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Abstract

In this paper, we propose diagnosis of steady-state process behavior using rules derived from the signed directed
graph (SDG) representing the imteraction among the process variables. All abnormalities are correlated using
backward reasoning through rules to yield a diagnosis. These rules can be added with experiential rules which
are obtained from experts on plant operation.
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1. Introduction

In recent years, application of artificial intelligence (Al) to process industries using standard
computer technology has emerged due to the growing complexity of modern process
engineering, time constraints and limited availability of human expertise. One of the
branches of Al increasingly becoming common in industries is knowledge-based systems
(KBSs). Process plants viz., power, chemical or petrochemical plants, etc., can be viewed as
a domain which is knowledge-rich in terms of human expertise and in which a significant
portion of the problem-solving is non-numeric. Knowledge-based approaches have an
edge over the conventional methods as they employ efficient ways to capture the problem-
solving knowledge from the domain-experts, explain the line of reasoning to the user,
support modification and refinement of process knowledge, and capture and retain
expertise that has accumulated many years of experience.

An important application of KBSs to have emerged in recent times relates to various
types of diagnosis and troubleshooting. Most of the conventional knowledge-based fault
diagnostic systems are based on expert knowledge compiled in the form of production rules.
Parsaye and Lin® suggest building a knowledge base with rules derived from fault trees for
emergency feed-water systems for nuclear power plants. Randhawa et al? propose an expert
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system aid to troubleshooting of wave-soldering process using compiled rules. Chester et af®
discuss an expert system approach to on-line fault diagnosis in chemical engineering
domain.

The primary difficuity with most of these expert systems has been their lack of flexibility
i.e., they consist of rules which associate symptoms with a set of constraints specific to the
process, and thereby limit the general applicability of the system. Moreover, these systems
are unreliable in new situations as they rely on experience-based knowledge alone and fail
when faced with unanticipated faults.

Another category of KBSs is based on a ‘deep’ model. By ‘deep’ we mean that the
knowledge is basic knowledge concerning how and why a system works the way it does.
This knowledge thus provides cause-and-effect information for troubleshooting a
malfunction, The major goal of these models is to develop a fault diagnostic paradigm based
on structure and behavior* of the system. Genesereth® discusses the use of design
description based on structure and behavior for automated diagnosis. Narayanan and
Viswanadham® present a methodology that merges graph and fault-tree-based failure
analysis with rule-oriented reasoning. Rich and Venkatasubramanian’ discuss a model-
based approach for diagnosing prototype chemical plants.

The advantage of reasoning from a ‘deep’ model is that unanticipated situations may be
explained to the extent of diagnostic resolution depending on the depth of process
knowledge incorporated in the systemi. But ‘deep’-level reasoning is often slow and tends to
make the overall diagnosis computationaily inefficient. Further in some ill-structured
domains it is difficult to obtain the exact model of the process.

Attempts have been made to merge the experience-based and ‘deep’~level approaches.
The central idea is that whenever experience-based knowledge is unavailable or inadequate,
‘deep’ knowledge is utilized for diagnosis. Fink and Lusth® discuss an integrated diagnostic
expert system in electrical and mechanical domain. Gallanti et al® describe an on-line
process monitoring system which integrates experiential and ‘deep’ knowledge for this
purpose. The only limitation of these systems is that they lack flexibility in their diagnosis
and are unable to adapt to other types of process plant configurations.

We propose a hybrid knowledge framework®** which includes a process-independent
diagnostic mechanism based on causal and qualitative reasoning, and integrates knowledge
based on experience and ‘deep’ knowledge about structure and behavior of the process
plant. In this paper, we present only the diagnosis of steady-state process behavior which
comprises the second stage of our research project!2. This diagnosis technique is based on
formation of rules derived from the process digraph which represents the behavioral
knowledge. Before discussing the approach in detail we outline some of the salient features
of the diagnostic system as a whole.

1.1. Quiline of the hybrid knowledge-based fault diagnostic system

In the system proposed, we consider a process plant as an assembly of several functional
subsystems or functional blocks (FBs), which operate to meet an identifiable goal. This
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pactiticning reduces the problem of searching a maifunction cause to a manageable size.
Each FB consists of a hybrid knowledge required to guide the diagnosis rapidly towards a
solution. The knowledge is hybrid because it involves varicus types:

{a) ‘Shallow’ or experiential knowledge,
(b) “Deep’ knowledge: (i} structurai and (i} behavioral.

Shallow” or cxpericntial knowledge is experience-oriented knowledge that captures
empirical associations and expertise that is gained through repeatedly diagnosing a
problem.

‘Deep’ knowledge includes knowledge concerning how and why a system works in the
way it does, thus providing cauwse-and-cffect information needed when diagnosing a
malfunction. The structural knowledge captures the physical layout of the plant ie,
component’s part, connectivity and associated instrumentation. The behavioral knowledge
comprises knowledge about causal interactions among process-dependent parameters
(variables) and their states.

In addition to the hybrid knowledge, control knowledge is incorporaied in the system’s
knowledge base. This is a set of instructions on how different pieces of process knowledge
should be accessed and processed for diagnosis. The diagnostic system also includes a plant
database which consists of data obtained from alarms, sensors or instrumentation. These
data are represented in the form of facts and may be updated through a data-acquisition
system.

The diagnostic mechanism (DMj) of the system is composed of three consecutive phases
for locating a fault (fig. 1). The first phase is malfunction block identification (MBI} which
focates a malfunctioning FB or malfunction block (MB), based on alarm data whenever
violation of process parameters occurs. Once the suspected MB is identified, the second
phase viz., malfunction parameter identification (MPI) is invoked to locate parameters
which indicate the prime cause(s) of the fault in that MB. Finally, malfunction component
identification (MCI) phase is invoked to locate the malfunctioning compenent based on the
results supplied by MPIL. The DM is process independent and is capable of adapting to
various types of plant configurations.

As mentioned earlier, presentation of the MPI phase, which diagnoses the stcady-state
behavior of the process, s the main objective of this paper. We first discuss the
behavioral knowledge organization and then focus on the MPI phase of DM.

2. Behavioral knowledge orgamnization

Behavior may be described as a relationship between the input and output of a system or a
component. Genesereth® defines behavior as equations, rules, procedures that relate a
system’s input, output and state. In effect the behavioral knowledge of a process comprises
knowledge about causal interactions among process-dependent parameters and their states.

In a process plant environment, a large fraction of behavioral knowledge is incorporated
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Fig. 1. Overview of the diagnostic mechanism.

in the physical model based on thermodynamics, heat, mass, and momentum transfer. We
discuss this keeping in mind the steady-state behavior of the process. We adopt a qualitative®
steady-state model for behavioral diagnosis to test our prototype diagnostic system.

2.1. The qualitative representation

The behavioral knowledge is represented as a signed directed graph (SDG)*®. The vertices

*(btaining an exact quantitative model for a process is difficult. Even if such a model is obtained, it is time
consuming and cannot meet real-time constraints for on-line diagnosis'®. By abandoning the precision of
numerical information, a qualitative mode! gains the ability 1o reach conclusions even with a lttle information™.
The disadvantage is that the predictions are often ambiguous; where traditional quantitative model gives an exact
prediction, a qualitative model often narrows the possibilities to a small set. When it is not adequate, the
framework provided by the qualitative model can guide one to apply more precise knowledge.
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Fii;. Aa). The real gas-state equation and its SDG.  Fic. 2(b). A lincar differential equation and its SDG.
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FiG. 2(c). A water tank system (reproduced from Iri'® FiG. 2(d). The SDG of the water tank system of fig. 2{c).
et al). (reproduced from Iri'* et al).

of the SDG correspond to process parameters {variables) and the edges correspond to the
cause-effect relationship between process parameters. The direction of deviation of the
process parameters is represented by sign on the edges: + () indicates the tendency of
cause and effect vertices to change in the same (opposite) direction. Each vertex is assigned a
three-level qualitative value: { —1,0,1}. A vertex is assigned 0 if it is within a specified
tolerance range, — 1 if it is below, and 1 if it is above the specified tolerance range. To
illustrate the SDG representation, consider the following instances:

) The equation of state for a unit mass of a real gas is given by PV =RT, where P, ¥, T,
and R correspond to pressure, volume, temperature and universal gas constant,
respectively. The SDG for this equaion is shown in fig. 2(a).

ii) A linear differential equation and its corresponding SDG is shown in fig. 2(b).

iii) For the water tank system of fig. 2{c) the influence among the parameters is
represented by the SDG of fig. 2(d).

The motivations behind adopting the SDG representation are as follows. Firstly, it is easy
to create the SDG either from design equations or from the knowledge of physical
mechanism of a process in qualitative term or both. Secondly, the SDG representation is
suitable for causal reasoning that we use for the purpose of diagnosis. Finally, with the help
of SDG the dynamic behavior of a process may be simulated to check its performance.

2.2. Acquisition of the SDG

The SDG may be derived from the design equations (quantitative model), confluence'®
equations (qualitative differential equations) and constraints'”? from material and energy
balances. Usually the SDG is created manually. It requires only qualitative and subjective
judgement of a person, generally a process enginecr, to transform the physical model into an
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SDG. Automated SDG generation directly from the design eguations, confluence equations
and constraints is an important issuc for ferther research.

2.3. Representation of the SDG in the form of rules

The SDG representation is only an intermediate one. The SDG is finally converted into a
set of rules along with some control premises required for the purpose of diagnostic
reasoning.

The primary proposition of SDG-based techriques is that cause and effect linkages must
connect the fault origin to the observed symptoms of the fanit. Each edge in the SDG
represents a fundamental unit of interaction. For instance, a ‘negative’ edge A—(-)— B
portrays that if the state of 4 becomes high (low}, then the state of B becomes low (high). For
a ‘positive’ edge the effect is reversed. A acts as the antecedent and B as the consequent. In
other words, if 4 becomes 1 {— 1), then the state of B becomes — 1 (1), for a ‘negative’ edge.
However, irrespective of the sign on the edge, if state of 4 is 0 then the state of B is 0.

For simplicity, we note the following assumptions:

(1) The failure propagation time between any two adjacent vertices is zero. (The failure
propagation time would be crucial if we had considered component digraph where
process units are represented as vertices.)

{2) The failure propagation probability between any two adjacent vertices of the SDG is 1.
(For the present discussion we assume that the interaction of process parameters
is approximately definite and uniform.)

(3) One and only one antecedent at any point of time can affect the consequent. {This
assumption is justified if no abnormalities are simultaneously occurring and if each
parameter undergoes only one transition between qualitative states during fault
propagation.

(4) Each parameter undergoes no more than one transition between qualitative states during
fault propagation.

if we examine the SDG for the linear differential equation given in fig. 2(b), using the
above assumptions the following rule may be applied to describe the antecedent-consequent
behavior:

IF X¢>0THEN Z=X
OR

IF-Y{)0THEN Z=—Y
OR

IFW{SOTHEN Z=W.

In other words, Z is assigned the value of X, or — Y or W whichever is violated, assuming a
normal (0) steady-state value initially. Z is normal (0) when X, Y and W are all normal. This
rule may be represented in PROLOG as follows:

var(z, Zy-var(x, X), X (30, Z= X;
var(y, Y), Y{)0,Z=—Y;
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var(w, W), W{(>0, Z= W.
var(z,0).
The clause var(p, P) represents the state P of a parameter ‘p’.

Since rules are efficient at causal reasoning (backward, forward or both), it is natural to
convert the SDG into a set of rules as stated above. In this approach, we further extend the
condition (IF-part) by adding certain controi premises whose inclusion expedites the
diagnostic reasoning. We designate this modified version of the above rules as SDG-rules.
The SDG-rules, corresponding to the SDG of fig. 2(d), are as follows:
var(f 1, X)-dat(f1,X), X (> 0,tl(f1):

test(f 1), loop(v1}, var(vl, X).
var(f1,0y-el(f1).
var(vl, X):-dat(vl, X), X {>0,tl(v1).
var(vl, Oy-el(vl).
var{v3, X)-dat{p3, X), X >0, thv3)
var(v3, O)-el(v3).
var(l, X)--dat(l, X), X {0, Kl
test(l), loop(f1), var(f1, X);
test(l), loop(f2), var(f2,Y), X=-Y;
test(l), loop(f3), var(f3,Y), X=-7Y.
var(l, O):-el(}). ’
var(f2, Xy-dat(f2, X}, X< 50,62}
test(f2), loop(v2), var(p2, X).
var(f2,0)-el(f2).
var(f3, X)~dat(f3, X), X {>0,¢i(f3);
test(f3}, loop(v3), var(v3, X};
test(f3), loop(l), var{l, X).
var(f3,0)-el( £ 3).
var(v, X)-loop(l), var([, Y), X = — Y.

We have assumed that the parameters f1, f2, f3 and | are measured. The clause

dat(p, X) retrieves the state X of the measured parameter p from the process database. The

clause loop{p) takes care of loops or feedbacks incident on the vertex p. The remaining
clauses t/(p), el(p) and test(p) will be explained later.
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The SDG-rules are also used to expiain the fault cause once 2 fault is located' . Finally
experience-oriented rules may be added to the SDG-rules to speed up the diagnosis. W
may have a rule as foliows:

IF parameters p! AND p2 AND p3 AND... are violated

THEN components ¢I OR ¢2 OR ¢3 OR... are faulty.
For instance,

IF controller 1 output is low (ie, CNT 1= —1}

AND valve 2 position is high (ie, VEV2=1)

THEN vaive 2 is probably faulty.

The SDG-rules are automatically generated by knowledge-acquisition interface (KAI)
which takes the SDG as an input and converts it into a set of SDG-rules. KAT is also useful
for adding, deleting or modifying the SDG and the associated SDG-rules.

3. Causal reasoning

A causal model usually portrays what is happening in a system, what caused to happen and
what will happen in the system. Process plants provide various paths of interaction which
show the existence of a theory of causality. The causal model we consider consists of the
behavioral knowledge in the form of SDG-rules derived from the process SDG that contains
both measured and unmeausured vertices (parameters).

We presume that the MB which is suspected to be responsible for process malfunctioning
is identified*2. The second phase viz., MPI is invoked to locate the parameters that indicate
the prime cause(s) of the fault in the MB. The MPI algorithm is based on causal and
qualitative reasoning and is given in the following section.

3.1. The MPI algorithm

in this algorithm, the SDG-rules which represent the interaction among various process
parameters are evaluated using process database. All abnormal parameters are correlated
using backward reasoning through these rules to yield diagnosis.

Problem definition: Given SDG-rules pertaining to an MB, and the qualitative states of all
measured parameters, the problem is to locate a set of violated parameters which are
causally ‘independent” (we designate such parameters as malfunction parameters; they
indicate the prime cause(s) of malfunction in the MB).

{Comment: The algorithm is based on graph traversal. The input is a set of measured
parameters of a suspected MB. The output is a set of parameters which are not causally
dependent on any other parameter in the MB, and holds responsibility for the declared effect.}

Method: The MPI algorithm is composed of the following steps:
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Step 1: Gather all abnormal measured parameters (AMPs) reported by process database as
an uncxplored list, UL = {AMP,, AMP,, AMP;. ..., AMP,} where j<k, k is the total
number of measurcd parameters in the MB.

Step 2: Select the first element of UL (call it active element (AE)) and apply modified depth
first search (MDFS) algorithm to find out all AMPs which are causally related to AE, and
store them in a temporary list (TL), TL < UL, Delete AE from UL after the current MDFS
terminates.

Step 3: If (TL=¢) OR (AMP,eTL) AND (AMP,¢UL)} wherc i=1,2,...j then the contents
of UL are unchanged; else all the elements of TL are added in front of UL without
duplication.

Step 4: Store AE in an explored list (EL), ifl TL = ¢ at the end of current MDFS.

Step 5. Continue steps 2 through 35, till UL = ¢. If UL = ¢ and EL = ¢, then add AE to EL
and stop.

The MDFS 1s a modified version of the depth first search (DFS) algorithm in which the
DFS is catried out through the SDG-rulcs with those paramecters in the consequent
(THEN-part) that are antecedents of AE. The following cases may occur:

Case 1: Whenever an SDG-rule with a normal measured parameter as its consequent is
encountered, the DFS is terminated through that rule.

Case 2: Whenever an SDG-rule with an AMP as its consequent is encountered, the DFS is
terminated through that rule, and the AMP is stored in TL.

Case 3: Whenever an SDG-rule with any parameter as its consequent is encountered more
than once, the DFS is terminated through that rule, thereby infinite causal looping is
avoided.

Limitations: The MPI algorithm correlates different AMPS through causal linkages
(described by antecedents and consequent in the SDG-rules) to converge the scarch
towards the cause of the fault. The MPT algorithm terminates when UL is null, creating the
EL which contains a set of causally independent AMPs. The AMPs that are present in EL
indicate the possible prime causes of the fault in the MB and are thus the malfunction
parameters. However, it is impossible to further reduce the number of these parameters
using the SDG information. Moreover, they are ambiguous with regard to fault sources due
to single and multiple origins.

Finally, the selection of a dominant causal antecedent from a set of potential antecedents
is arbitrarily fixed in the SDG-rules. No criteria has yet been adopted for optimally ordering
the antecedents in the SDG-rules.

3.2. Example

Let us consider the buffer tank system of fig. 3(a) and its corresponding SDG given in
fig. 3(b). The SDG-rules for this system are as follows:
var(f1, X)y-dat(f1, X), X (>0, tl( f1);
test(f'1), loop(ul), var(vl, X).
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V2
Fi. 3a) The buffer tank system (reproduced {rom Viswanadham?® ez al).
Vi
4~
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FiG 3(b). The SDG of the bulfer tank system of fig. 3(a) (reproduced from Viswanadham?° et al).

var(f1,05-e{f1).
var(el, X)-dat(vl, X), X (D0, tlvl);
var{vl, Q)-el(v1).
var(l, X)-dat(l, X), X { >0, ti(t);
test(l), loop(f'1), var(f1,X);
test(l), loop{ f2), var(f2,Y), X =—Y;
test(l), loop(/3), var(f3,Y), X=—-Y.
var{l, O)-e!).
var(f2, X)-dat(f2, X), X { >0, ti(f2);
test(f2), loop(v2), var(v2, X).
var(f2, 0)-el f2).
var(f3, X)-dat(f3, X), X (>0, ti{ f3)%
test(f3), loop(z3), var(v3, X).
var(f 3, 0)-el( f°3).
var(v2, X)-loop(f2), var(f2,Y), X= - 1.
var(v3, X )-loop(l), var(l, X).

The clause t/{p) appends a parameter p to the list TL. The clause el(p) appends p to the list
EL. The clause test(p) ensures that the MDFS is started from the antecedent of AE only.
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Table [
Status of measured parameters

vl FI L V2 F2 V3 F3

0+ - +

Table 11
Status of different lists at different execution stages

Execution Unexplored list Temporary list I Explored list

stages (UL (TL) (EL)
[ [L.F2,F3} {1 {1
H TF2,F3] [F3,F2] ]
2 (F3] (] [F2]
3 [3 [L] [F2]

Table 1 depicts the status pattern of some measured parameters at an instant of time.
Table IT shows the status of UL, TL, and EL at different stages of MPI execution. The
MDFS starts from the SDG-rule with [ as consequent and obtains £2 and f3 as elements of
TL. The UL is subsequently modified and the MDFS is invoked from the SDG-rule with f2
as consequent in the second pass. As f2 depends on v2 and vice versa, a loop is recognized.
Since 12 does not depend on any other parameter except v2, TL becomes empty and thus,
f2isstored in EL. Finally, the MDFS is invoked from the SDG-rule with f3 as consequent
resulting in / in TL and an empty UL. Since UL is empty, MPI terminates. Because f2 is
an element of EL, it is identified as malfunction parameter that indicates the fault in buffer
tank system. Although 12 is a part of the causal loop formed by f2, it is not selected as it is
an unmeasured parameter.

4. Implementation

The initial task i.e., acquisition of the domain’s hybrid knowledge is done with the help of
KALI, which is an interface program implemented in TURBO PASCAL!®. However, all the
phases of DM are implemented with TURBO PROLOG'®, We adopted PROLOG for
conceptualizing, creating and prototyping the diagnostic system. It is an easy task to
implement KBSs using PROLOG directly for knowledge representation and inference
mechanism. Conciseness of PROLOG programs with resulting decrease in development
time makes it an ideal language for prototyping small to medium-sized KBSs.

The overall implementation of the prototype diagnostic system has been carried out on
an IMB PC-XT which supports both TURBO PASCAL and TURBO PROLOG

programming environment.
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5. Conclusions

The method of diagnosis of steady-state process behavior presented in this paper is simple
and direct. If the limitations are acceptable, the diagnostic reasoning is straightforward.
However, efforts are being pursued to overcome these limitations, the accomplishment,
of which will be significant.

In this work we tried to establish that the rules are efficient for causal reasoning. Rules, in
general, facilitate reasoning forward, backward or both. The SDG-rules are also used to
explain the fault-cause once a fault is located. Finally, the rule representation assists the
knowledge engineer to add rules obtained from the human experts who have acquired the
diagnostic knowledge about the behavior of the process in a compiled form, developed it
through experience or derived it from a ‘deeper’ model. The integration of SDG-rules with
experiential knowledge increases the diagnostic efficiency during common faults and

makes the system capable of tackling unanticipated faults when the latter fails.
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