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In this paper. we propose diagnosis of steady-state process behavior usmg rules derived from the stgned directed 
graph JSDG) representing the interaction among the process variables. All abnormalities are correlated uslng 
hackward reasoning through rules tn yield a diagnosis. I'hese rules can he added with experiential rules w h ~ h  
are obtaincd from experts on plant operailon. 
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In recent years, application of artificial intelligence (Al) to process industries using standard 
computer technology has emerged due to the growing complexity of modern process 
engineering, time constraints and limited availability of human expertise. One of the 
branches of A1 increasingly becoming common in industries is knowledge-based systems 
(KBSs). Process plants viz., power, chemical or petrochemical plants, etc., can be viewed as 
a domain which is knowledge-rich in terms of human expertise and in which a significant 
portion of the problem-solving is non-numeric. Knowledge-based approaches have an 
edge over the conventional methods as they employ efucient ways to capture the prohlem- 
solving knowledge from the domain-experts, explain the line of reasoning to the user, 
support modification and refinement of process knowledge, and capture and retain 
expertise that has accumulated many years of experience. 

An important application of KBSs to have emerged in recent times relates to various 
types of diagnosis and troubleshooting. Most of the conventional knowledge-based fault 
diagnostic systcms are based on expert knowledge compiled in the form of production rules. 
Parsaye and Lin' suggest building a knowledge base with rules derived from fault trees for 
emergency feed-water systems for nuclear power plants. Randhawa et alz propose an expcrt 
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system aid to troublesinooting of wave-soldering process using compiled rules. Chester et a13 
discuss an expert sysienl approach to on-line fault diagnosis in chemical engineering 
domain. 

The primary difficulty witn most of these expert systems has been their lack of flexibility 
i .~.. they consist of rules which associate symptoms with a set of constraints specific to the 
process, and thereby limit the general applicability of the system. Moreover, these systems 
are unreliable in new situations as they rely on experience-based knowledge alone and fail 
when faced with unanticipated faults. 

Another category of KBSs is based on a 'deep' model. By 'deep' we mean that the 
knowledge is basic knowledge concerning how and why a system works the way it does. 
This kllowledge thus provides cause-and-effect information for troubleshooting a 
malfunction. The major goal of these models is to develop a fault diagnostic paradigm based 
on structure and behaviorJ of the system. Genesereth5 discusses the use of design 
description based on structure and behavior for automated diagnosis. Narayanan and 
V~sxanadham' present a methodology that merges graph and fault-tree-based failure 
analysis with rule-oriented reasoning. Rich and Venkatasubramanian7 discuss a model- 
based approach for diagnosing prototype chemical plants. 

The advantage of reasoning from a 'deep' model is that unanticipated situations may be 
expiained to the extent of diagnostic resolution depending on the depth of process 
knowledge incorporated in the system. But 'deep'4evel reasoning is often slow and tends to 
make the overall diagnosis computationally inefficient. Further in some ill-structured 
dornams it is difficult to obtain the exact model of the process. 

Attempts have been made to merge the experience-based and 'deep'-level approaches. 
The central idea is that whenever experience-based knowledge is unavailable or inadequate, 
'deep' knowledge is utilized for diagnosis. Fink and Lusths discuss an integrated diagnostic 
expert system in electrical and mechanical domain. Gallanti et a19 describe an on-line 
process monitoring system which integrates experiential and 'deep' knowledge for this 
purpose. The only limitation of these systems is that they lack flexibility in their diagnosis 
and are unable to adapt to other types of process plant configurations. 

We propose a hybrid knowledge frame~ork'~." which includes a process-independent 
diagnostic mechanism based on causal and qualitative reasoning, and integrates knowledge 
based on experience and 'deep' knowledge about structure and behavior of the process 
plant. In this paper, we present only the diagnosis of steady-state process behavior which 
comprises the second stage of our research project". This diagnosis technique is based on 
formation of rules derived from the process digraph ahich represents the behavioral 
knowledge. Before discussing the approach in detail we outline some of the salient features 
of the diagnostic system as a whole. 

1.1. Outline of the hybrid knowledge-based fault diagnostic system 

In the system proposed, we consider a process plant as an assembly of several functional 
subsystems or functional blocks (FBs), which operate to meet an identifiable goal. This 
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partitioning reduces rne prob!en of searching a malfunction cause to a manageable size. 
Each FB consists of a hybrid knowiedge required to guidc the diagnosis rapid!? towards a 
solution. The knowiedge is hybrid because it involves various types: 

(a) 'Shal!ow' or cxperiential knowledge. 
(b) 'Dccp' know:edgc: (ij structural and (ii) behavioral. 

Shallow' or cxpericnlial knowledge is experience-oriented knowiedgc thal captures 
empirical associations and expertise that is gained through repeatedly diagnosing a 
problem. 

'Deep' knowledge includes knowledge concerning how and why a system works in the 
way it does, thus providing cause-and-cffccl information needed when diagnosing a 
malfunction. The structurai knowledge captures the physical layout of the plant i.e., 
component's part, connectivity and associated instrumenlation. The behaviord knowledge 
comprises knowledge about causal interactions among proccss-dependent parameiers 
(variables) and their states. 

In addition to the hybrid knowledge, control knowledge is incorporated in the system's 
knowledge base. This is a set o l  instructions on how different pieces of process knowledge 
should be accessed and processed for diagnosis. The diagnostic system aiso includes a plant 
databasc which consists of data obtained from alanns, sensors or instrumentation. Thcsc 
data are represented in the form of facts and may be updated through a data-acqu~sition 
system. 

The diagnostic mechanism (DM) oi the system is composed of three consecutive phases 
for locating a fault (fig. 1). The first phase is malfunction block identification (MB1) which 
locates a malfunctioning FB or malfunction block (ME%), based on alarm data whenever 
violation of process parameters occurs. Once the suspected MB is identified, the second 
phase uiz., malfunction parameter identification (MPI) is invoked to locate parameters 
which indicatc the prime cause(s) of the fault in that MB. Finally, malfunction component 
identification (MCI) phase is invoked to locate the malfunctioning component based on the 
results supplied by MPI. The DM is process independent and is capable of adapting to 
various types of plant configurations. 

As mentioned earlier, presentation of the MPI phase, which diagnoses the stcady-state 
behavior of the process, is the main objective of' this paper. We first discuss the 
behavioral knowlcdge organization and then focus on the MPI phase of DM. 

2. Behavioral knowledge orgmaization 

Behawor may be described as a reiat~onship between the input and output of a system or a 
component. Genesereth5 defines behavror as equations, rules, procedures that relate a 
system's input, output and state. In efTect the behavioral knowledge of a process comprises 
knowledge about causal interactions among process-dependent parameters and their states. 

In a process plant environment, a large fraction of behavioral knowledge is incorporated 
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Fie. I. Overview of the diagnostic mechanism. 

in the physical model based on thermodynamics, heat, mass, and momentum transfer. We 
discuss this keepingin mind the steady-state behavior of the process. We adopt a qualitative* 
steadystate model for behavioral diagnosis to test our prototype diagnostic system. 

2.1. The qualitarive representation 

The behavioral knowledge is represented as a signed directed graph (SDG)IS. The vertices 

*Obtaining an exact quantitative model for a process is diffkult. Even if such a model a obtained, it is time 
consuming and cannot meet real-time constraints for on-line diagnosisx3. By abandoning the precision Of 
numerical informatio~ a qualitative model gains the abii~ty to reach conclusions even with a little information". 
The disadvantage is that the predictions are often ambiguous; where traditional quantitative model givcs an exact 
prediction, a qualitative model often narrows the possibilities to a small set. When it is not adequate, the 
framework provlded by the qualitative model can guide one to apply more precise knowledge. 
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FX; 2p). The rcii! gas-state cquatlon and ~ t s  SDG. kc. 2(b) A llncar d~ifcrent~a! equation and its SDG. 

V, = VALVE APERTURE 
Y ,  = FLOW-RATE, WHERE i =  1,2,3 

L = LtVEL, LC - LEVEL CONTROLLERS 

FIG. Xcl. A water tank system (reproduced from Int5 Fm. 2(d). The SDG of the water tank syctem o i  fig. 2(4. 
ct cl). (reproduced iram Iri" el nl). 

of the SDG correspond to process parameters (variables) and the edges correspond to the 
cause-effect relationship between process parameters. The direction of deviation of the 
process parameters is represented by sign on the edges: + (-)  indicates the tendcncy of 
cause and effect vertices to change in the same (opposite) direction. Each vertex is assigned a 
three-level qualitative value: { -  l ,O,  I}. A vertex is assigned 0 if it is within a specified 
tolerance range, - 1 if it is below, and 1 if it is above the specified tolerance range. To 
illuslrate the SDG representation, consider the following instances: 

i) The equation of state for a unit mass of a real gas is given by P V =  RT, where P, V, T, 
and R correspond to pressure, volume, temperature and universal gas constant, 
respectively. The SDG for this equaion is shown in fig. 2(a). 

ii) A linear differential equation and its corresponding SDG is shown in fig. 2(b). 

iii) For the water tank system of fig. 2(c) the influence among the parameters is 
represented by the SDG of fig. 2(d). 

The motivations behind adopting the SDC representation arc as follows. Firstly, it is easy 
to create the SDG either from design equations or from the knowledge of physical 
mechanism of a process in qualitative term or both. Secondly, the SDG representation is 
suitable for causal reasoning that we use for the purpose of diagnosis. Finally, with the help 
of SDG the dynamic bchavior of a Drocess may be simulated to check its performance. 

2.2. Acquisition of the SDG 

The SDG may be derived from the design equations (quantitative model), conf l~ence '~  
equations (qualitative differential equations) and constraintsL7 from material and energy 
balances. Usually the SDG is created manually. It requires only qualitative and subjective 
judgement of a person, generally a process engineer, to transform the phyacal model into an 



The SDG repxsentation Is only an intermediate one. The SDG is finally converted into a 
set of rules along with some control premises required for Lhc purpose of diagnostic 
rcasoning. 

Thc prirnxg proposition of SDG-based iechaiques is that cause and effect linkages must 
connect the fault origin to the observed symptoms of the bull. Each edge in the SDG 
represcnts a fundamcntai iinlt of interaction. For instance, a 'negative' cdgc A ( - )  ->B 
portrays that if the stale of A bccornes hlgh (low), then the state of B becomes low (high). For 
a'positive' edge the effect is mversed. A acts as the antecedent and B as the consequent. In 
other words, if A becorncs I {-I),  then the state ol'B becomes - 1 (I) ,  for a 'negative' edge. 
Howcver. irrespective of the sign on the edge, if state of A is 0 then the state o i  R is 0. 

For simplicity, we note the following assumptions: 

(1) The M u l e  propagation time between any two adjacent vertices is zero. (The failure 
propagation time would be crucial if we had considered component digraph where 
process units are represented as vertices.) 

:2) The failure propagation probability between any two adjacent vertices of thc SDG is I .  
(For the present discussion we assume that the interaction of proccss parameters 
is approximately definite and uniform.) 

(3) One and only one antecedent at any point o i  Lime can alfect the consequent. (This 
assumption is justised if no abnormalities are simultaneously occurring and if each 
parameter undergoes only one transition between qualitative states during fault 
propagation. 

(4) Each parameter undergoes no more than one transition between qualitative states during 
fadt propagation. 

if  we examine the SDG for the linear differential equation given in fig. 2(b), using the 
above assumptions the foikwing rule may be applied to describe the antecedent-consequent 
behavior: 

IF X()OTHEN Z = X  
OR 

I F - Y ( ) O T H E N Z = - Y  
OR 

I F  W O O T H E N  Z= W. 

In other words, Z is asslgned the value of X,  or - Y or W whichever is violated, assuming a 
normal (0) steady-statc value initially. Z  is normal (0) when X, Y and Ware all normal. This 
rule may be represented in PROLOG as follows: 

var(z,Z):-var(x, X), X 0 0 ,  Z = X; 

var(y. Y), Y ( )0, 2 = - Y; 
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The clause var(p, P) represents :he state P of a parameter 'p'. 

Since rules are efficient at causal reasoning (backward, forward or both), it is natural to 
convert the SDG into a set of rules as stated above. In this approach, we further extend the 
condition (IF-part) by adding certain control premises whose inclusion expedites the 
diagnostic reasoning. We designate this modified version of the above rules as SDG-rules. 
The SDG-rules, corresponding to the SDG of fig. 2(d), are as follows: 

var(f 1, X):-dat( f 1 ,  X), X ( ) 0, ti(f 1): 

test( f I), loop(uI), var(v1, X). 

var( f 1,O):-el( f 1).  

var(u1, X):-dat(v1, X), X( )0, tl(v1). 

var(u1,O):-el(v1). 

var(v3, X):-dat(u3, X), X( ) 0, tl(v3) 

var(v3,O):-el(o3). 

var(1, X):-dat(1, X), X ( )0, t l ( l ) ;  

W 0 ,  loop(f 11, var(f 1, XI; 

test(& loop( f 2), var( f 2, Y), X = - Y; 

test(0, loop( f 3), var(f 3, Y), X = - Y. 

var(1,O):-ei(l). 

var(.f 2, X):-dat( f 2, X), X ( ) 0, rl( f 2); 

test( f 2), loop(v2), var(v2 X). 

var( f 2 0):-el( f 2). 

var( f 3, X):-dat( f 3, X), X ( ) 0, tl(f 3); 

test( f 3), loop(v3), var(v3, X); 

test(f 3), loop(0, var(1, X). 

var(f 3,O):-el( f 3). 

var(v2, XI:-loop(l), var(l, Y), X = - Y. 

We have assumed that the parameters f 1 ,  12, f 3  and i are measured. The clause 
dat(p, X) retrieves the state X of the measured parameter p from the process database. The 
clause loop(p) takes care of loops or feedbacks incident on the vertex p. The remaining 
clauses tl(p), el(p) and test(p) will be explained later. 
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The SDG-rules are also used to explain the fault cause once a fault is l o~a ted '~ .  Finall) 
experience-oriented rules may be added to the SDG-rules to speed up the diagnosis. W, 
may have a rule as follows: 

IF parameters p l  AND p2 AND p3 AND.. . are violated 

THEN components c l  OR c2 OR c3 OR.. . are faulty. 

For instance, 

IF controller 1 output is low (ie., CNT 1 = - 1 )  

AND valve2 position is high (i.e., VLV 2 = 1) 

THEN vaive2 is probably faulty. 

The SDG-rules are automatically generated by knowledge-acquisition interface (KAI) 
which takes the SDG as an input and converts it into a set of SDG-rules. KAI is also useful 
for adding, deleting or modifying the SDG and the associated SDG-rules. 

3. Causal reasoning 

A causal model usually portrays what is happening in a system, what caused to happen and 
what will happen in the system. Process plants provide various paths of interaction which 
show the existence of a theory of causality. The causal model we consider consists of the 
behavioral knowledge in the formof SDG-rules derived from the process SDG that contains 
both measured and unmeausured vertices (parameters). 

We presume that the MB which is suspected to be responsible for process malfunctioning 
is identified12. The second phase viz., MPI is invoked to locate the parameters that indicate 
the prime cause(s) of the fault in the MB. The MPI algorithm is based on causal and 
qualitative reasoning and is given in the following section. 

3.1. The M P l  algorithm 

In this algorithm, the SDG-rules which represent the interaction among various process 
parameters are evaluated using process database. All abnormal parameters are correlated 
using backward reasoning through these rules to yield diagnosis. 

Problem definition: Given SDG-rules pertaining to an MB, and the qualitative states of all 
measured parameters, the problem is to locate a set of violated parameters which are 
causally 'independent' (we designate such parameters as malfunction parameters; they 
indicate the prime cause(s) of malfunct~on in the MB). 

{Cominenr: The algorithm is based on graph traversal. The input is a set of measured 
parameters of a suspected MB. The output is a set of parameters which are not causally 
dependent on any other parameter in the MB, and holds responsibility for thedeclared effect.) 

Method: The MPI algorithm is composed of the following steps: 
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Srep I: Gather all abnormal measured parliineters (4MPs) reported by process database as 
an uncxplored list, UL = {AMP,,  AMP,, AMP,.. . . , AMP,] where J < I,, k is thc total 
number of mcasurcd parameters in the MB. 

Step 2: Select the first clemcnt of UL (call it active element (AE))  and apply rnoditied depth 
first search (MDFS) algorithm to find out all AMPS which are causally related to AE, and 
store them in a temporary list (TL), TL _c UL. Delete AE from UL aftcr the current MDFS 
terminates. 

Step 3: If (TL= 4) OR (AMP,ETL) AND (AMP,$UL)) wherc i =  1,2, .  . .j then the contents 
of UL are unchanged; else all the elements of TL are added in front of IJL without 
duplication. 

Step 4: Store AE in an explored list (E,L), iff TL = 4 at the end of current MDFS. 

Step 5: Continue steps 2 through 5, till UL = 4. If U L  = @ and EL = 4, then add AE to  EL 
and stop. 

The MDFS is a modified version of the depth first search (DFS) algorithm in which thc 
DFS is carried out through the SDGrulcs with those parameters in the consequent 
(THEN-part) that are antecedents o l  AE. The following cases may occur: 

Casr 1: Whenever an SDG-rule with a normal n~easured parameter as  its consequent 1s 
encountered, the DFS is terminated through that rule. 

Case 2: Whenever an SDG-rule with an AMP as its corlsequcnt is encountered, the DFS is 
terminaled through that rule, and the AMP is stored in TL. 

C ~ s e  3: Whenever an SDG-rule with any parameter as ~ t s  consequent is encountered more 
than once, the DFS is terminated through that rule, thereby infinite causal looping is 
avoided. 

Limitutions: The MPI  algor~thm correlates different AMPS through causal linkagcs 
(described by antecedents and conscquent in thc SDG-rules) to converge the scarch 
towards the cause of the fault. The MPI  algorithm terminales when UL is null, creating the 
EL which contains a set of causally independent AMPs. The AMPs that are present in EL 
indrcate thc possiblc primc causes of the fault in thc MB and are thus the malfunction 
parameters. However, it is impossible to further reduce the number 01 these paramelers 
using the SDG information. Moreover, they are ambiguous with regard to fault sources due 
to  smgle and multiple origins. 

Finally, the selection of a dominant causal antecedent from a set of potential antccedents 
is arbitrarily fixed in the SDG-rules. No criteria has yet been adopted tor optimally ordering 
the antecedents in the SDG-rules. 

3.2. Example 

Lcl us consider the buffer tank system of fig. 3(a) and its corresponding SDG given in 
kg. 3(b). The SDG-rules for this system are as follows: 

vad f 1, X):-dat(f 1, X), X ( >O, tM f'l); 

test(f I), loop(ul), varivl, X). 
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FIG 31a) The h u h  lank system (reproduced irom Vls~a:adharn'~ ern/). 

FIG 3b).  The SDG of the b u k  tank system of fig. 3(al (reproduced from V~wanadham'" era!). 

vat[ f I ,  0):-el( f 1). 

varicl, X):-dat(v1, X ) . X <  )0, tl(o1); 

varll!l,O):-el(D1). 

var(1, X):-dat(1, X,, X ( ) 0, tlil); 

test(l), loop( f l ) ,  vat( f 1, X);  

test(& loopi f2) ,  var(f2,  Y) ,  X = - Y ;  

test(l), loop(S3). var(f 3, Y ) ,  X = - Y. 

var(1.0):-el([). 

vari f 2, X):-dat( f 2, X) ,  X ( ) 0, t l ( f2 ) ;  

test( /2) ,  loop(u2). var(u2, X).  

var(f 2,O):-eMf2). 

var( f 3, X):-dat( f 3, X) ,  X < ) 0, tl( f 3); 

test( f 3), loop(v3), var(u3, X) .  

var(f 3,O):-el( f 3). 

var(u2, X):-loop( f 2), var( f 2, Y ) ,  X = - Y. 
var(o3, X):-loop(l), var(1, X). 

The  clause t lb)  appends a parameter p to  the list TL.  T h e  clause el(p) appends p t o  the list 
EL. The  clause test@) ensures that the MDFS is started from the antecedent o f  AE only. 
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Table I 
Status of measured parameters 

Table 11 
Satus of differed lists at different execution stages 

Execution Unexplored list Temporary list I Explored list 
stages JUL) ITL) [EL) 

Table I depicts the status pattern of some measured parameters at an instant of time. 
Table I1 shows the status of UL, TL, and EL at different stages of MPI execution. The 
MDFS starts from the SDG-rule with [as consequent and obtains f 2  and f 3  as elements of 
TL. The UL is subsequently modified and the MDFS is invoked from the SDG-rule with f 2  
as consequent in the second pass. As f 2 depends on 02 and vice uersa, a loop is recognized. 
Since f 2 does not depend on any other parameter except 02, TL becomes empty and thus, 
f 2  is stored in EL. Finally, the MDFS is invoked from the SDG-rule with f 3 as consequent 
resulting in 1 in TL and an empty UL. Since UL is empty, MPI terminates. Because f 2  is 
an element of EL, it is identified as malfunction parameter that indicates the fault in buffer 
tank system. Although v2 is a part of the causal loop formed by f 2, it is not selected as it is 
an unmeasured parameter. 

4. Implementation 

The initial task i.e., acquisition of the domain's hybrid knowledge is done with the help of 
KAI, which is an interface program implemented in TURBO PASCAL''. However, ail the 
phases of DM are implemented with TURBO PROLOGi9. We adopted PROLOG for 
conceptualizing, creating and prototyping the diagnostic system. It is an easy task to 
implement KBSs using PROLOG directly for knowledge representation and inference 
mechanism. Conciseness of PROLOG programs with resulting decrease in development 
time makes it an ideal language for prototyping small to medium-sized KBSs. 

The overall implementation of the prototype diagnostic system has been carried out on 
an IMB PC-XT which supports both TURBO PASCAL and TURBO PROLOG 
programming environment. 
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5. Conclusions 

The method of diagnosis of steady-state process behavior presented in this paper is simple 
and direct. if the limitations are acceptable, the diagnostic reasoning is straightforward. 
However. efforts are being pursued to overcome these limitations, the accomplishment, 
of which wdl be significant. 

i n  this work we tried to establish that the rules are efficient for causal reasoning. Rules, in 
general. facilitate reasoning forward, backward or both. The SDG-rules are also used to 
explain the fault-cause once a fault IS located. Finally, the rule representation assists the 
knowledge engineer to add rules obtained from the human experts who have acquired the 
diagnostic knowledge about the behavior of the process in a compiled form, developed it 
through experience or derived it from a 'deeper' model. The integration of SDG-rules with 
experiential knowledge increases the diagnostic efficiency during common faults and 
makes the system capable of tackling unanticipated faults when the latter fails. 
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