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Abstract

In this paper, we propose a new traffic model (with cortelation 1 interarivals) for composite arrival process of packets
mn broadband networks and (ndividual source modeling. The traffic model involves a generalization of Potsson proces
which is referred to as correlated interarrival ume Posson process (CIPP). The CIPP. a stationary counting proces:
parametrized by a correlation parameter p which represents the degree of correlation 1 adjacent interarrivals in addi-
tion to A, the intensity of the process. It is shown by stnwlations that this arrval process models well the real-time
traffic source, in particular the video source. The burstiness measure corresponding to this process (s evaluated as de-
fined in Saito er al. (TEEL, 1991, SAC-9, 359--367). It wrns out that although CIPP is not strictly a self-similar model,
it does exhibit self-similar behaviour over a range of time scales We explore, by sunulations, the relation between the
positive correlation in mterarrivals and the estunated local Hurst parameler.

Keywords: CIPP, interarrivals, burstiness measure, self-sinmlarity, teletraffic modeling.

1. Introduction

Packet-switched networks can be viewed as networks of queues, the most fundamental
component being a single server queue. Accordingly, the performance analysis of a single
server queue has been a focal point of communication research for several years. One of
the important questions often raised by network planners and designers is: Is an accurate
and useful traffic model in the form of a simple stochastic process with minimum number
of parameters available, which, when fed to a single server queue, gives the same performance
as that of a real traffic stream? Such a traffic model will be very useful in network design
tools or in tools supporting real-time traffic management. Despite an exhaustive research duar-
ing the last two decades,' there is no consensus on such a model. Nevertheless, significant pro-
gress has besn made over the years in understanding the charactexistics of such a traffic. We
intend here to nse the fact that the interarrival correlation plays a major role in imitating the
self-similar behaviour in incremeats of the corresponding counting process, and wish
1o make a contribution towards a consensus on s key aspect of broadband teletraffic model-
ing.

In literature, the following models for cell®level traffic have been reposted: Foisson, Ber-
nculli, and D-MAP.? Researchers have used the following analytical models for waffic at burst
level: on-off processes, non-renewal Markov chain ey, interrupted Poisson process

“cell denotes fixed length packet.
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(IPP) Markov-modulated Poisson process (MMPP),* 7 and gaussian models." The above
models are essentially short-range-dependent (SRD) and rely heavily on modulating process
for their correlation in increments.

The discovery of long-range dependence (LRD) in Ethernet traffic in Bellcore” is consid-
ered to be one of the most significant contributions in the area of teletraffic modeling. Further
studies confirm that metropolitan area network (MAN) traffic,'" wide-area network (WAN)
traffic, and variable bit rate (VBR) video waffic’ also exhibit LRD {or self-similar or fractal)
characteristics. Moreover, it has been firmly concluded by teletraffic researchers that positive
correlation is dominant in real-world Fthemet traces."" (Paxson and Floyd'' state: “If we re-
quire fixed rates only over 10-minute intervals, then SMTP and FTPDATA burst arrivals are
not terribly far from Poisson, though neither is statistically consistent with Poisson arrivals,
and consecutive SMTP interarrival times show consistent positive correlation.”) Also, it has
been empirically established that positive correlation degrades the queueing performance.' It
is well known that self-similar processes with 0.5 £ H < 1.0 (where H is the Hurst parameter*)
have positively correlated increments.

In this paper, we propose a model called correlated interarrival time Poisson process
(CIPP). In CIPP, the interarrivals form a first-order Markov sequence. We will see in later sec-
tions that the CIPP does exhibit self-similarity over a range of time scales of interest. It is also
analytically tractable (see, for instance, Manivasakan et al.”). (Note that the empirical models
based on self-similarity and long-range dependence proposed in the literature™ "' are nor
analytically tractable except that they have some bounds on their queueing performance.) In
addition, CIPP has positive correlation in increments. Manivasakan e l.” have shown ana-
Iytically that in CIPP positive correlation degrades the queueing performance.

In this paper, we will restrict our discussion to modéling broadband teletraffic by CIPP,
leaving its implications on queueing theory to a separate paper. We evaluate some properties
of CIPP which are of significance to teletraffic modeling like the index of dispersion for
counts (IDC), index of dispersion for intervals (IDI) and burstiness measure." We examine the
self-similar nature of the CIPP process using wavelet analysis. The paper is organized as fol-
Iows: In Section 2, we describe the CIPP process. In Section 3, fitting the CIPP model to real-
world traffic trace and self-similar property of CIPP are presented. Section 4 concludes the
paper.

2. CIPP

2.1. Mathematical background and properties

We need to define a counting process N(¢) which retains as far as possible all the nice proper-
ties of the Poisson process, but has correlated interarrivals. Typically, we would like to have
interarrivals being exponentially distributed apart from being correlated. Motivated by the
analytical simplicity of the method of generating stationary correlated exponential sequence
(first-order exponential antoregressive process (EAR(1))) developed by Gaver and Lewis,” we
present the following formalism to define the CIPP.

*Hurst parameter quantifies the degree of self-similarity,
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Consider the arrivals occurring in time on the interval (0, o]. For ¢ > 0, let N(r) be the num-
ber of arrivals that have occurred in the half-open interval (0, 7]. Consequently, N(z) and
N(t+ h)- N(f) (h>(0) assume only non-negative integer values. We now state the following
axioms.

Axioms:

1. Since we begin counting arrivals at time 0, we define N(0) = 0.

2. Correlation structure for interarrivals: Let X, be the interarrival time between the ath amival
instant (T,) and (n — 1)th arrival instant (7,,_;). Then,

Ko = PXo o+ € oy 0<p<l1 n=1,2,3.. [¢3)

where {e,}"_ is an iid sequence, with £, n > 1, being a product of Bemnoulli random vari-
n S p=2

able (B) with parameter p and exponential random variable (V) with parameter A, B is sta-
tistically independent of V. (X, } forms a stationary sequence with the exponential distribu-~
tion characterized by parameter A. Observe that X, = 7\ — T, where Ty is the Oth arrival in-
stant.

3. The counting process N(r) is strictly stationary, that is, for any r=1, 2,... the joint distribu-
tion of {N(h + t,1) = N{tn), N(h + 1,0) — N(tp)...., N(h + 1) — N(#;,) } is independent of A, for
any h>0and 0 <ty <t, <tp<ip<..<ly<lh,<oo.

Definition: A counting process {N(1), r > 0} satisfying Axjoms 1 through 3 is called a CIPP
with parameter A and p.

Remark 1: Axiom 2 is more specific and the following properties of the counting process N(z)
directly follow from it.

1. Forany >0, 0 < Pr{N(® >0} < I. It means that in any interval (no matter however small)
there is a non-zero probability that an arrival will occur.
2. Forany 0,
PriN(t+h)—-N(t) > 2}

i =0. 2
b PrN(t+h)—N(t) =1} @

In other words, in sufficiently small intervals, at most one arrival can occur, i.e. it is not
possible for arrivals to happen simultaneously. The process is orderly, in the sense of Daley
eral"®

Remark 2: The main difference between the axiomatic definition of a Poisson process and
CIPP is the addition of Axiom 2 and the relaxation of the independence assumption in Axiom
3.

Let P,(r) A Pr{N(¢) = n} be the probability that the number of arrivals in the interval (0, 7] is
n.

Lemuma L. CIPP with parameter A and p has the distribution
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(1+p-(1- Pt
B 3)

n ) = % 2;=0 o HLO[“/ —pa‘]

i
e “0<p<l
Tolor, +1)-ro#1){a, =ar, 1)t =ty i1 [, 014 P

Jorn=0,1,2..,A>0,120,and a; =%}, p’.

Proof: See Appendix I for proof.
It is worth noting that the mean of the process, E{N(#)}, can be shown to be 2

Remark 3: The prime reason for assuming (1) for the interarrival sequence is to mimic the
self-similar behaviour in increments for the corresponding counting process. Note that to
mimic a self-similar process with 0.5 < H <1 it is necessary that the increments should have
positive comrelations.'? The reason for this particular correlation is that (1) introduces strong
positive correlation than other models based on moving average structure like EMA(1) pro-
posed by Lawrance and Lewis®® and the one proposed by Finch.?’ We will se¢ in later sec-
tions™ that, as p increases, the estimated local Hurst parameter (denoted by H') increases.
Secondly, the correlation structure (1) allows one to derive a closed-form expression for P,(r)
with reasonsble simplicity which is not possible with the other aforementioned models.
Thirdly, the correlation structure (1) is analytically simple which aliows one to develop the
corresponding queneing theory." Finally, the sequence {X,} is obtained as an additive random
linear combination of random variables and is thus easy to simulate on the computer.

Remark 4: The distribution (3) is count-stationary in the sense of Lawrance and Lewis.” An
interval-stationary version (again in the sense of Lawrance and Lewis) can also be derived.
Here, we give only the resuit.

Bl(®)=(+p-(1-p)ar,) @

Remark 5: For both the forms (3) and (4), as the limit p — 0, we obtain the Poisson case.
Thus, the Poisson distribution is approached continuously from the CIPP distribution.

Remark 6: We contend here that the introduction of correlation in the interarrival sequence is
more appropriate in the context of modeling broadband teletraffic rather than to introduce cor-
relation in the count sequence (as done in Heyman et al® and Xu et al** for VBR
modeling) or to introduce correlation by the modulating Markov chain as in SRD models.
The introduction of correlation in the interarrival sequence in the context of broadband
teletraffic modeling is a new concept and is the main contribution of this paper. We defend our
claim that the interarrival correlation is more appropriate. The correlations in inter-
arrivals necessarily imply the correlations in the number of counts; however, the converse
of this statement is nor necessarily true. A good example would be a renewal process. In
this context, we would like to mention that the discrete version of (1), the discrete auto-
regressive model of order 1 (DAR(L)) is used in Heyman er al? and Xu et al** to model
the frame size of the VBR traffic. Needless to say that the correlation here is in the count
sequence.
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Remark 7: The number of parameters needed to exhibit the self-similar behaviour is minimal
in CIPP as compared to the conventional SRD models like MMPP, DBMAP, ON-OFE,
etc. For example, in MMPP, the number of parameters is N for N state MMPP (N — N for
infinitesimal generator and N for the intensity matrix A) while in CIPP it is always 2. The
authors believe that the reason for this phenomena is that in CIPP, self-similar behaviour ema-
nates from interarrival correlation rather than from correlation due to modulating Markov
chain.

Remark 8: We will see in Section 3.3 that there exists an empirical relationship between the
correlation parameter p and the degree of self-similarity (measured by estimated local Hurst
parameter (H) of the corresponding CIPP trace). Note that in sharp contrast, in conventional
SRD models too many parameters decide the degree of (pseudo-)self-similarity. Moreover, one
does not know which of them plays a prime role in exhibiting sclf-similar behaviour. The
above feature of CIPP makes it more suited for practical purposes, when one needs to fit CIPP
to a real-world data sequence (say a video sequence) of given Hurst parameter.

Remark 9: For many reasons, using an excessive number of parameters is undesirable, espe-
cially because it increases the uncertainty of the statistical inference and the parameters
are difficult to interpret. In our case, CIPP has only two parameters, p and A, and as we
mentioned, both of them have a nice physical interpretation. A denotes the arrival rate while
p quantifies the correlation in interarrival times. While A can be estimated from the mean of
the process, p can be estimated from higher-order statistics. In this work, we use autocorrela-
tion as a measure for fitting the model to capture the dependence structure in the real-world
traffic.

Remark 10: CIPP is nor a special case of Neuts process.”

Remark 11: We derived CIPP, by first generating correlated exponcntial sequence and then
constructing the counting process over it. The whole exercise can be repeated in discrete tlme
domain, by considering correlated geometric sequence generated by discrete AR(L) model %

But the result does not seem to yield a closed-form expression and will not be quoted any fur-

ther in this paper.

3. Applications of CTPP to broadband teletraffic

In this section, we justify the CIPP model for modeling broadband teletraffic. In particular, we
undenakc experimental check on the ‘goodness 01 fit" of the CIPP for various video se-
quences 7 and for Belicore Ethernet traffic datasets.”

3.1. Firting the CIPP model 1o real-traffic data

In order to show that a proposed statistical process models well the real world data, we have
to ‘fit’’ the model to the data. This fitting procedure usually involves the estimation of pa-
rameters of the mode). One way to accomplish this is to estimate the first/higher-order statistics
of data and 1o equate this to the corresponding moments (which are usually a function of
parameters of the model). (Note that, here in CIPP case, one may use the elegant method of
estimating the parameters, namely p and A, as given in Gaver and Lewis.”” Here, however, we
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Fic. 1. Experimental check on the ‘goodness of fit” of
the CIPP as compared to MC* model for various video
sequences,”’ (a) soccer, (b) starwars, and (¢) MrBean
video sequences with autocorrelation as a measure.
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are more interested in capturing the LRD of the real-world data. Hence, we use correlation
measure in some form or the other for our fitting procedure). We estimate the parameters
of the model with a measure based on any of the following second-order properties: (1)
autocorrelation of counts {uz()}, (2) index of dispersion for intervals (IDI), and (3) index
of dispersion for counts (IDC). Of the above three, CIPP has analytical expression only for
DI

3.1.1. Autocorrelation of counts {ur(i)}

Time-dependent statistics are crucial in the case of video traffic because correlations in the
video streams can affect the performance of the statistical multiplexer (in a typical broadband
network). In particular, a positive correlation in the traffic process (which is the case with CIPP
streams) degrades the performance of statistical multiplexer.'?

Let {ur(i)}ZI denote the number of arrivals in ith slot on the positive real axis where each

time slot is of equal length, 7 time units. Then the correlation coefficient is defined by,

_ Elur@ur(i+ 0}~ Eur (0}
gT(k) - Tva:(u,-(i))

Note that for Poisson process {p(k) = 0 for all k# 0.

We now attempt to fit a CIPP model to MPEG-1-encoded video trace. GOP sizes (sum of
frame sizes of one GOP) in the frame size trace from MPEG-1-encoded video sequence can be
thought of as the number of (cell) arrivals (after segmentation of frame size trace) {ux{)} in a
GOP time slot (Tgoe). We fit a CIPP by using the following algorithm.

*This is just to aveid computational overflow while estimating the correlation coefficient of the data.
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Fitting procedure
1. Segment” the bits in each frame into cells (of size 53 bytes).

2. Estimate the correlation coefficient of this count process of cells. This is the correlation
. fata . . .
coeflicient ¢ () to which we intend to match the correlation coefficient of the CTPP

model.

3. Algorithm to estimate the parameters of CIPP

Set the rate Auy of CIPP equal to the ratio of total number of cells to the duration (total
number of GOPs times Tgop) of the video sequence.

Algorithm to estimate poy of CIPP

begin
min = 99999999.9
step = 0.0001
for i = 1:9999
p = step*i
estimate the correlation coefficient g?:; () for CIPP by reasonably large reali-
zations.
compute the mean square error (P) between g%’i: () and g'}zfp @]
if(min > P)
min = P
Pop. = P
S O= 6500 ()
end
end

end
The correlation coefficient g%‘m (.) is plotted along with the correlation coefficient

g‘;i‘: (.). For comparison, we also plot the result by fitting a Markov chain (MC)” to the GOP

size process (our procedure is very similar to Roberts ef al.”). The number of states M in MC is
taken to be Guu/On, Where G, denotes the size of the largest GOP and oy the standard de-
viation of the GOP sizes. Thus, the size of quantization interval is . Note that it is conven-
tional to consider the autocorrelation function (or equivalently correlation coefficient) of the
GOP sizes since it is difficult to get a clear picture of the long-range correlations of video traf-
fic stream from frame-level correlations.

We consider the frame-size trace from MPEG-I-encoded video sequence corresponding

to video sequences with various H parameters (ranging from 0.77 to 0.96) like soccer
(H=0.77), starwars (5 =0.85) and MrBeans (H=0.96)"" (Fig. 1). One can notice that for
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Fig. 2. 1DI of ‘Bellcors dataser’ and the approximating
CIPP model.

soccer (H=0.77), although both the models show almost the same good approximation qual-
ity, the MC model is more optimistic; however, for higher H-parameter video sequences like
starwars and MrBean, the CIPP performs substantially better than the MC model.

3.1.2. Discussion
Note that the correlation function corresponding to MC model decays very fast which

is a feature of Markov models. In contrast, the count sequence, {uT(i)}T in CIPP case,

may have more complex correlation structare (may not even be a first-order Markov chain),
despite the fact that the interarrivals form the first-order Markov chain. We strongly believe
that this is the reason for non-exponential decay of autocorrelation of counts for CIPP (and we
will see in a later section that this also accounts for self-similar behaviour to a range of time
scales.)

3.1.2. IDI

We use the variance of the sum of n tandom variables normalized by the factor nE(X) as a
measure of the variability of packet arrival processes.”® The sequence of values

var(X;, i+ X, )
"= REA(X)

with 7 =1, 2,... is called IDI. It can be shown that for CIPP, J, is given by

1 2 n+l
J, = s |1~ p° )42 -2 5
. [nf-p?)+20™ <2} Q)
Then,
JAlim J, ———1 £ 6
n~)en p

Since the CIPP has an analytical expression for J,, the modeling procedure becomes simple.
We have 10 just estimate p from the data using (5). Figure 2 shows the IDI plot for Bellcore
August traffic dataset” and CIPP model with p=0.997. CIPP does show reasonably good ap-
proximation to the Bellcore dataset.

'
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(a)
Fia. 3. IDC of (a) race video sequence and (b) Bellcore dataset and their corresponding approximating CIPP model.

3.1.3. IDC
For packet counts, we can define a function similar to the index of dispersion for intervals.”®
IDC at time ¢ is the variance of the number of arrivals in an interval of length ¢ divided by the
mean number of arrivals in #
Iz var(N(1))
AT it
E(n(1))
where N() indicates the number of arrivals in an interval of length 7. IDC has been defined in
this manner so that its value for a Poigson process is 1, for all 1.

@

In estimating the IDC of the measured arrival processes, we will only consider the time at

discrete, equally spaced instants, 7, ( 2 0). Denoting the number of arrivals in T'= ¢, — 7.4, by

ur{i), we have,

~ var(E;;l uT(i)) ~ Var(u,(i))[ nl Vg
=)~ Elay | R ®

where {7(j) is the autocorrelation coefficient of the sequence {uz()} at lag j. Note that, in gen-
eral, I, will not be a constant for renewal processes where counts in the disjoint intervals

i)

o oz a4

FIG. 4. Cyz) vs Izl for CIPP.
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are correlated (exception is the Poisson case). While we can estimate var(N,YE(N,), the repre-
sentation on the RHS of (8) is valid only if the data are stationary.

Figure 3a shows the IDC plot for race video sequence and the corresponding CIPP match.
CIPP again exhibits better approximation property. The corresponding plot for Bellcore data-
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set is shown in Fig. 3b. Here the approximation is not very good, possibly because CIPP is a
pseudo-self-similar process, as discussed in Section 3.3.

3.2. Burstiness measure

We consider the butstiness measure as defined in Saito er al." We repeat it here for conven-
ience

C =3 cst /(1) tac ©)

k=0

where A is the mean interarrival time. C,= E{(X; - X)(X41 ~ X7} denotes the correlation

with lag & for the interarrival times and X), Xj,... form a sequence of interarrival times. Co(2)

includes the complete information for the second moment of interarrival times. For Poisson

process, Cy(z) = 1 for all z. For a renewal arrival process, C,(z) = (squared coefficient of varia-

tion in the renewal process) for all z. For an MMPP, burstiness measure has been discussed in

Saito ef al.' For CIPP, it can be shown that the correlation with lag k of interarrival times (Cy)
i

is given by C; = p%, Ipl < 1. As a result, C, () =+ Figure 4 shows C,(z) versus z. One can

see that CIPP does display burstiness for large p.

3.3. Self-similar property of CIPP

To compare the behaviour of CIPP with Bellcore August dataset (pAug.TL), we generate sam-
ples which are equal in length and with the same mean value as the various traces analysed in
Leland er al.'* and Misra and Gong.” For the synthetic traces we generate, we use p = 0.98 and
A=318.18 arrivals per second. The A selected here is equal to the mean packet arrival rate in
Bellcore August dataset. To get an idea of self-similarity of CIPP, we resort to a pictorial rep-
resentation analogous to those given in Leland"* and Misra and Gong.” We select, at random,
sections of the simulated traffic and the Bellcore August dataset and plot them side by side at
the same resolution level (Fig. 5). The simulated CIPP process exhibits a similar bursty be-
haviour as the Bellcore dataset over all plotted scales. Note that the length of the Bellcore
August dataset limits the number of points we can plot at the coarsest scale.

Next, we generate CIPP with different p and estimate the Hurst parameter of the synthetic
trace generated above by the wavelet-based estimator proposed by Abry er al®® In Fig. 6,
we plot the estimated Hurst parameter for CIPP versus the correlation parameter. Note that

9s 0 06 o7 08 a5 1
Comelaiat: doaffiicat

o o1 az o3

FIG. 6 Estimated local hurst parameter (H) versus the
correlation parameter.
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Fi6. 7. Autocorrelation of CIPP at various scales FiG. 8. The variance and aggregation level plot for CIPP

and the Bellcore dataset

the estimated Hurst parameter is 0.5, corresponding to p=0, which is true for the Poisson
process. The plot shows that we can model teletraffic with higher H by using a CIPP with
larger p.

Next, the autocorrelation function at various scales is estimated using a large number of re-
alizations. Figure 7 shows autocorrelation at various scales. One can see, as T (block size over
which the counts process (i) is computed from the original point process) increases, autocor-
relation tends to approach that of the Poisson case. This is a typical feature of pseudo-self-
similar processes (see Roberts ez al?, p. 338).

The next plot (Fig. 8) is the log (variance) versus log (aggregation level) plot for CIPP and
the Bellcore dataset. The lower-most curve is a reference curve with slope-1. The behaviour is
strikingly similar, with variances for both the processes decaying at the same rate, slower than
the curve with slope-1, with increasing aggregation level.

We finally present the wavelet analysis of CIPP. Wornell’' has proved that as long as the
analysing mother wavelet has at least one vanishing moment, the log of variance of the wave-
let coefficients for a seif-similar process increases linearly with the scale with the slope being
the Hurst parameter. This interpretation” of wavelet transform gives a convenient way of
looking at the variance scale plots and is used here. Figure 9 shows such a plot for various pro-
cesses and CIPP.

We now compare CIPP with Bellcore August dataset using wavelet analysis. We have
analysed the two signals using the Daubechies-4 wavelet.”” The plot of log of variance of

"o

Contsonif

Fic. 9. Vanance scale plots for CIPP and other proc- K. 10. Variance scale plots for Bellcore dataset and the
esses. simulated CIPP process.
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wavelet coefficient versus log2 (scale) for the simulated CIPP and Bellcore August dataset
shows a strong resemblance in the properties of the two processes as seen in Fig. 10.

4. Conclusions

We have proposed a new traffic model with correlations in interarrivals. It has been shown
by simulations that this arrival process models well the real-time traffic source, in particular
the video source. The model is motivated by the argument that a strong positive correlation
in interarrivals leads to the count process which might be self-similar over a range of time
scales. This range of time scale depends on the choice of parameter of the model. Simulation
runs of the model also show a close match to the observed dataset as far as ‘self-similarity’
goes.

We summarize below some findings of the CIPP process:

1. With strong positive correlation in interarrivals one gets strong positive correlation in
the counts sequence ur{i). The magnitude of the correlation depends on p.

2. This strong positive correlation in the interarrival sequence results in some complex
correlation structure for the counts sequence u7{i). This feature could be responsible for
the self-similar behaviour of CIPP to a range of time scales.

3. CIPP does exhibit some scale-invariant behaviour. This range of time scales depends on
the correlation parameter p.

4. The relationship between the p of CIPP and the Hurst parameter H, given in Section
3.3, will be very useful in network design tools or in tools supporting real-time traffic
management.

5. Since CIPP is analytically tractable, it can be used as a full-fledged model in a meas-
urement-based system.

Currently, we are investigating the Markov-modulated CIPP (MMCIPP) in which CIPP is

modulated by a continuous-time Markov chain. Preliminary results show that MMCIPP is
more self-similar on a much wider scale than that of MMPP or CIPP. The motivation for ap-

plying CIPP even when the real traffic might be long-range dependent is that powerful tools
have been developed for calculating performance measures for infinite-capacity queues for

s sr s 3,33
Markov and deterministic service times.’
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Construction of stationary CIPP process

For stationarity in the counting variable, the initial point of the interval of the counting must be
chosen in a particular probabilistic way.® These are the stationaty initial conditions which we
will give; they can be used to construct a count stationary point process. By doing so, we are
exploiting Axiom 3.

We next use Axiom 2. Since our aim is to construct a process whose interarrivals are cor-
related, we first generate correlated exponential sequence {Xo, X2, X3,...,

} as given® in Gaver

and Lewis'? where X, is the length-biased distribution with respect to exponential distribution

“see, for instance, Daley, Daley and Vere-Jones,'® and Cox and Isham.**
“Note the absence of X; in the sequence.
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with parameter 4 and X, = UX, where again U is uniformly distributed in {0, 1]. Now form the
partial sum,
=X +X+..+X n=1273.. (A1)
Note that the sequence {7} gives the arrival instants. Substituting,
Xosi =pX+ &y 0Sp<l n=1,2,3. (A2)
and eliminating all X,’s, except Xp, we get,

To=(U+ o — DEo+ 028 + ...+ OpEn (A3)
where X, is the length-biased distribution with respect to exponential distribution with pa-
rameter A and o, =%/, p' for0<p<1,andj=1,2, 3,.... We use yls) to denote the mo-
ment-generating function of a random variable W. Define Y = (U + 04-1)Xq, then,

22
@r(s)= (2,+x(an_1 —1))(/1+san_1)' a8

Then exploiting independence among random varfables

(A5)

@ T, (S) (

/'L—\-s

1—1)Xl+stxn,l)H (D Bt

Oy

where

(1-p)a
A+s

Q. (5)=p+

See Gaver and Lewis'” for details. Substituting this, and upon some manipulation, we get,

Dy (8)s 77— 0] S A
n(5)= (A+spa,, _2)A+sa H (.5) (49)
and upon further reducing , we have

(A T3 (3-+spar,)

Do (§5) = e L A7
7,(5) T (At st)) (A7)
Rewriting the above,
A{ZPH-Z HZ; PR A
Oyg 0y Hk:o(s+5;)

Inverting the above expression to get the density function 1, (t)_A_z'l(QT (s)) and
Fr (DAL} fr, (v)dw we have for distribution B (9,
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3 o, Mo, - pa

_x
e “0< L. (A9
jzo(% —pan—Z)(aj—pan—l)n}:;é,lﬂé][a[ ‘O‘k] ospel (49

B (t)=

"

Next, we derive the distribution (see Parzen™, p. 133)

P (0)=Fy ()~ Fp,, ()

5 a, Mio|or, - per, ] Sk
=0 (otj - pan—l)(aj - part)nz=0.k¢j[a.i - o‘k]
_2,1_1 o, Tt - poty| FHo<p<l.

=0 (0(, - Po‘n—z)(f"j - plxn—l)nz;:),k:j[a] - “k]
After some manipulations, we get® the required result.
(t+p=(1=p)e)
R(n)= 3 o HLO[aJ—puk}
=0 (p(aj +1)~an + 1)(ucj -, +1)(cx, —pa,,)HLo’k#/[aJ - ak]

—
¢ M0 p<l

(A1Q)

forn=0,1,2,3..,4>0,:20,and &, =3l p"

*It 15 worth noting that the value of Pu(f) at p=0is obtained by the Himiting value lmy, Py(1) (which 15 the Poisson
process).



