
Static a!lscationa of co 

R. SATSAXARAYANN 4 N D  c. K. MUTHUKIIISHNA~ 
1)cpaitment of Cmuputer Sc~ence and Engincsnnp. 1iidl.m lnitltutc of Tcchnalogy I\.i:~dlas 600036. irldi.i 

l lecewd on Ocrobcr 11. 1989. Rcrlscd on Apnl !9. 1990 

Abstract 

4llocatmn of proccssei to the processing nodcs ~n such a way as l o  mlnmmc interprocosor communmtwn and 
:$Iw, c n u i e  load halmcmg 1s A major problem In dtrtnhuted computing cy?tcmr The piobiem 15 clcn more 
cornpllcalcd ,ithe syswm li hcterogencous In  thls paper we hnve presented the dflinity graph model ior performing 
pcoiess allocation for dlstilbutcd computing system and augment the model to caber di,tnbuted syhrcms w,th 
heterogcncitg dresourccs T ~ P  mato advantages oithe nifmty gra[,l~ inodel atz itr nbihly to rcflcct both thc load 
balancing ar weii as lhc m~nlmisatmn o i  inluiprocessor c a m m u m t i o n  crttcrla tn a m g b  rcprcscntatmi and 
rhc iac~lity fur varyme the we~ghtage gven to the s h o w  t u o  ciitzrra Wc have presented a n  aigoi~tlim Ior 
pcrlorming allac.ttion Car 3 two-procescor system and also brielly iliuitrotc how ullocar~on ciln bc done for systems 
with il larger number of processors by u m g  a binary-tree-strud~~rcd syili'm as an e ~ a m p l e  

I .  lntroducfion 

Distributed computing Systems are coming into use in large numbcrs because of their 
manicold advanlages of reliability, availability, fault tolerance. and incrcased throughput 
and performance due to the exploitation of parallel~sm. But they suffer from 3 major 
disadvantage, uiz., the saturi~rion effict'. The saturation effect a r m s  because of excessive 
mtei-procebs~r communication. Interprocessor communication is duc to the communication 
requests made by processes residing on processing nodes for communicating with processes 
residing on other processmg nodes. Interprocessor communication is a function olallocation 
of processes to processors and the commun~cation requests made by the processes. So, to 
minimisc communication among processors, we have to allocate the processes as close as 
possible. Ideally, we have to allocate all thg  processes to a s~nglc processor so that 
interprocessor communication is nil. But such an allocation ia thc worst possible from the 
load-balancing point of view (by load balancmg wc mean providing as cqual a load as i? 
possible to all the processors); hence, one has to allocate the processes as cvenly as possible 
to all the processors. Onc can visualise that the load-balancing cr~terion and the 
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minimisailon of interprocessor communication criterion are two competing factors. A good 
alloca:ion scheme is one which balances these two competing factors in an optimal 
manner. 

A number of suggestions have been made for solving the allocation problem. The solutions 
can be classified into three main categories, viz., heuristic methods, integer programming 
approach, and graph-theoretic methods1. Ma eta12 have proposed an allocation scheme 
based on the branch-and-bound method. In this scheme, starting from process 1, each 
process is allocated one of the processors subject to the constraints imposed on the relations 
between processes and processors. Shen and Tsai3 have proposed an allocation model 
based on graph-matching approach where each graph match corresponds to a specific 
allocation. Minimax criterion is used to minimise the cost function which is based on  a 
single unit, ui;.. time. A state-space-search method is employed to find an optimal allocation 
corresponding to minimum cost matching. Chou and Abraham4 have proposed an 
algorithm based on results in Markov decision theory for optimal allocation. Stone5 has 
proposed a graph-theoretic model and has studied the problem of optimally partitioning 
a modular program over a dual-processor system so a s  to minimise the total running cost 
of the program. Extension of Stone's model for a large number of processors results in an 
intractable allocation algorithm'. Bokhari6 has extended Stone's results for dynamic 
allocation on a two-processor system. 

The problem of process allocation to heterogeneous systems is much tougher compared 
to allocation to homogeneous systems. In the case of heterogeneous systems, one has to 
take into account not only the load balancing and minimisation of interprocessor 
communication criteria, but also of the fact that different nodes have different facilities and 
resources. A given process may require any subset of the resources distributed throughout 
the system. Allocation has to take into account this important fact and try to minimise 
the overhead due to the usage of remote resources by the processes. Most of the allocation 
schemes available are meant for homogeneous systems only. 

In this paper, we have presented a model for process allocation called the aflnity graph 
model. We have also presented ways of augmenting the affinity graph model taking into 
account the heterogeneous nature of the distributed computing system arising out of the 
distribution of resources in the system. We have presented an algorithm which takes the 
afilnity graph model of the processes to be allocated and finds an allocation for a 
two-processor heterogeneous system. We have also shown how the allocation can be done 
for systems with a larger number of processors by using a binary-tree-structured distributed 
computing system as an example. The advantages of the affinity graph model include its 
ability to express both the load balancing and minimisation of interprocessor communica- 
tion criteria in a single representation and the facility for varying the weightage given to 
these two criteria. The affinity graph model has, as its vertices, the processes to be allocated. 
The weight of the edges connecting the vertices represent the affinity the processes have 
for each other. The afinity function has been defined in such a way that both the competing 
demands of load balancing and minimisation of interprocessor communication are taken 
care of. The affinity graph can even be used for allocation for systems with a large number 
of processors like hypercube systems of large dimensions7. 
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2. Definitions and assumptions 

Partitioiling a graph is the division of the nodes of the graph into disjoint subsets called 
blocks. If we represent a graph by a matrix A with A(i,j) being the weight of the edge 
linking vertex i and vertex j, and partition the vertices into two blocks, S1 and S2, then 
the ir~ternai and external costs of an element xeS1 are Z,,,, A(x,y) ,  and Z,,,, A(x,y), 
respectively. 

The following assumptions have been made in this paper. There are no precedence 
relations among the processes to be allocated. A measure of the processing cost of the 
processes, the amount of communication expected to take place among the processes, and 
the usage of the resources in the distributed computing system by the processes are assumed 
to be known. The heterogeneity among the processing nodes arises because of the 
non-uniform set of resources available with the various processing elements. 

3. The augmented affinity graph model for process allocation 

If it is possible to find out for each pair of processes a measure of the affiity the processes 
have for each other (aflnity between two processes is the amount by which allocation of 
the two processes together contributes to  both balancing the load and minimising 
interprocessor communication), then by allocating a process depending on the affinity of 
the process for other processes it is possible to get an allocation satisfying the load-balancing 
and minimisation of interprocessor communication criteria. Processes with less affinity are 
allocated less close compared to processes with large affinity for each other which are 
allocated as close as possible. This is the basic idea behind the formation of the affinity 
graph. 

Let there he p processes to be allocated on n processors. Let P, he a row matrix of p 
elements such that P,(i) is the processing cost of process p,. Let DPbVn be a matrix of 
processing cost difference such that DP,(i,j)=P,(i)-P,(j)l. We can form a graph of 
processing cost difference with p vertices. The weight associated with an edge (i,j) is 
the value of DP,(i,j). The vertices i and j represent the processes pi and p,, respectively. 
In the graph of processing cost difference, the weight of an  edge connecting a process 
requiring high processing cost and another process requiring low processing cost is high 
whereas the weight of an edge between two processes requiring large processing costs is 
low. In other words, processes with large processing cost have more affinity for processes 
with low processing cost, with the amount of affinity being in direct proportion to the 
difference of processing costs, whereas processes requiring large processing costs have less 
affinity for each other. The graph of processing cost difference reflects the load-balancing 
criterion. 

We can form a communication matrix C,,, such that C(i, j) is the amount of communica- 
tion expected to take place between processes pi and p,. In the corresponding communica- 
tion graph, we represent the processes by vertices with the weight associated with an edge 
( L j )  being the measure of communication expected to take place between processes pi and 
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p,. It is clear that in the communication graph, the processes which communicate heavily 
habe larger affinity for each other compared to processes with less communication between 
them. By allocating together processes with large affinity for each other in the communica- 
tion graph, we can reduce interprocessor communication. Thus the communication graph 
reflects the minimisation of interprocessor-communication criterion. 

We can form an @nit); graph  from the graph of processing cost difference and the 
communication graph as follows. We define an affinity matrix A,,, such that 

Here, the constants a and p serve as both normalisation constants (since processing cost 
and interprocess communication are measured in different units) and also as scale factors 
enabling us to give different weightages to the load balancing and minimisation of 
interprocessor communication criteria. We form the affinity graph with p vertices 
representing processes p , ,  p,, p,, . . . ,p,  with the weight of the edge linking the vertices 
representing pi and pj being A(i,j). This graph has been termed as aflnity g r a p h  because 
the amount of affinity two processes have for each other in the affinity graph is directly 
related to the amount the allocation of these two processes together contributes towards 
both load balancing as well as minimisation of interprocessor communication. The more the 
affinity the two processes have for each other, the better it is to allocate the two processes 
together. The first major advantage of the affinity graph representation is that it is able 
to express both the load-balancing criterion as well as minimisation of interprocessor- 
comniunication criterion in a single representation. The second advantage is the facility 
for varying the weightage given to the above two criteria. The constants a and /3 serve this 
purpose. The process allocation algorithms should exploit the aEnity information available 
in the affinity graph model of the processes. This can be done by partitioning the affinity 
graph. The actual allocation depends heavily on how well the affinity information is 
exploited. Now, ure suggest ways of augmenting the affinity graph to take into account the 
non-uniformity of resources among the processing nodes of the distributed computing 
system. We will explain here the methodology with respect to a two-processor distributed 
computing system. Extension of the model for a system with more number of processors 
is also similar as can be seen from the discussion of the allocation algorithm for a 
binary-tree-structured distributed computing system in the next section. 

It has been assumed that a measure of the resource usage by the processes is known. 
Some of the resources may be available on both the processing nodes while some may he 
available on only one of the two nodes in the system. The latter situation introduces 
heterogeneity into the system. Let DR be the set of resources present in either of the two 
processing nodes but not on both. If R, is the set of resources on processing node 1 and 
RZ is the set of resources on node 2, then DR=R,uR,-(R,nR,). A process pi may access 
only resources in R,nR,. The allocation of these processes does not depend directly on 
the heterogeneity of the system. Some processes may access the resources in DR. It is the 
allocation of these processes which depend directly on the heterogeneity of the system. 
Depending on the usage of the resources in DR by these processes, the allocation has to 
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be performed so as to minimise the overhead associated with the usage of remote resources 
by the processes. Let thc information regarding the usage of the resources by the processes 
be in a matrix U,,, where m =  R ,  u R,I, such that U(i ,  j) is a measure of usage of resource 
?, by process p,. If a process p, makes heavy use of resources in R ,  -R,  compared to the 
resources in R,-R,. then to minimise the overhead due to separation of resources from 
processes, it is belter to allocate process p, on processing node 1. So, we can augment the 
afinity graph as fol!ows. 

4dd all elements of DR as vertlces in the affinity graph. For ali r,, r , t R , -  R 2 ,  connect 
the vertex representing r, and that representing r ,  by a n  edge with weight m. Similarly, for 
all r,. I . , E R ~ - R , ,  connect the vertex representing r, and that representlng r, by an edge 
with weight x. For ail processes p, using reaource r,€DR, connect the vertex representing 
p ,  with the vertex representing resource r j  with an edge of weight y U(i, j). The constant y 
serves t ! ~  same function as the constants a and P. The resources in R ,  -K2  are not linked 
to the resources in R,-R ,  and vice uersu. The purpose of linking the resources within 
R , - R 2  and simiiarly that within R Z - R ,  by edges with weight m is to ensure that these 
edges are not cut while obtaining the partitioning of the augmented affinity graph. If a 
process p, is linked to elements of R ,  - R ,  with edges of more weight compared to the 
edges linking the process p, with the elements of R ,  R , ,  then allocating p, to processor 
1 will result in less overhead bccause of the utilization of the resources. We can impose the 
condition that a given process must be plocessed on the processing node having a particular 
resource by making the weight of the edge linking the resource and the process as m. In 
thc next section we present ailocat~on algorithms making use of the augmented affinity 
graph for a two-processor distributed computing system and a binary-tree-structured 
system. 

Example  3.1: Let us consider a collection of six processes, viz., p,,p,, .. .,p,. Let the PC vector 
and communication matrix C be as given below. Since C is a symmetric matrix, only the 
elements along the main diagonal and thosc below it arc givcu. 

Let the resources r ,  and r ,  be in processing node 1 and let r, and r ,  be in node 2. 
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Let the U matrix be 

The augmented aifinity matrix A with a =  1, 8=2, and y =  1 is given below. Only the 
elements along the main diagonal and those below it are given. 

4. Allocation using the augmented affinity graph 

The allocation of the processes for the processing nodes of a distributed computing system 
can be performed by making use of the affinity information present in the augmented 
aflinity graph. In the next two sub-sections, we present an algorithm for allocation on a 
two-processor distributed computing system and an informal discussion of extending the 
allocation scheme for systems with a larger number of processors by using a binary-tree- 
structured system as an example. 

4.1. Allocation algorithm for a two-processor distributed computing system 

Having formed the augmented affinity graph of the processes to be allocated, we have to 
partition the augmented affinity graph into two, assigning one block for each of the two 
processing nodes. The partitioning has to be performed in such a way as to minimise the 
cost of the edges cut during partitioning. All the members of R,  - R 2  will be in one block 
while those of R 2 -  R,  will be in the other. This is because the weight of the edges linking 
the members of R, - R 2 ,  as also of R,  - R , ,  is a;. Since the partitioning is performed so as 
to minimise the weight of the edges cut, the edges with weight co are never cut. The block 
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containing :he members of R, -R2 is assigned to processing node 1, while the block 
containing the members of R2-R, is assigned to processing node 2. The processes in each 
block are to be processed on the processor to which the block has been assigned. So, the 
alloclition is basically a partitioning process on the augmented aficity graph. The allocation 
algonthrn based on partitioning exploits the information contained in the affinity graph. 
The nature of the actual allocation heavily depends on the partitioning algorithm used. 
The algorithm presented here is based on Kernighan and Lin's graph-partitioning 
algorithms along with a method of obtaining a starting solution. The allocation algorithm 
makes use of the P, vector and the augmented affinity graph in the form of an augmented 
affinity matrix A with @ + r )  x (p + r )  elements where the r additional elements are 
the resources in DR. In the augmented affinity matrix, A(i,p + j )  = A(p + j, i) = yU(i, j) 
where Afi, p i j )  is the measure of the affinity between process pi and resource r,. The 
augmented afinity matrix entries corresponding to the weight of the edges between rzsources 
in R,  -R, are set to x>. Similarly, the weight of the edges between the resources in R,-R, 
are set to r. The algorithm for ailocation is as below. 

STEP 1: In this step we form a starting solution for Kernighan and Lin's graph-partitionmg 
algorithm. 

(a) Form two sets S, and S, such that S, has all the members of R, - R, and S, has 
all the members of R, - R, .  

(b) Select the process p, requiring the maximum processing cost, i.e., P,(i)= MAX,,,,, 
P,(j). Allocate this process p, to  the set which has the maximum affinity for it. That is pi 
is allocated to set S, if Z,,,, A(i,x)> Z,,,, A(;, y). Otherwise pi is allocated to S,. 

(c) Select the process p,@, # p,) for which pi has the least affinity, i.e., A(i, j )  = MIN,,,,, 
A (i, k). Allocatep, to the set other than the one to  which p, has been allocated. S = S - {p,,pj}. 

(d) The turn for selecting the next member is that of the set, the sum of processing cost 
of the processes in which it is less than the sum of processing cost of the processes in the other. 

(e) The set which has the turn, selects from the set of unselected processes S a process 
p, as its next member process, such that the (internal cost - external cost) of process p, is 
the maximum among the processes in S, if p, is made a member of the set with the turn 
for selection. That is, if S ,  has the turn to select the next process for it, then it will select 
P, if (Z,,S,A(~,X) - CYEs2A(i,y)) = MAXaGS (CXESIA(a,x)- Z,,,,A(a,y)). 
(0 The process pi selected in STEP 1 (e) is removed from the set S of unselected processes, 

i.e., S = S - {p,). The process pi is added to the set which selected it. 
(g) If there are no more processes to be selected, that is when S is empty, then go to 

STEP 2 else go to STEP 1 id). 

STEP 2: For all elements a d , ,  calculate E, = Z ,,,, A(a, y) and I, = Z,,, A(a,x). Also 
calculate D, = E, - I,. Similarly for all elements ~ E S , ,  calculate E, = Z,esl A(b,y), I, = Z x,,, 
A(b, x), and D, = E ,  -I,. 

STEP 3: m = l ;  Sr=S, ;  Sy=S,. 

STEP 4: Select a,eS; and b,~Sy such that g,=D,+D,,-2A (a,, b,) is maximum. 

STEPS: a ~ = a , ; b : , = b j ; S ~ + l = S ; - a , ; S T + l = S ~ - b , .  
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STEP 6: If 1% .; (MIN (ISl/, IS,I)) then :m=m+ 1; update D values for S; and ST, go to 
STEP 4) 

STEP 7: Choose k to maximise G = C : = ,  g,. 

STEP 8: if G > 0 then move a',, . . . ,a; to S, and b;, .. ., b; to S, and go to STEP 2. 

STEP 9: Allocate ail processes in block S, to processing node 1 and all processes in block 
S, to  processing node 2. 

In this algorithm, STEP 1 finds a starting solution for the remaining steps in the algorithm. 
Steps 2 to 9 try to perturb the starting solution to find if there is any improvement 
possible in minimising the weight of the edges connecting the elements of block 3, 
with those of S,. The perturbation is carried on until no further improvement in reducing 
the weight of the edges connecting block Sl to block S, is possible. At this point, the 
algorithm halts and the processes in block S, which contain the members of R,  - R, 
are allocated to processing node 1 while the processes in block S2 which contain the 
members of R,-R, are allocated to processing node 2. If the two processors have diKerent 
processing powers, then we can remove processes with large values of (external cost- 
internal cost) from the block corresponding to the processor with, less powerful processor 
and add them to  the block corresponding to the more powerful processor, with the amount 
of such overloading being directly proportional to the excess of processing power. 

In the above algorithm, STEP 1 (e) has a time complexity O(pZ). Since it is repeated O(p) 
times, the time complexity of STEP 1 is 0(p3). Steps 2 to  9 are derived from Kernighan 
and Link algorithm and could be performed with a complexity of 0(p2  logps). So, the time 
complexity of the whole algorithm is 0(p3 ). 

Example 4.1.1: Consider the set of processes given in example 3.1. If we apply the algorithm 
presented in this section, we get an allocation of p,, p,, and p, to processing node 1 and 
p, ,  p3, and p, to processing node 2. 

4.2. Allocation of processesfor a binary-tree-structured distributed computing system 

In this section, we informally describe an allocation algorithm using the augmented affinity 
graph model for binary-tree-structured distributed computing systems. The binary-tree- 
structured system we consider here consists of processing nodes at the leaves of a full binary 
tree. The non-leaf nodes of the tree are communication processors. Such a binary-tree- 
structured architecture for distributed computing systems is highly useful when a distributed 
system is to be constructed from a number of existing single processing nodes. Figure 1 
shows such a tree-structured system with four processing nodes, uiz., PROC-1, PROC-2, 
PROC-3, and PROC-4 and three communication nodes, viz., COMM-P-1, COMM-P-2, 
and COMM-P-3. Each processing node has a set of resources. It is easy to visualise that 
in the tree-structured system, the cost of communicating with processing nodes within a 
given subtreeis always less than the cost ofcommunicating with a node outside that subtree. 
For example, rhe cost of communication between PROC-1 and PROC-2 is less than the 
cost of communication from PROC-l/PROC-2 to PROC-3/PROC-4. The allocation for 
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FIG. 1. A binary-tree-structured distnbuted computing system. 

such a tree-structured system is a partitioning of the augmented affinity graph. For a 
tree-structured system of height n, the augmented affinity graph is partitioned into two, 
assigning one block to the left subtree of height (n-1) and the other to the right subtree of 
height (n-1). Two augmented affinity graphs are formed from the two blocks obtained as 
above. These two augmented affinity graphs are again partitioned assigning one block each 
for each of the four subtrees of height (n-2). This process is repeated until we get one block 
each for each of the trees of height 0, i.e., the individual processing nodes. The processes 
in each block are allocated to the processing node corresponding to the partition. An 
important point one has to note is that the augmented affinity graph and the set DR change 
after each level of allocation. Resources linked by edges with weight co may not be linked 
together in a lower level augmented affinity graph. Each allocation consists of the following 
basic stages. 

Stage 1: Form the augmented affinity graph for the processes. The links among the resource 
nodes are formed as follows. Let R,, be the set of resources in the left subtree of the current 
tree for which allocation is to be performed. Similarly, let R, be the set of resources in the 
right subtree of the current tree for which allocation is to be performed. The set DR for 
this allocation is given by DR=(R,suR,J-(R,anR,J. Form the augmented affinity graph 
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for the processes assigned to this tree. In this augmented affinity graph, for all r,, r,€RL, 
link ri, rjwithedges of weight a;.. Similarly for all r , ,  r,€R,$ link ri, r, with edges of weight a;.. 

Stage 2: Perform a two-way partitioning of the augmented affinity graph in the same way 
as in section 4.1, where all operations are performed with respect to the processes assigned 
to the current tree. Let P,, be the block containing the elements of R,,-R, and let P, be 
the block containing the elements of R,,-R,,. Assign the processes in P, to the left subtree 
of the current tree. ,Assign the processes in P,, to the right subtree of the current tree. 

The above two stages are repeated until the left and the right subtrees are individual 
processing elements. As an example, consider the tree-structured system in fig. I. When the 
allocation is started, in the initial augmented affinity graph, resources r,, r,, r,, and r7 are 
linked with edges of weight co. Similarly, resources r,, r,, r,,  and r ,  are linked with the edges of 
weight ic. After the fust level of allocation, we get two blocks, one each for each of the subtrees 
with roots COMM-P-1 and COMM-P-2. When the allocation for the tree with 
COMM-P-I at the root is performed, the edge connecting resources r ,  and r ,  has a weight 
of cc in the augmented affinity graph for the processes in the block assigned to this tree. 
Similarly, resources r ,  and r, are linked by an edge of weight m. Resource r ,  does not 
figure in the augmented affinity graph corresponding to the allocation for the tree with 
COMM-P-1 as the root since it is present in both the left and the right subtrees, namely, 
PROC-1 and PROC-2. Similarly, the augmented affinity graph for the tree with 
COMM-P-2 as the root is formed. Two partitions are performed on each of the two 
augmented affinity graphs formed as above. Out of the four blocks obtained, the block 
with resources r ,  and r ,  is assigned to PROC-1. Similarly, the other blocks are also assigned 
to their respective processing nodes. The processes in each block are processed on the 
processor to which the block containing them is assigned. 

An example of a binary-tree-structured system was given to show the importance of the 
architecture of the system in designing the allocation algorithm. The binary tree structure 
enabled the use of divide and conquer strategy in allocation. Similar techniques could be 
applied to a certain class of hypercube systems also7. For a general distributed system of 
arbitrary interconnection structure the following method could be followed. The affinity 
graph is formed as described in Section 3. To augment the affinity graph all resources 
except those present in all nodes are added as vertices in the graph. All the resources 
present in a given processor are interlinked by edges of weight co. Each process pi is linked 
by an edge of weight yU(i, j )  to the resource r j  present in the graph. After the augmented 
aflinity graph is formed, a multiple-way partitionings is periormed on the graph. The 
processes which are in the block containing a given set of resources are allocated to the 
processor with which the resources are associated. 

5. Conclusions 

In this paper, we have presented a graph-based model for process allocation on distributed 
computing systems. In this model, called the affinity graph model, the vertices represent 
the processes to be allocated. The vertices are linked by edges with weight equal to the 
affinity the vertices have for each other. The affinity has been defined in such a way that 
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al!ocation of processes w ~ t h  more affinity as dose a5 poss~ble contributes towards the goal 
of load balancing as well as minimising intcrprocessor ~.ommunicdlion. In the affinity graph, 
both the load ba!ancing and the minimisation of interprocessor communication criteria 
are reilected in a single representation. It is also possiblc to vary thc weightage given to these 
two criteria. We have presented a way of augmenting the affinity graph so as to take into 
account the heterogencity of the system arising out of the distribution of the resourccs in 
the system Over the processing nodes. By the use of the augmented affinity graph, it is also 
possible to minimise the ovcrhead due to usage of remote resources in addition to load 
balancing and minimising interprocessor communication. An algorithm for allocation of 
processes for a two-processor system uses thc augnlentcd affinity graph. We have also 
briefly outhned how the allocation could be done for systems with a larger number of 
processors by using a binary-tree-structured system as an example. Simulation studies have 
shown that the proposed method has good load-balancing characteristics and is also 
responsivc to changes in wcightage givcn to different criteria9. 
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