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Abstract

This paper presents an application of optimal control theory for the design of power system stabilisers (PSS) as
a dynamic compensator with the objective of minimising the oscillations in the power output of generators. A
single- and 13-machine system examples are given to illustrate the methodology. The results indicate that the
new design approach is very effective in minimising power ftuctuations in the system.

1. Introduction

Stability is an important characteristic of the operation of modern power systems. The use
of fast-acting high-gain voltage regulators has improved transient stability but worsened
the problem of sustained low-frequency oscillations exhibited in many interconnected
power systems®. deMello and Concordia? were the first to study this phenomenon and
identify the factors responsible for the oscillatory instability. The use of power system
stabilisers (PS8S) has been recommended to provide damping. These are auxiliary controllers
which receive feedback from rotor speed, electrical power output or bus frequency and
provide a supplementary stabilising signal to the excitation system of generators.

The design of PSS in the power industry has received wide attention?3. The approach
is to use a single machine infinite bus equivalent system model and apply classical control
techniques. The design objective is to improve the damping torque. It has been shown*

* First presented at the Platinum Jubilee Conference on Systems and Signal Processing held at the Indian Institute
of Science, Bangalore, India, during December 11-13, 1986.
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that this objective is equivalent to the assignment of poles corresponding to the rotor
oscillations.

A major drawback of the existing approaches®-* is that the complexities of a muitimachine
system are ignored. Coordinated application of PSS may be required in many systems®.
The classical control theory is also inadequate to design PSS in a large system where the
interaction between various machines may have to be considered.

The application of pole assignment techniques using state-space formulation is feasible
and there are many ways for the design of decentralised controllers as PSS*®. However,
a practical problem to be faced in the design is the exact specification of the closed-loop
poles. This problem is yet to be resolved satisfactorily.

As the need for PSS is encountered due to the undamped low-frequency oscillations in
transmission lines, it would be natural to design the PSS with the objective of minimising
power oscillations. The design aigorithm can be based on optimal control with dynamic
output feedback”®. The objective function selected represents the integral squared value
of oscillations in power output of generators in the system.

The design procedure developed is presented here and applied to a single-machine system.
The algorithm is also applicable to PSS design in large systems. The results for a 13-machine
system are presented for illustration.

2. System model

The power system model is non-linear in general and has to be linearised for PSS design.
This is best illustrated by taking the example of a single-machine system (fig. 1). The
generator is represented by a third-order dynamic model considering only the rotor swing
and the flux decay. The excitation system is represented by a simple model (fig. 2). This is
typical of a static exciter.
The linear state space model of the system is given by
%=[A1%+ba )]

p=[el2

F16. 1. Single-machine infinite bus system. FiG. 2. Block diagram of excitation system.
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where
F=[AwASAIAE ],

i represents the auxiliary stabilising input to the excitation system (fig. 2) and § the scalar
output variable used as input to PSS

The elements of [ 4, [£] and [¢] are functions of the system parameters and the operating
point.

3. Design of optimal PSS

Design of PSS can be posed as a problem of determination of the feedback gains of an
output feedback system, to minimise a performance index, as shown below.

Consider, for simplicity, a second-order PSS, with a single input and a single output. Its
transfer function can be represented as

0os? + 6,5+ 6
F(S):‘Dj L ‘,.,,v 2. 2)
ST sty
The following state and output equations can be written for the PSS:
z=Sz+ Rp
u=0z+Kjp 3
where ;elfzjs the state vector, J the input signal to PSS and 4 its output signal. The
matrices S, R, Q and K are defined below:

§=[_°,2 __1,1} ﬁ:[?]

Q =[(0; —Oorz), (0, 0or )]
and ~
R =46,
The linearised state-space model of the power system, given in eqn (1), is combined with
eqn (3) to obtain

X=Ax+ Bu ’ (G
y=Cx (&)
u=Ky (©6)

where

Zz
A0 b o
A:[o o]’ B:[o 1]
e ol . [k 0
C—[O 1], and K_’:ﬁ S,J
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The 3 x 3 matrix K, for the second-order PSS considered, can be expressed as

8o (0:—6or2) (6,—8ory)
K=10 0 1 . )
1 —r; —-ry
The parameters of PSS can be determined if the matrix K is known. K will be determined
to minimise the performance index

i= f (¥ 0x + ¢ Ruydt ®)
[

where Q is 2 symmetric positive semidefinite matrix and R a positive definite matrix. The
system of eqns (4) and (5) is assumed to be controllable and observable. With the output
feedback of egn (6), the closed-loop system is

i=Ax ©
where

A.={4 + BKC). (10)

The performance index J of eqn (8) can now be written as

J= j (0 + C'K* RKC) xdt. (an
Q

The performance index is clearly a function of the initial state x(0) of the system. The
dependence of J on any particular x(0) can be climinated by assuming the initial state to
be a random variable, uniformly distributed over the surface of an n-dimensional unit
sphere”. The problem then reduces to determination of K which minimises

J=trace[S] (12)
where S satisfies the Lyapunov equation
ALS+ 854, +(Q + CKRKC)=0. (13)

An algorithm for the solution of the above problem is given below:

1. Start with an initial guess K@ of K such that 4 + BK@C is stable.
2. Compute § by solving Lyapunov egn (13).
3. Compute matrix P by solving the Lyapunov equation
PA'+ AP+1=0 (14)

where I represents the identity matrix of appropriate dimension.
4. Compute the gradient

(8H/8K) = 2(— RKCPC' — B'SPCY) (%)
5. Update K according to
KU = KO — 3(3H/OK) g = g (16)

where 0 <a< 1.
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6. Go to step 2 until H/8K is close to zero or difference in the values of J obtained in
two successive iterations is less than a prespecified value.

4. Numerical example
4.1. System data
For the system shown in fig. [ the following data are considered. The machine and line
parametcers are given in per unit on machine base.
Gengcrator parameters:
xq= 172, x4=045
X, =1.68, Ty, =63sec
H =40s¢cc
w, =314 rad/sec.
Transmission line parameters:
R;=0024, x;=06
Gg= 0.0, B = 0.066.
Voltage regulator parameters:
Kp=3500, Tgp=002sec.
Operating data: Generated power = 1.0p.u.
at 0.9 pf lagging, V=1020°

The matrices A and b of the system are

0 —359593 —158432 O
. 1 0 0 0
(A1=14 _o0388 —03463 03527
0 2403313 —544.6585 —50
B1=r0 0 0 2500]

The open-loop eigenvalues of A are 0.2079 + j6.1138, — 5.0065, —45.7555.

The complex pair of eigenvalues correspond to the rotor oscillation mode. The open-loop
system is evidently unstable. This can be stabilised by employing a PSS.
5. Decsign of PSS

The PSS is designed as a dynamic compensator with the transfer function given in eqn (2).
The input § to the PSS is assumed to be speed signal and the output is the control variable 1.
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0.8
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FiG 3. Response of Ad for AV, =10p.u. (a) at full F16.4. Response of AP, for AV, =1.0p.u. (a) at full
load, and (b) at half load. load, and (b) at half load.
Table I

Closed-loop eigenvalues of the system

With the proposed ‘With the conventional

PSS design PSS design
— 04807 —3.2061
— 20267 +j9.9036 —3.5741 £ j12.6436
— 24879 $j2.3790 — 14278 +j3.0511
~ 47.6506 —49.1365

The PSS is designed to minimise the power fluctuations. Hence the performance index is
chosen as

J=j (APe)ldL:-J (x'Qx)dt a7
o o
where Q= T*T, T is defined by

AP.=Tx. (18)

For the example chosen
T=[0 09157 04034 0]. (19)
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The results after applying the algorithm given in the previous section are
0.2565S% + 0.6733S + 0.4839
S?+6.81418 +3.2345

The eigenvalues of the closed-loop system and those obtained with the application of the
conventional PSS design® are shown in Table I.

F(S)= 20)

The response of the closed-loop system to a step change in the voltage reference of AVR
is shown in figs 3 and 4. They show the variations in the rotor angle and the generator
power output for two operating conditions, namely, (i) full load, and (ii) haif load. The PSS
is designed at full load.

It is observed that the peak overshoots in the rotor angle and the power output are less
in the case of the PSS design using optimal control compared with the conventional design.
This is not surprising as the new PSS design is based on minimising power oscillations.

6. PSS design in large systems

The conventional PSS design is not applicable when large multimachine power systems
are considered. The use of pole-assignment techniques for decentralised design of PSS is

Table II
Eigenvalues for the 13-machine system

Open loop Closed loop

Pole assignment!® Optimal control

0.02892 +714.05587  —2.92632+714.10790  -—2.89734 1 j13.80945
0.04537 +712.83184  —0.18524 +-j13.37862  — 1.61382 +j13.61650
0.00852 +711.83472  —0.23075 £711.7714%  —0.19060 = j13.39934
0.00988 +710.80273  —0.18680 +:710.70338  —0.37997 +711.79321
0.00045 +710.57437  —0.06316 +710.56687  -—0.35992 +j10.86744
0.00674 +710.46237 - 0.06807 £710.50623 - 0.34208 +;10.59898
0.01693 +710.34604  —0.57632 +71040859  —0.12740 £710.51181
0.01668 +710.18523  —0.05326 +710.26468  ~0.53875 +j10.26825

0.00640 +,/9.40606  —0.02639 +7941000  —0.22389 +9.44422
001546 £ /884131  —0.433554/8.77155  —0.35956 +/9.39171
003302 £/7.89500  —0.433184,7.90272  —0.28609 +/8.65416
0.05525 £/6.15929 055035 +/6.17615  —0.27365 +/6.90138
~ 578423 — 038637 — 10.76684 j9.05954
— 609830 — 298356 — 1.81087 +/2.84426
~ 688350 —3.50351 —~12.81823 +2.07492
- 43.87653 — 453175 ~2.85494
— 44.58668 722301 + 586688  —3.11521
— 44.99036 -~ 10.97008 +8.82632  —5.86962
0.00000 —10.19024 ~7.10297
—15.53490 — 48.46174 £ j0.071491
—46.52583 ~ 56.98209
—47.92226

— 56.93663
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F1G. 5. Fluctuations in power output of generators in
pu.

complicated®. However, the proposed design is capable of extension to multimachine
systems, as algorithmically, the method involves parameter optimisation. However,
computational requirements increase considerably. In order to test the algorithm for the
design of PSS in realistic systems, a 71-bus 13-machine system example is chosen. The
system consists of five thermal and eight hydro units.

Based on eigenvalue sensitivities of the open-loop system® the PSS is chosen on three
most effective machines, namely, machines 1, 7 and 11. Considering fourth-order models for
these three machines and classical models for the rest the eigenvalue analysis is carried out.
The open-loop ecigenvalues are shown in Table II. This table also shows closed-loop
eigenvalues when PSS are designed using a decentralised stabiliser design proposed® and
for PSS designed using the proposed method with the objective of minimising

J= j. (o, PZ)dt,
[
where a; is the weighting factor for machine i.
The responses for a unit step disturbance in the voltage reference to machine 1 is shown

in fig. 5 where variations in the power outputs of the machines provided with PSS are
shown (x; is assumed to be equal to 1.0 for machines with PSS and zero for the rest).



POWER SYSTEM STABILISERS 21

Figure 5 also shows the responses for PSS designed using the technique given'®. The
differences in the responses for the two cases are dramatic and this observation applies
even when other disturbances are considered.

7. Conclusions

A new method for design of power system stabilisers with the objective of minimising power
oscillations is presented with two case studies. The method is general enough to include
large system representations and avoid the complications inherent in techniques using pole
assignment. The results show that the system performance with the PSS designed using
this method is far superior to other methods.
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