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Thn  papcr presents an applmtmn of optimal control theory far the design of power system stabllisars (PSS) as 
a dynamic compensator with the objectwe o l  minmising the oscdlatmns in the power output ol generators. A 
single- and 13-machine system examples are given to illustrate the methodology. The results indicate that the 
new dcsign approach is very eNective in mmimising power fluctuations in lhc system. 

1. Introduction 

Stability is an important characteristic of the operation of modern power systems. The use 
of fast-acting high-gain voltage regulators has improved transient stability but worsened 
the problem of sustained low-frequency oscillations exhibited in many interconnected 
power systems'. deMello and Concordia2 were the first to study this phenomenon and 
identify the factors responsible for the oscillatory instability. The use of power system 
stabiliscrs (PSS) has been recommended to provide damping. These are auxiliary controllers 
which receive fccdback from rotor speed, electrical power output or bus frequency and 
provide a supplementary stabilising signal to the excitation system of generators. 

The design of PSS in the power industry has received wide a t t e n t i ~ n ~ . ~ .  The approach 
is to use a single machine infinite bus equivalent system model and apply classical control 
techniques. The design objective is to improve the damping torque. It has been shown4 
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that this objective is equivalent to the assignment of poles corresponding to the rotor 
oscillations. 

A major drawback ofthe existing approaches2."s that the complexities of a multimacbine 
system are ignored. Coordinated application of PSS may be required in many systemsT. 
The classical control theory is also inadequate to design PSS in a large system where the 
interaction between various machines may have to be considered. 

The application of pole assignment techniques using state-space formulation is feasible 
and there are many ways for the design of decentralised controllers as PSS4,'. However, 
a practical problem to be faced in the design is the exact specification of the closed-loop 
poles. This problem is yet to be resolved satisfactorily. 

As the need for PSS is encountered due to the undamped low-frequency oscillations in 
transmission lines, it would be natural to design the PSS with the objective of minimising 
power oscillations. The design algorithm can be based on optimal control with dynamic 
output feedback','. The objective function selected represents the integral squared value 
of oscillations in power output of generators in the system. 

The design procedure developed is presented here and applied to a single-machine system. 
The algorithm is also applicable to PSS design in large systems. The results for a 13-machine 
system are presented for illustration. 

2. System model 

The power system model is non-linear in general and has to be linearised for PSS design. 
This is best illustrated by taking the example of a single-machine system (fig. 1). The 
generator is represented by a third-order dynamic model considering only the rotor swing 
and the flux decay. The excitation system is represented by a simple model (fig. 2). This is 
typical of a static exciter. 

The linear state space model of the system is given by 

S = [ A I ] g + h a  
9 = [el8 

FIG. I .  Singlemachine infinite bur system. FIG. 2. Block diagram of excitation system 
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g represents thc auxiliary slabilising input to the excitation system (fig. 2) and 9 thc scalar 
outpu'i variable used as input to PSS 

The elements of [A^, [&I and [el are functions of the system parameters and the operating 
point. 

3. Design of optimal PSS 

Design of PSS can be posed as a problem of determination of the feedback gains of an 
output feedback system, to minimise a performance index. as shown below. 

Consider, for siniplicity, a second-order PSS, with a single input and a single output. Its 
transfer function can be represented as 

Thc following state and output equations can be written for the PSS: 

;=S,-+RP 

u = Q z + K P  (3) 
where ?eR2 is the state vector, I: the input signal to PSS and 0 its output signal. The 
matrices 3, R, Q and k are defined below: 

The linearised state-space model of the power system, given in eqn (I) ,  is combined with 
eqn (3) to obtain 

y = c y  

g = K y  
whcrc 

-5 = [.:'z']'; y = [y  $1' 

K Q 
C - [ s  y]; and K = [ -  R S -1 
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The 3 x 3 matrix K, for the second-order PSS considered, can be expressed as 

0, (02- OO~Z)  (el -O0r l )  
(7) 

1 - r ,  - TI 

The parameters of PSS can be determined if the matrix K is known. K will be determined 
to minimise the performance index 

where Q is a symmetric positive semidefinite matrix and R a positive definite matrix. The 
system of eqns (4) and (5) is assumed to be controllable and observable. With the output 
feedback of eqn (6), the closed-loop system is 

8 = A,x 
where 

A, = ( A  i BKC) .  

The performance index J of eqn (8) can now be written as 

The performance index is clearly a function of the initial state ~ ( 0 )  of the system. The 
dependence of J on any particular x(0) can be eliminated by assuming the initial state to 
be a random variable, uniformly distributed over the surface of an n-dimensional unit 
sphere7. The problem then reduces to determination of K which minimises 

J = trace [ S ]  (12) 

where S satisfies the Lyapunov equation 

An algorithm for the solution of the above problem is given below: 

I .  Start with an initial guess K'OJ of K such that A + BK'OJC is stable. 
2. Compute S by solving Lyapunov eqn (13). 
3. Compute matrix P by solving the Lyapunov equation 

where I represents the identity matrix of appropriate dimension. 
4. Conlpute the gradient 

5. Update K according to 

where 0 < z < 1. 
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6. G o  to step 2 untii 2H/aK is close to zero or difference in the values or J obtained in 
two successive iterations is less than a prespecified value. 

4. Numerical example 

For the system shown in fig. 1 the following data are considered. The machine and line 
parametcrs arc given in per unit on machine base. 

Generator parameters: 

x, = 1.72, xi - 0.45 

x, = 1.68, T,, = 6.3 sec 

H = 4.0 scc 

o, = 3 14 radlsec. 

Transmission line parameters: 

R, - 0.024, x, = 0.6 

C ,  = 0.0, B, = 0.066. 

Voltngc regulator parametcrs: 

K ,  = 50.0, = 0 02 sec. 

Operating data: Generated power = 1.Op.u. 

at  0.9 p.f. lagging, V = 1.0 f 0" 

The matrices A and b of the system are 

I 
0 -35.9593 - 15.8432 0 
I 0  [A] = 

0 
0 -0.3808 - 0.3463 0.3527 ' 

0 240.3313 -544.6585 - 50 

[&'I = [ 0 0 0 
1 

25W] 

The open-loop eigenvalues of Â  are 0.2079 f j6.1138, - 5.0065. - 45.7555. 

The complex pair ofeigenvalues correspond to the rotor oscillation mode. The open-loop 
system is evidently unstable. This can be stabilised by employing a PSS. 

5. Design of I5S 

The PSS is designed as a dynamic compensator with the transfer function given in eqn (2). 
The input 9 to the PSS is assumed to bc speed signal and the output is the control variable 6. 
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Convntional PSS 

2 
C .- 

FIG 3. Response of A6 for AV,,, = 1.Op.u. (a) at fuil Flo.4. Response of AP. for AV,, = 1.0p.u. (a) at full 
load, and (b) at half load. load, and (b) at half load. 

Table I 
Clased-loop eigenvalws of the system 

With the proposed With the conventional 
PSS design PSS design 

- 0.4807 - 3.2061 
-2.0267k j9.9O36 - 3.5741 + jlZ.6436 
- 2.4879 + j2.3790 - 1.4278 l j3.0511 

-47.6506 -49.1365 

The PSS is designed to minimise the power fluctuations. Hence the performance index is 
chosen as 

where Q = Tr T, T is defined by 

AP,= Ta 

For the example chosen 

T = [0 0.9157 0.4034 01 
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The results after applying the algorithm given in the previous section are 

0.2565s' + 0.6733s + 0.4839 
F ( S )  = 

S2+6.8141S+3.2345 ' (20) 

The eigenvalues of the closed-loop system and those obtained with the application of the 
conventional PSS design1 are shown in Table I. 

The response of the closed-loop system to a step change in the voltage reference of AVR 
is shown in figs 3 and 4. They show the variations in the rotor angle and the generator 
power output for two operating conditions, namely, (i) full load, and (ii) half load. The PSS 
is designed at full load. 

It is observed that the peak overshoots in the rotor angle and the power output are less 
in the case of the PSS design using optimal control compared with the conventional design. 
This is not surprising as the new PSS design is based on minimising power oscillations. 

6. PSS design in large systems 

The conventional PSS design is not applicable when large multimachine power systems 
are considered. The use of pole-assignment techniques for decentralised design of PSS is 

Table I1 
Eigeovalues for the 12-machine system 

Open loop Closed loop 

Pole assignment" 

-2.92632 + j 14.10790 
- 0.18524 i j 13.37862 
-0,23075 kj11.77149 
- 0.18680 Cj10.70338 
- 0.06316 ij10.56687 
- 0.06807 ij10.50623 
- 0.57632 i j10.40899 
- 0.05326 + j10.26468 
- 0.02639 + j9.41090 
-0,43355 kj8.77155 
- 0.43318 i j7.90272 
-0.55035 ij6.17615 
- 0.38637 
- 2.98356 
-3,50351 
- 4.53175 
- 7.22301 + j5.86688 
- 10.97008 ij8.82632 
- 10.19024 
- 15.53490 
-46.52583 
- 47.92226 
- 56.93663 

Optimal control 

- 2.89734 + j 13.80945 
- 1.61382 f j  13.61650 
- 0.19060 i j 13.39934 
- 0.37997 i j  11.79321 
- 0.35992 + j  10.86744 
- 0.34208 f j  10.59898 
-0.12740ij10.51181 
-0,53875 ij10.26825 
-0.7.2389 ij9.44422 
- 0.35956 +j9.39171 
- 0.28609 i j8.65416 
- 0.27365 ij6.90138 
- 10.76684 f j9.05954 
- 1.81087 i j2.84426 
- 12.81823 ij2.07492 
- 2.85494 
-3.11521 
- 5.86962 
- 7.10297 
- 48.46174 ij0.071491 
- 56.98209 
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complicated6. However, the proposed design is capable of extension to multimachine 
systems, as algorithmically, the method involves parameter optimisation. However, 
computational requirements increase considerably. In order to test the algorithm for the 
design of PSS in realistic systems, a 71-bus 13-machine system example is chosen. The 
system consists of five thermal and eight hydro units. 

Based on eigenvalue sensitivities of the open-loop system9 the PSS is chosen on three 
most effective machines, namely, machines 1,7 and 11. Considering fourth-order models for 
these three machines and classical models for the rest the eigenvalue analysis is carried out. 
The open-loop eigenvalues are shown in Table 11. This table also shows closed-loop 
eigenvalues when PSS are designed using a decentralised stabiliser design proposed10 and 
for PSS designed using the proposed method with the objective of minimising 

J = j: Z(~&)dt ,  

where rc; is the weighting factor for machine i 

The responses for a unit step disturbance in the voltage reference to machine 1 is shown 
in fig. 5 where variations in the power outputs of the machines provided with PSS are 
shown (n; is assumed to be equal to 1.0 for machines with PSS and zero for the rest). 
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Figure 5 also shows the responses for PSS designed using the technique givenL0. The 
differences in the responses for the two cases are dramatic and this observation applies 
even when other disturbances are considered. 

7. Conclusions 

A new method for design of power system stabilisers with the objective of minimising power 
oscillations is presented with two case studies. The method is general enough to include 
large system representations and avoid the complications inherent in techniques using pole 
assignment. The results show that the system performance with the PSS designed using 
this method is far superior to other methods. 
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