in length and with the same mean value as the various traces analysed in 
Lcland et a1.I4 and Misra and  on^.'' For the synthetic traces we generate, we use p = 0.98 and 
A = 3 18.18 arrivals per second. The A selected here is equal to the mean packet arrival rate in 
Bellcore August dataset. To get an idea of seli-similarity of CIPP, we resort to a pictorial rep- 
resentation analogous to those given in p el and'^ and Misra and ~ o n g . ~ ~  We select, at random, 
sections of the simulated traffic and the Bellcore August dataset and plot them side by side at 
the same resolution level (Fig. 5). The simulated CIPP process exhibits a similar bursty he- 
haviour as the Bellcore dataset over all plotted scales. Note that the length of the Bellcore 
August dataset limits the number of points we can plot at the coarsest scale. 

Next, we generate CIPP with different p and estimate the Hurst parameter of the synthetic 
trace generated above by the wavelet-based estimator proposed by Abry et a[.)' In Fig. 6, 
we plot the estimated Hurst parameter for CIPP versus the correlation parameter. Note that 

FIG. 6 Estimaled local hwst pnrarneter (HI versus the 
correlation parameter. 



no. 7. Autocorrelation of CIPP at vwous scdes Rc. 8. The variance and aggregation leve! plot h r  CIPP 
and the Bellcore dataset 

the estimated Hurst parameter is 0.5, corresponding to p=O, which is true for the Poisson 
process. The plot shows that we can model teletraffic with higher H by using a CIPP with 
larger p. 

Next, the autocorrelation function at various scales is estimated using a large number of re- 
alizations. Figure 7 shows autocorrelation at various scales. One can see, as T (block size over 
which the counts process udi) is computed from the original point process) increases, autocor- 
relation tends to approach that of the Poisson case. This is a typical feature of pseudo-self- 
similar processes (see Roberts et aLZ, p. 338). 

The next plot (Fig. 8) is the log (variance) versus log (aggregation level) plot for CIPP and 
the Bellcore dataset. The lower-most cunre is a reference curve with slope-1. The behaviour is 
strikingly similar, with variances for both the processes decaying at the same rate, slower than 
the curve with slope-I, with increasing aggregation level. 

We finally present the wavelet analysis of CIPP. Womel13' has proved that as long as the 
analysing mother wavelet has at least one vanishing moment, the log of variance of the wave- 
let coefficients for a self-similar process increases linearly with the scale with the slope being 
the Hurst parameter. This interpretatio~?~ of wavelet transform gives a convenient way of 
looking at the variance scale plots and is used here. Figure 9 shows such a plot for various pro- 
cesses and CIPP. 

We now compare CIPP with Bellcore August dataset using wavelet analysis. We have 
analysed the two signals using the Daubechies-4 wavelet.32 The plot of log of variance of 

FIG. 9. Vanance scale plots for CIPP and other proc- RG. 10. Variance scale plots for Bellcore dataset and the 
esses. s~rnulated CIPP process. 
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wavelet coefficient versus log2 (scale) for the simulated CIPP and Bellcore August dataset 
shows a strong resemblance in the properties of the two processes as seen in Fig. 10. 

4. Conclusions 

We have proposed a new traffic model with correlations in interanivals. It has been shown 
by simulations that this arrival process models well the real-time traffic source, in particular 
ihe video source. The model is motivated by the argument that a strong positive correlation 
in interarrivals leads to the count process which might be self-similar over a range of time 
scales. This range of lime scale depends on the choice of parameter of the model. Simulation 
runs of the model also show a close match to the observed dataset as far as 'self-similarity' 
goes. 

We summarize below some findings of the CIPP process: 

I. With strong positive correlation in interarrivals one gets strong positive correlation in 
the counts sequence u&). The magnitude of the correlation depends on p. 

2. This strong positive correlation in the interarrival sequence results in some complex 
correlation structure for the counts sequence udi). This feature could be responsible for 
the self-~imilar behaviour of CIPP to a range of time scales. 

3. CIPP does exhibit some scale-invariant behaviour. This range of time scales depends on 
the correlation parameter p. 

4. The relationship between the p of CIPP and the Hurst parameter H, given in Section 
3.3, will be very useful in network design tools or in tools supporting real-time traffic 
management. 

5. Since CIPP is analytically Iractable, it can be used as a full-fledged model in a meas- 
urement-based system. 

Currently, we are investigating the Markov-modulated CIPP (MMCIPP) in which CIPP is 
modulated by a continuous-time Markov chain. Preliminary results show that MMCIPP is 
more self-similar on a much wider scale than that of MMPP or CIPP. The motivation for ap- 
plying CIPP even when the real traffic might be long-range dependent is that powerful tools 
have been developed for calculating performance measures for infinite-capacity queues for 
Markov and deterministic service  time^.'^.^^ 
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Appendix I 

Construction of stationary CIPP process 

For stationarity in the counting variable, the initial point of the interval of the counting must be 
chosen in a particular probabilistic way.C These are the stationary initial conditions which we 
will give; they can be used to construct a count stationary point process. By doing so, we are 
exploiting Axiom 3. 

We next use Axiom 2. Since our aim is to construct a process whose interarrivals are cor- 
related, we first generate correlated exponential sequence {Xo, X2. X3, ...,} as givend in Gaver 
and Lewis" where Xo is the lengthbiased distribution with respect to exponential distribution 

'see, for instnnce, Daley,"'Daley and Vere-Jones,'8 and Cox and  sham?^ 
dNote the absenceafx, in the sequence. 
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with parameter 2. and XI = UXQ where again U is uniformly distributed in 10, 11. Now form the 
partial sum, 

T,,=Xl+X2+ ...+ X, n = l , 2 , 3  .... (All 

Note that the sequence IT,] gives the arrival instants. Substituting, 

Xn+,=pX,+&n+I O < p < l  n=1,2 ,3  ... (A21 

and eliminating all X,'s, except Xo, we get, 

T,,=(U+ s., - ~ ) X Q + ~ Z , ~ E ~ + . . . + Q E ,  (A3) 

where XQ is the length-biased distribution with respect to exponential distribution with pa- 
rameter l and a, = Z:=, p' for 0 < p < l, and j = l ,  2, 3  ,.... We use @&) to denote the mo- 

ment-generating function of a random variable W. Define Y = (U  t &.,)XQ, then, 

Then exploiting independence among random variables 

where 

See Gaver and Lewis1' for details. Substituting this, and upon some manipulation, we get, 

and upon further reducing , we have 

Rewriting the above, 

Inverting the above expression to get the density function fL ( t ) & C ' ( r ~ ~ ~  ( s ) )  and - 
FTn ( r ) ~ l b  fTa ( r ) d  we have for distribution FTa (t), - 
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Next, we derive the distribution (see parzen3', p. 133) 

After some manipulations, we gete the required result 

'It rs worth noting that the value of PJt) at p=O is obtained by the limiting value bm,,,8n(t) (which 1s the Polsson 
process). 


