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Abstract 

In this paper we examine the involvement of time in the cohsiveness among functional concepts. We propose a 
nra~h-theoretic model for the same and show haw it can be embedded in a knowledae base. We use this model in - .  
delinmg cohesiveness-coeficient of a concept and make use oi it in stating a sufictent and necessary condition for 
the absence of simultaneous execution of these concspts. 

Key wards: Temporal bebanour, conceptual cohesiveness, graph models, function concepts, knowledge base. 

Classifying objects into groups based on measurements made on the objects is something 
that human beings perform routinely in many walks of life. Recognition of patterns, which is 
one of the fundamental activities of the human mind is the hcart of any classification 
mechanism. Thus, one can say that pattern recognition is the basic problem in the wider 
field of artificial intelligence. 

Classifying objects into groups is a widely studied topic. A measure to characterize the 
similarity (or cohes'iveness) between objects is a necessary criterion for the activity of 
classification. A comprehensive review of various distance and similarity measures is 
provided by Diday and Simon1 and Anderbergz. Conventional measures of similarity are 
'context-free'. Gowda and Krishna3 defined the so-called 'mutual nearest neighbourhood' 
distance measure to capture the context. Even such measures lacked the ability to capture 
the 'gestalt property"' of objects. In order to capture this aspect, Michalski4 proposed the 
following similarity measure: Similarity (A, B) = function (A, B, E, C) where A and B are the 
two objects under consideration, and E and C the environment and a set of pre-defined 
concepts, respectively. The inability to capture gestalt property along with some solutions 
to this problem has also been discussed by Watanabes. Though the definition providcd by 
Michalski is fairly general, the concepts he used were more at the physical level, such as 
'colour = red' and 'height = tall'. Shekar et a16.7 explored the possibility of utilization of a 



122 B SHEKAK 

knowledge base in classifying objects. This knowledge base comprises: definitions of 
concepts that are Funciional in nature and that are at one or more levels hlgher than the 
physical descriptions, and cohesiveness among rhese functions. The concepts in the 
knowledge base are functions (or activities) that are possible with the help of objects that 
possess the necessary physical descriptions. 

In this paper, we look at the behaviour of this cohesivcncss wit11 respect lo time. More 
speciJicaIly, we look at  the behaviour with respect to the temporal sequencing of concepts 
that constitute a parent concept in an N-tree6. We evolve a graph-thcoretic model as a 
representation mechanism to reflect this temporal behaviour. Thc graph-theoretic terms 
that we use are defined by Deos with examples. Further, we definc 'cohesiveness coefficient' 
and use the same in stating a necessary and sufficient condition for the absence (or presence) 
of mutual exciusion in the cxecution of parent concepts. It may he observed that 'time'is not 
an explicitly stated parameter in the definition of similarity measure defined by Michalski. 
Also, it does not feature in the context of functional cohesivene~s~,~. 

2. Temporal be!ran'our of cohesiveness among concepts 

Functional cohesiveness among concepts (objects) has been defined and classified into three 
generically different component-functions: 

(i) The component fg(a, h, C) between ohjecls o and b assigns a value 0 to the set {a, b ]  if they 
are different in view of concept C, or 1 if they are similar in view of C. 
(~i) The growth-dependent component fgd,(n, a, m, b, C) assigns a real number based on the 
growth of the ith cluster that has a C-conceptual correspondence between n objects of type a 
and m objects of type b with respect to concept C. 
(iii) The contextual component fc(A, ,  . ..,A,, B, C) assigns a value to the composite cluster 
(A ,,..., A,, B) in view of concept C, where A , ,  . .., A, are subclusters in general, and B is a 
new cluster generated. It assigns a different va!ue in the absence of cluster B. 

For a detailed discussion of the above component-functions refer to Shekar et a16 

This definition of functional cohesiveness does not include the effect of time. In other 
words, it has been tacitly assumed that two concepts A and B always remain cohesive to 
each other in view of concept C, if once they are found to be cohesive. Though there are 
many instances of such cohesiveness, there are many other instances where this is not the 
case. 

Considcr the concept writing. Meaningful writing can he achieved with the help of objects 
that satisfy the concepts marking, erasing, and cutting. Thus, in view of the concept cutting, 
these three concepts display a high degree of cohesiveness. Here we associate the objects 
pencil, eraser, and blade with the concepts marking, erasing, and cutting, respectively (fig. 1). 
Now let us look at the activity of writing more closely. It is not dificult to observe that 
execution of the concept marking (such as marking some alphabetic symbol with a pencil) 
excludes the execution of the other two concepts at the same time. This should not be 
mistaken as 'only one at a time'. In fact this is an instance of manual execution of a concept. 
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FIG. 1. An N tree. 

There are many instances of automated execution that require more than one concept at the 
same time. Thus, we see that marking excludes erasing and cutting, and cutting excludes 
erasing alone because the object implying marking is involved with cutting. More generally, 
a constituent child concept of some concept may be needed only after the execution of some 
other concept. Consequently, the object implying this child concept is free to be used 
withlfor any other concept. In other words, a concept A is cohesive to concept B, with 
respect to concept C, only if the execution of B has to simultaneously proceed along with the 
execution of A. 

This analysis ofcohesiveness will be especially helpful if the number of objects required by 
the concepts is more than the number available. Consider a situation where there is only 
one blade, and concept cutting is involved in two higher level concepts, namely, shavinghd 
writing. Functional cohesiveness indicates that writing and shaving cannot be performed 
at the same time. Though this is true from a non-temporal point of view, knowledge of the 
temporal behaviour of the cohesiveness of constituent concepts can help in generating 
meaningful plans for the parent concepts. One remark is in order here. It is only the 
temporal dependency of concepts that we are investigating here, and not the time units 
involved in the execution of concepts. Consider the same writing example. All that we state 
is that the object (objects) implying erasing will be free when marking is being executed. 
Consequently, it can be used along with some other concept or all by itself. We never state 
that marking will he executed for some t units of time, and hence the involved objects will be 
free after t units of time. In fact this can never be stated in general except for a certain class of 
instances. One such instance is the winding of a mechanical wall-clock. The concept winding 
is executed at regular intervals of time and usually not after the clock has stopped. 

Thus, the need to build this temporal information about concepts inside the cohesion 
forest6 is obvious. Cohesion forests have been discussed in detail by Shekar et a16. We build 
this temporal information by embedding a directed graph structure that we call as temporal 
graph (TG) in the cohesion forest. We define the temporal graph for a concept k that has 
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been defined in the cohesion forest, with the help of graph-theoretic terms: 

where 
G I  E V x N and G,  z ( k x  N)u(N x k) 

where 
V = {ui(k,v)~N-tree) and N is the set of natural numbers. 

A few comments on the above definition are in order: 

The temporal graph of any concept is made up of two generically dserent sub-graphs: 
G I  that specifies the temporal sequencing of the constituent concepts of k, and G, that 
specifies the commencement and termination of the execution of k. 
G ,  is specified as a relation on thecartesian product between the children of k( V )  and the 
set of natural numbers (N). Natural numbers are used to specify the temporal sequencing 
of the child-concepts specified in V. Observe that G ,  may have more than one concept 
associated with the same natural number. This signifies parallel execution of more than 
one concept. Also observe that GI can never be an empty set, though the definition 
allows it. This is because any concept specified by the property descriptors at the leaf- 
level of an N-tree has a commencement and a termination of execution. 
G,  is specified as a relation on the union of two cartesian products. The product k x N 
specifies the commencement of k. This product specifes the edges that connect the node 
representing k to different time slots specified by N .  These edges correspond to the 
different ways of commencing the execution of k. The product N x k specifies the 
different ways k can terminate. It may be noted that, though elements of G ,  are not 
linked to any element of V directly, the link is established through G I .  Here again, G, 
can never be empty in practice. 
It is worth noting ;hat a temporal graph of a concept involves only those concepts that 
are children to it. These child-concepts themselves can have children. Thus, this temporal 
modelling of cohesiveness can span from the macro-level involving high-level concepts to 
the micro-level involving the objects specified by the instantiated physical descriptors. 

For the sake of convenience we denote an element of G ,  as an edge (n, ,  C, n, + 1)  instead 
of (C,n) where n,n , sN .  n, and n,  + 1 signlfy the beginning and ending of the time slot 
specified by n. 

Any edge in this temporal graph represents a concept in the cohesion forest, the only 
exception being the edges coming out of the parent concept and the ones going into the 
parent concept. Consider the graph given in fig. 2. Here, the tree rooted at C has been 
decomposed into constituent concepts A and B. These constituent concepts have been 
further decomposed into their respective objects described by property lists P, and P,. The 
edges of the N-tree are represented as broken l i e s  and the edges of TG are represented as 
solid lines. Directed edge (1,2) passes through concept A, and directed edge (2,3) passes 
through concept B. Edges (C,  1) and (3, C) represent the fact that this TG corresponds to the 
parent concept C. It should be noted that instead of such a pair, if we have an edge (3 ,1)  
passing through C, then it will be impossible to identify which concept is the child and 
which is the parent. Of course, one can refer to the corresponding N-tree and get this 
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FIG. 2. A temporal graph 

information. This also will not be straight forward as each one of the concepts is a parent of 
some child node($ in general. 

Thus, any concept ki in the forest, has a TG associated with it which we call TG(k,). The 
N-tree rootcd at k, is connected to TG(k,) only through k,. More specifically, the conncction 
occurs through an edge going out of k, and through another coming into k,. Every child 
concept at one level below the parent is a member of TG(k,). With these basic definitions, let 
us try to construct some TGs for the concepts shaving, writing, and bathing, and make some 
elementary observations on them. 

Consider the N-tree of shaving given in fig. 3. This activity (Sh) has been decomposed into 
three constituent sub-activities, namely, lathering (La), looking (Lo), and cutting (C). Edge 
(Sh, 1) indicates that shaving commences with TG(Sh) starting at vertex 1. Vertices i and 2 
have parallel edges (1, Lo,2) and (1, La, 2) between them. This indicates that the activities 
Lo and La, corresponding to looking and lathering, respectively, are simultaneously 
executed, and executed in the first time slot. These parallel edges are followed by another 
pan of parallel edges (2, C, 3) and (2, Lo, 3). This indicates that these two activities need to be 
executed in parallel after the previous pair of activities has been completed. Here, we 
observe that two concepts are simultaneously cohesive only if they are involved in at least 
two mutually parallel edges. We also observe that two concepts are sequentially cohesive if 
their corresponding edges are adjacent. In TG(Sh), La and C are sequentially cohesive. So 
also are La and Lo. Lo and La are simultaneously cohesive. It is interesting to note that 
two concepts can he simultaneously and sequentially cohesive in the same TG. Henceforth, 
for ease of graphical representation, we do not depict the edges involving a concept if this 
concept is simultaneously cohesive with every other concept in the TG. Lo is an example of 
one such concept. 

Consider the N-tree for the concept writing given in fig. 4. This concept may be decom- 
posed into three constituent concepts cutting, marking, and erasing represented by labels 
C, M, and E, respectively. The two parallel edges (1, C,2) and (1, M, 2) indicate that the 
marking object, namely a pencil has to be sharpened with the help of a cutting object, such 
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FCC. 3. TG [Sh). FIG. 4. TG (Wr). 

as a blade. Subsequent to that, the marking process is the logical next step. This is 
representcd by edge (2, M ,  3). The process of writing may be completed here, os it may be 
completed after the usage of an eraser. Edge (3, Wr) represents the former and edge (4, Wr) 
represents the latter. Edge (3, E,4) represents the time slot corresponding to the erasing 
activity. Thus we see that though erasing is present in the N-tree corresponding to concept 
writing, the activity of writing may get completed without the execution of erasing. 
Simiiarly, there may be more than one edge coming out of node Wr which indicates that 
there may be more than one way of commencing the execution of the concept 
corrcsponding to Wr. In general, the product of the in-degree and out-degree of any node kj  
(with respect to TG(k,)) in an N-tree reveals the number of ways in which ki can be executed. 
Here it may also be observed that concepts C and E are not sequentially cohesive. 

At this juncture, it is worthwhile to note the following to avoid any possible confusion in 
the interpretation of parallel edges. Parallel edges indicate the necessity of performing the 
corresponding activities simultaneousiy. As each activity that is represented as a concept (in 
an .hi-tree) can get decomposed into sub-concepts that correspond to sub-activities, and 
finalb to physical descriptors that describe the relevant objects, any activity involves the 
relevant objects. Thus, parallel edges in essence signify the simultaneous execution of the 
corresponding concepts with the help of the relevant objects. If an activity requires two or 
more objects, then each of them must be perfoming a particular function that will 
consequently find a place in the cohesion forest. Let us assume that the function is not 
represented in the cohesion forest. We are only interested in any object from thc functional 
angle. Thus, the parallei edges from the concept that is the parent of these physically 
specified objects that are in essence concepts (refer to Shekar et a16 for the recursive 
definition of concept) will involve these objects. As the object specification occurs at the 
leaf-level, the TG at that level will indicatc the simultaneity at the micro-level which can 
augment the TGs at higher levels. 

Consider the activity of bathing. A possible decomposition of this activity (Bu) into sub- 
concepts, namely, a room (Ro) for ensuring privacy; two units of uessel ( Ve), one large one 
for holding a large quantity of water and a small one for transferring water from the large 
vessel on to the body; and lathering (La)  for cleansing the body; is shown in fig. 5. As 
wettening (the term 'wetrening' is used synonymously with the phrase 'to make the surface 
wet' for rhyme and brevity) and vessel are executed together to drench the body, we have 
parallel edges (1, We, 2) and (1, Ve, 2). Strictly speaking, edge (Ba, Ve) in the N-tree has to he 
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replicated as there are two vessels involved. However, the need does not arise here as both 
the vessels are simultaneousiy active or simultaneousPy inactive. After drenching the body, 
we perform the activity of lathering. This is represented by edge (2 La, 3). Finally, we again 
drench the body. This is represented by edges (3,  We ,4 )  and (3 ,  Ye,4). It may be observed 
that the concepts between vertices 1 and 2 get repeated between vertices 3 and 4. 

As the concept lathering occurs in the bathing scenario and also in the shaving scenario, 
and it is a scenario in its own right, let us iook at its conceptual decomposition. Lathering 
consists of concepts soaping, brushing, and wettening (we use the term 'soaping' synonymous 
to the phrase 'applying soap to the surface' for rhyme and brevity). This W-tree along with 
the associated TG is given in fig. 6. Lathering commences with the wettening of the brush. 
Consequenfiy we have parallel edges (I, We,2) and (I, Br,2). Following this, we generate 
lather with the help ofthe wet brush and a soap. This is represented as (3, Br, 4). Thus we sec 
that node Br is involved in every time s!ot, namely (1 ,2) ,  (2 ,3) ,  and (3,4). If we remove the 
edges involving this node, then we will be left with a directed edge from vertex 3 to vertex 4 
without involving any concept. Hence we do not exclude it. 

Thus, from the above discussion and the definition of TG, we observe that no T G  can 
contain a cycle if the entry and exit edges are removed. This results from the fact that time 
always moves forward and never backward. Even when the same concept is involved at a 
later point in time, the corresponding edge passes through that concept but the edge is not 
routed back. For example, in fig. 5, the edges between vertices 3 and 4 are identical to the 
edges between vertices 1 and 2. Still we do not create an edge (2, La,4). This is because every 
vertex in the TG represents a time instance and an ascending sequence of edges represents 
increase in time. One other observation that can be made is regarding the two types of 
sequential cohesweness among concepts, namely, bi-directional cohesiveness and uni- 
directional cohesiveness (fig. 4). One cannot execute the concept of erasing withoul having 
executed the concept of marking. In other words, erasing is cohesive to marking. On the 
contrary, marking is not cohesive to erasing because erasing is not a necessary preceding 
activity for marking. There are TGs where it is true the other way round also. Consider the 
TG given in fig. 5. While it is true that the concept represented by La requires the execution 
of the concept represented by We to precede it, it is not true that wettening requires the 
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execution of lathering. However, in this TG the execution of lalhering must be succeeded 
by the execution of wettening. Thus thcy are bi-directionally cohesive. Observe that 
cohesiveness is with respect to the scenario under consideration and not independent. This 
is the reason why !arhering is dependent on uessel also. 

Sequential cohesiveness can be at various levels. In the shaving scenario, concept 
%wetcaning that is a constituent concept of [athering is two time slots away from concept 
rutting. Hence, we can say that concept cutting is 3-cohesive to wettening. Observe that 
simultaneous cohesiveness can be addressed as 0-cohesivcness. Though this definition of 
cohesiveness may seem unimpor?ant in a scenario, it assumes importance between 
scenarios. Consider the TGs given in figs 3 and 4. In TG(Wr), we know that cutting is 
0-cohesive, whereas in TG(Sh) cutting is I-cohesive. We can strarght away say that both of 
them can be executed simultaneously with the presence of just one blade. This level-of- 
cohesiveness information has to br defined by taking the entire root-to-leaf decomposition 
of an N-tree into considcration. Thus, TG(La) should also be considered while assigning 
cohesiveness levels. This can also play a vital role in staggering (from the temporal view 
point) the execution of concepts. 

It is not difficult to observe that the relative definition given for level-of-cohesiveness can 
he made absolute by selecting the base-level concept, i.e., the concepl with respect to which 
leve! is being computed, as the one that occurs earliest in the TG. In such a case, we call it as 
'cohesiveness coefficient'. We give below the definition of this coefficient, denoted by 
coef(C,TG(k,)), for a concept C in a temporal graph TG(k,) containing C. The definition 
makes use of graph-theoretic terms i~ivolvcd in directed graphs8. 

Let G(kJ = TG(kJ - {(k,,p),(q, kJlp, qeTG(kJ} 

Coef(C,TG(k,)) = 0 whenever edge (w, C, x)&(k,) and d-(w) = 0; 

Coef(C,TG(k,)) = d(w, y)  whenever edge @, C, z)&(kJ. 

Here, 'C' is the in-degree of the specified node and 'd' is the distance between the specified 
nodes. 

As an example, consider the TG given in fig. 3. To detenninc a base-level concept, we 
identify vertex w whose in-degree is 0 in TG(k,) - {(k,,p),(q, ki)} for all p and q. Here, this 
happens to be node 1. Now any concept Z such that (w,Z,s)eTG(k,) can be chosen as the 
base-level concept. In this case, Lo and La happen to he base-level concepts. Thus they 
have a cohesiveness-coefficient of 0. Hence Coef(C, TG(Sh)) has a value of 1. This coefficient 
is specially useful in stating the following necessary and sufficient condition for the absence 
of simultaneous execution of concepts. It is stated using the first-order predicate calculus. 

pki)Wkj)((3C)(C~TG(k,) A CeTG(kj) A 

coef(c, TG(k,)) = coef(C,TG(k,)))-i simnl(k,, k,)). 

It should be noted that this condition is based on the assumption that the objects present 
are just enough for the execution of k, and kj individually, and not simultaneously. The 
forward implication states a sufficient condition for the existence of non-simultaneous 
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execution of k, and k,. In other words, if there exists a concept C that is a member of TG(k,) 
and TG(k,), and its cohesiveness coefilcients are the same in both the FGs, then i~ is not 
possible to executc ki and k, at the same time. If there does not exist any concept that 
satisfies the antecedent, then it is possible to execute both the concepts at the same time. 

It is important to note that the above condition does not reflect a transitive bebaviour 
among concepts. Consider concepts E, %, and G. There may not Re any concept with the 
same cohesiveness coefficient that is common to E and F. Consequently E and F can be 
executed simultaneously. The same may be true with F and G also. However, this may not 
be true with I: and G. Observe that the above condition overrides the condition given by 
Shekar rt at6. There, the membership of C in the two N-trees corresponding to k, and kj was 
sufilcien: to introduce mutual exclusion. Here, we add more power to it by stating that it is 
the cohesiveness coefficients that determine mutual exclusion and not mere membership 
alone. 

3. Conclusions 

In this paper, we try to abstract the temporal nature present in the cohesiveness among 
concepts. We propose a graph-theoretic model called 'temporal graph' which reflects 
temporal sequencing of concepts and embed this graph in the cohesion forest. This in 
essence is an acyclic-directed graph connecting the concepts that are the children of the 
parent concept representing the root of the N-tree. We elucidate this model with the help of 
a few examples and make some observations on its characteristics. 

This directed graph helps us to define two types of cohesiveness among concepts, namely, 
parallel cohesiveness and sequential cohesiveness. We go further to generalize them. This 
results in the definition of 'cohesiveness coelticient' of a concept in a temporal graph. This 
attribute helps us to look at simultaneous execution of concepts defined in the cohesion 
forest more clearly. We identify a necessary and sufficient condition for the absence of 
simultaneous execution in a given pair of concepts. This condition is more powerful than 
the condition stated in an earlier papep. However, for extra power, we need extra 
information in the knowlcdge base. This should he resident in the knowledge base as 
cohesiveness coefficients. Here, we make an assumption that a directed edge represents one 
time unit. In the most general sense this may not be true. It is not difficult to refine the model 
further to include that also. We have not done it here as it does not contribute to the 
furthering of conceptual clarity as regards execution of concepts. 
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