J Indan Inst Sei, July-Aug. 1990, 78, 303-315
¢ Indran Institute of Science.

Static allocation of communicating processes for
distributed computing systems with resource heterogeneity

R. SATYANARAYANAN AND C. R. MUTHUKRISHNAN
Department of Computer Science and Engincering, Indian Institute of Technology, Madras 600036, India

Recerved on October 11, 1989; Revised on April 19, 1990,

Abstract

Aliocation of processes to the processing nodes 1n such a way as 1o mmumise mterprocessor communecation and
also ensure load balancing 1s ¢ major problem 1 distributed computing systems The probiem 15 cven more
comphicated 1f the system 1s heterogencous In this paper we have presented the aflinity graph model lor performing
process allocation for distributed computing systems and augment the model to cover distributed systems with
heterogeneity of resources The mam advantages of the affinity graph model are its ability to reflect both the load
balancing as well as the mmimisation of mterprocessor communtcation critena 1n 4 single representation and
the facility for varying the weightage given to the above two criteria We have presented an algonthm for
performing allocation for a two-processor system and also breefly illustrate how allocation can be done for systems
with a larger number of processors by using a binary-tree-structured system as an example

Keywords: Augmented affimty graph, distnibuted computing systems, heterogeneity, load balancing, static
allocation

1. Intreduction

Distributed computing gystems are coming into use in large numbers because of their
manifold advantages of reliability, availability, fault tolerance, and increased throughput
and performance due to the exploitation of parallelism. But they suffer from a major
disadvantage, viz., the saturation effect’. The saturation effect arises because of excessive
interprocessor communication. Interprocessor communication is due to the communication
requests made by processes residing on processing nodes for communicating with processes
residing on other processing nodes. Interprocessor communication is a function of allocation
of processes to processors and the communication requests made by the processes. So, to
minimisc communication among processors, we have to allocate the processes as close as
possible. Ideally, we have to allocate all thg processes to a single processor so that
interprocessor communication is nil. But such an allocation is the worst possible from the
load-balancing point of view (by load balancing we mean providing as cqual a load as is
possible to all the processors); hence, one has to allocate the processes as evenly as possible
to all the processors. Onc can visualise that the load-balancing criterion and the

305

306 R. SATYANARAYANAN AND C R MUTHUKRISHNAN

minimisation of interprocessor communication criterion are two competing factors. A good
allocation scheme is one which balances these two competing factors in an optimal
manner.

A number of suggestions have been made for solving the allocation problem. The solutions
can be classified into three main categories, viz., heuristic methods, integer programming
approach, and graph-theoretic methods'. Ma etal® have proposed an allocation scheme
based on the branch-and-bound method. In this scheme, starting from process 1, each
process is allocated one of the processors subject to the constraints imposed on the relations
between processes and processors. Shen and Tsai® have proposed an allocation model
based on graph-matching approach where each graph match corresponds to a specific
allocation. Minimax criterion is used to minimise the cost function which is based on a
single unit, viz., time. A state-space-search method is employed to find an optimal allocation
corresponding to minimum cost matching. Chou and Abraham* have proposed an
algorithm based on results in Markov decision theory for optimal allocation. Stone® has
proposed a graph-theoretic model and has studied the problem of optimally partitioning
a modular program over a dual-processor system so as to minimise the total running cost
of the program. Extension of Stone’s model for a large number of processors results in an
intractable allocation algorithm®. Bokhari® has extended Stome’s results for dynamic
allocation on a two-processor system.

The problem of process allocation to heterogeneous systems is much tougher compared
to allocation to homogeneous systems. In the case of heterogeneous systems, one has to
take into account not only the load balancing and minimisation of interprocessor
communication criteria, but also of the fact that different nodes have different facilities and
resources. A given process may require any subset of the resources distributed throughout
the system. Allocation has to take into account this important fact and try to minimise
the overhead due to the usage of remote resources by the processes. Most of the allocation
schemes available are meant for homogeneous systems only.

In this paper, we have presented a model for process allocation called the affinity graph
model. We have also presented ways of augmenting the affinity graph model taking into
account the heterogeneous nature of the distributed computing system arising out of the
distribution of resources in the system. We have presented an algorithm which takes the
affipity graph model of the processes to be allocated and finds an allocation for a
two-processor heterogeneous system. We have also shown how the allocation can be done
for systems with a larger number of processors by using a binary-tree-structured distributed
computing system as an example. The advantages of the affinity graph model include its
ability to express both the load balancing and minimisation of interprocessor communica-
tion criteria in a single representation and the facility for varying the weightage given to
these two criteria. The affinity graph model has, as its vertices, the processes to be allocated.
The weight of the edges connecting the vertices represent the affinity the processes have
for each other. The affinity functjon has been defined in such a way that both the competing
demands of load balancing and minimisation of interprocessor communication are taken
care of. The affinity graph can even be used for allocation for systems with a large number
of processors like hypercube systems of large dimensions”.

STATIC ALLOCATION FOR DISTRIBUTED COMPUTING SYSTEMS 307

2. Definitions and assumptions

Partitioning a graph is the division of the nodes of the graph into disjoint subsets called
blocks. If we represent a graph by a matrix 4 with A(i, j) being the weight of the edge
linking vertex i and vertex j, and partition the vertices into two blocks, S1 and S2, then
the internal and external costs of an element xeS1 are L5, A(x,y), and X5 A(x, ¥},
respectively.

The following assumptions have been made in this paper. There are no precedence
relations among the processes to be allocated. A measure of the processing cost of the
processes, the amount of communication expected to take place among the processes, and
the usage of the resources in the distributed computing system by the processes are assumed
to be known. The heterogeneity among the processing nodes arises because of the
non-uniform set of resources available with the various processing elements.

3. The augmented affinity graph model for process aflocation

If it is possible te find out for each pair of processes a measure of the affinity the processes
have for each other (affinity between two processes is the amount by which allocation of
the two processes together contributes to both balancing the load and minimising
interprocessor communication), then by allocating a process depending on the affinity of
the process for other processes it is possible to get an allocation satisfying the load-balancing
and minimisation of interprocessor communication criteria. Processes with less affinity are
allocated less close compared to processes with large affinity for each other which are
allocated as close as possible. This is the basic idea behind the formation of the affinity
graph.

Let there be p processes to be allocated on n processors. Let P, be a row matrix of p
elements such that Pi) is the processing cost of process p,. Let DP, be 4 matrix of
processing cost difference such that DP(i,j)=|P ()~ Pj}) We can form a graph of
processing cost difference with p vertices. The weight associated with an edge (i,j) is
the value of DP,(i, j). The vertices i and j represent the processes p; and p;, respectively.
In the graph of processing cost difference, the weight of an edge connecting a process
requiring high processing cost and another process requiring low processing cost is high
whereas the weight of an edge between two processes requiring large processing costs is
low. In other words, processes with large processing cost have more affinity for processes
with low processing cost, with the amount of affinity being in direct proportion to the
difference of processing costs, whereas processes requiring large processing costs have less
affinity for each other. The graph of processing cost difference reflects the load-balancing
criterion.

We can form a communication matrix C,,, such that C(i, j) is the amount of communica-
tion expected to take place between processes p; and p;. In the corresponding communica-
tion graph, we represent the processes by vertices with the weight associated with an edge
(i.j) being the measure of communication expected to take place between processes p; and

308 R. SATYANARAYANAN AND € R MUTHUKRISHNAN

p,- It is clear that in the communication graph, the processes which communigate heavily
have larger affinity for each other compared to processes with less communication between
them. By allocating together processes with large affinity for each other in the communica-
tion graph, we can reduce interprocessor communication. Thus the communication graph
reflects the minimisation of interprocessor-communication criterion.

We can form an affinity graph from the graph of processing cost difference and the
communication graph as follows. We define an affinity matrix 4, such that

Al y=2 DP{i.j)+ B Cl.J)

Here, the constants « and § serve as both normalisation constants (since processing cost
and interprocess communication are measured in different units) and also as scale factors
enabling us to give different weightages to the load balancing and minimisation of
interprocessor communication criteria. We form the affinity graph with p vertices
representing processes p,, Pi. Ps....,b, With the weight of the edge linking the vertices
representing p; and p; being A(i.j). This graph has been termed as affinity graph because
the amount of affinity two processes have for each other in the affinity graph is directly
related to the amount the allocation of these two processes together contributes towards
both load balancing as well as minimisation of interprocessor communication. The more the
affinity the two processes have for each other, the better it is to allocate the two processes
together. The first major advantage of the affinity graph representation is that it is able
to express both the load-balancing criterion as well as minimisation of interprocessor-
comniunication criterion in a single representation. The second advantage is the facility
for varying the weightage given to the above two criteria. The constants « and B serve this
purpose. The process allocation algorithms should exploit the affinity information available
in the affinity graph model of the processes. This can be done by partitioning the affinity
graph. The actual allocation depends heavily on how well the affinity information is
exploited. Now, we suggest ways of augmenting the affinity graph to take into account the
non-uniformity of resources among the processing nodes of the distributed computing
system. We will explain here the methodology with respect to a two-processor distributed
computing system. Extension of the model for a system with more number of processors
is also similar as can be seen from the discussion of the allocation algorithm for a
binary-tree-structured distributed computing system in the next section.

It has been assumed that a measure of the resource usage by the processes is known.
Some of the resources may be available on both the processing nodes while some may be
available on only one of the two nodes in the system. The latter situation introduces
heterogeneity into the system. Let DR be the set of resources present in either of the two
processing nodes but not on both. If R, is the set of resources on processing node 1 and
R, is the set of resources on node 2, then DR=R;UR, (R, NR,). A process p; may access
only resources in R; A R;. The allocation of these processes does not depend directly on
the heterogeneity of the system. Some processes may access the resources in DR. It is the
allocation of these processes which depend directly on the heterogeneity of the system.
Depending on the usage of the resources in DR by these processes, the allocation has to

STATIC ALLOCATION FOR DISTRIBUTED COMPUTING SYSTEMS 309

be performed so as to minimise the overhead associated with the usage of remote resources
by the processes. Let the information regarding the usage of the resources by the processes
be in 2 matrix U, where m=|R; U R,|, such that U{j, j) is a measure of usage of resource
r, by process p,. If a process p; makes heavy use of resources in Ry — R, compared to the
resources in R,— R, then to minimise the overhead due to separation of resources from
processes, it is better to allocate process p, on processing node 1. So, we can augment the
affipity graph as follows.

Add all elements of DR as vertices in the affinity graph. For all r;, 7;,€R, —R,, connect
the vertex representing r, and that representing r, by an edge with weight oo. Similarly, for
all r,, r,eR,— R, connect the vertcx representing r; and that representing r, by an edge
with weight c. For all processes p, using resource r,e DR, connect the vertex representing
p, with the vertex representing resource r; with an edge of weight y U, j). The constant y
serves the same function as the constants « and . The resources in R, — R, are not linked
to the resources in Ry— R, and vice versa. The purpose of linking the resources within
R, — R, and similarly that within R,— R, by edges with weight oo is to ensure that these
edges are not cut while obtaining the partitioning of the angmented affinity graph. If a
process p, is linked to elements of Ry, —R, with edges of more weight compared to the
edges linking the process p, with the elements of R,— R,, then allocating p; to processor
1 will result in less overhead because of the utilization of the resources. We can impose the
condition that a given process must be processed on the processing node having a particular
resource by making the weight of the edge linking the resource and the process as co. In
the next section we present allocation algorithms making use of the augmented affinity
graph for a two-processor distributed computing system and a binary-tree-structured
system.

Example 3.1: Let us consider a collection of six processes, viz., p1, P;.-...Pe- Let the P, vector
and communication matrix C be as given below. Since C is a symmetric matrix, only the
elements along the main diagonal and those below it are given.

Pr P2 P3s Pa Ps Ps
P.=[100 110 50 20 &0 15 J;

C= P1 P2 Ps P4 DPs Ps
P 0
p.| 10 0

psl 100 30 0

pe| 150 25 160 O

ps| 50 70 30 20 O
psl. 45 83 20 10 75 O

Let the resources r, and r, be in processing node 1 and let r; and r, be in node 2.

310 R SATYANARAYANAN AND C R. MUTHUKRISHNAN

Let the U matrix be

U= Fy Py T3 T4
p,[10 0 30 40
p,| 45 50 10 13

psl 0 50 50 65
pal 10 10 20 20
p5L30 0 0 0
peL40 60 10 20

The augmented affinity matrix 4 with =1, f=2, and y=1 is given below. Ounly the
elements along the main diagonal and those below it are given.

A= P1 P2 Ps Pa Ps Pg Ty F2 ¥z Mg
P 0
pa| 30 0

p,| 250 120 0O

p.| 380 140 350 0

ps| 140 190 70 80 O
pe| 175 265 75 25 195 0

r| 10 45 0 10 30 40 0
il 0 50 30 10 0 60 « O

rs| 30 10 50 20 0 10 0 O O
el 40 15 65 20 0 20 0 0 w O

4. Alocation using the auvgmented affinity graph

The allocation of the processes for the processing nodes of a distributed computing system
can be performed by making use of the affinity information present in the augmented
affinity graph. In the next two sub-sections, we present an algorithm for allocation on a
two-processor distributed computing system and an informal discussion of extending the
allocation scheme for systems with a larger number of processors by using a binary-tree-
structured system as an example.

4.1. Allocarion algorithm for a two-processor distributed computing system

Having formed the augmented affinity graph of the processes to be allocated, we have to
partition the augmented affinity graph into two, assigning one block for each of the two
processing nodes. The partitioning has to be performed in such a way as to minimise the
cost of the edges cut during partitioning. All the members of R, — R, will be in one block
while those of R, — R, will be in the other. This is because the weight of the edges linking
the members of R, — R;, as also of R, — Ry, is co. Since the partitioning is performed so as
to minimise the weight of the edges cut, the edges with weight co are never cut. The block

STATIC ALLOCATION FOR DISTRIBUTED COMPUTING SYSTEMS 311

containing the members of R, — R, is assigned to processing node 1, while the block
containing the members of R, — R, is assigned to processing node 2. The processes in each
block are to be processed on the processor to which the block has been assigned. So, the
allocation is basically a partitioning process on the augmented affinity graph. The allocation
algonthm based on partitioning exploits the information contained in the affinity graph.
The nature of the actual allocation heavily depends on the partitioning algorithm used.
The algorithm presented here is based on Kernighan and Lin's graph-partitioning
algorithm® along with a method of obtaining a starting solution. The allocation algorithm
makes use of the P, vector and the augmented affinity graph in the form of an augmented
affinity matrix A4 with (p+71) x (p +r) elements where the r additional elements are
the resources in DR. In the augmented affinity matrix, A(i,p+j)=A(p+j,)=yU(,j)
where A(i, p+j) is the measure of the affinity between process p; and resource r,. The
augmented affinity matrix entries corresponding to the weight of the edges between resources
in R, — R, are set to . Similarly, the weight of the edges between the resources in R, —~ R,
are set to oc. The algorithm for ailocation is as below.

STEP 1: In this step we form a starting solution for Kernighan and Lin’s graph-partitioning
algorithm.

(a) Form two sets S, and S; such that S; has all the members of R; —~ R, and S, has
all the members of R, — R;.

(b) Select the process p; requiring the maximum processing cost, Le., P(i)= MAX, ,
P,(j). Allocate this process p, to the set which has the maximum affinity for it. That is p;
is allocated to set Sy if Z.5, A(L, x)> Zyes, AL,). Otherwise p; is allocated to S,.

(c) Select the process p,{p, # p,) for which p; has the least affinity, i.e, A(i,j)=MIN,,,
A(L k). Allocate p; to the set other than the one to which p, has been allocated. § = S — {p,, p;}-

(d) The turn for selecting the next member is that of the set, the sum of processing cost
of the processes in which it is less than the sum of processing cost of the processes in the other.

{e) The set which has the turn, selects from the set of unselected processes S a process
p, as its next member process, such that the (internal cost — external cost) of process p; is
the maximum among the processes in S, if p, is made a member of the set with the turn
for selection. That is, if S, has the turn to select the next process for it, then it will select
P (a5, Al) = Fpas, A1) = MAX 5 (Tues, A6, 3) ~ e, A(2, 1))

(f) The process p; selected in STEP 1 (¢) is removed from the set § of unselected processes,
ie, §=5—{p:}. The process p; is added to the set which selected it.

(g) If there are no more processes to be selected, that is when S is empty, then go to
STEP 2 else go to STEP 1 (d).

STEP 2: For all elements aeS;, calculate E, =X, A(a,y) and I, =X A(a,x). Also
calculate D, = E, — I,. Similarly for all elements beS,, calculate E; = Zo5, A(b, ¥), I, = Z.5,
A(b,x), and D, = E, —I,,.

STEP 3: m=1; ST=S,; S¥=5,.
STEP 4: Select a,eST and b S such that Gm=Dg + Dy —24 (a;, b)) is maximum.
STEP 5: a,, =a,; b, =b;; ST = ST —aq; S5+ =87 b,

312 R. SATYANARAYANAN AND C R MUTHUKRISHNAN

STEP 6 If m < (MIN (|S,},15,[)) then {m=m+1; update D values for ST and S%, go to
STEP 4}

STEP 7: Choose k to maximise G =i g,.
STEP & If G >0 then move a;,...,q; to S, and b},..., b, to §; and go to STEP 2.

STEP 9: Allocate all processes in block S; to processing node 1 and all processes in block
S, to processing node 2.

In this algorithm, STEP 1 finds a starting solution for the remaining steps in the algorithm.
Steps 2 to 9 try to perturb the starting solution to find if there is any improvement
possible in minimising the weight of the edges connecting the elements of block §;
with those of S,. The perturbation is carried on until no further improvement in reducing
the weight of the edges connecting block S, to block S, is possible. At this point, the
algorithm halts and the processes in block §; which contain the members of R; — R,
are allocated to processing node 1 while the processes in block S, which contain the
members of R,— R are allocated to processing node 2. If the two processors have different
processing powers, then we can remove processes with large values of (external cost—
internal cost) from the block corresponding to the processor with less powerful processor
and add them to the block corresponding to the more powerful processor, with the amount
of such overloading being directly proportional to the excess of processing power.

In the above algorithm, STEP 1 (¢) has a time complexity O(p?). Since it is repeated O(p)
times, the time complexity of STEP 1 is O{p®). Steps 2 to 9 are derived from Kernighan
and Lin's algorithm and could be performed with a complexity of O(p?log p®). So, the time
complexity of the whole algorithm is O(p?).

Example 4.1.1: Consider the set of processes given in example 3.1. If we apply the algorithm
presented in this section, we get an allocation of p,, ps, and pg to processing node 1 and
Pya Ps, and pg to processing node 2.

4.2. Allocation of processes for a binary-tree-structured distributed computing system

In this section, we informally describe an allocation algorithm using the augmented affinity
graph model for binary-tree-structured distributed computing systems. The binary-tree-
structured system we consider here consists of processing nodes at the leaves of a full binary
tree. The non-leaf nodes of the tree are communication processors. Such a binary-tree-
structured architecture for distributed computing systems is highly useful when a distributed
system is to be constructed from a number of existing single processing nodes. Figure 1
shows such a tree-structured system with four processing nodes, viz, PROC_1, PROC_2,
PROC_3,and PROC_4 and three communication nodes, viz, COMM_P_1,COMM_P_2,
and COMM_P_3. Each processing node has a set of resources. It is easy to visualise that
in the tree-structured system, the cost of communicating with processing nodes within a
given subtreeis always less than the cost of communicating with a node outside that subtree.
For example, the cost of communication between PROC_1 and PROC_2 is less than the
cost of communication from PROC_1/PROC_2 to PROC_3/PROC_4. The allocation for

STATIC ALLOCATION FOR DISTRIBUTED COMPUTING SYSTEMS 313

COMM_P_3
il
) COMM_P_2
¥} 2
15 r3 14 3
16 17 3)
PROC_1 PROC 2 PROC 3 PROC 4

FiG. 1. A binary-tree-structured distributed computing system.

such a tree-structured system is a partitioning of the augmented affinity graph. For a
tree-structured system of height n, the augmented affinity graph is partitioned into two,
assigning one block to the left subtree of height (n-1) and the other to the right subtree of
height (n-1). Two augmented affinity graphs are formed from the two blocks obtained as
above. These two augmented affinity graphs are again partitioned assigning one block each
for each of the four subtrees of height (n-2). This process is repeated until we get one block
each for each of the trees of height O, i.e, the individual processing nodes. The processes
in each block are allocated to the processing node corresponding to the partition. An
important point one has to note is that the augmented affinity graph and the set DR change
after cach level of allocation. Resources linked by edges with weight co may not be linked
together in a lower level augmented affinity graph. Each allocation cousists of the following
basic stages. '

Stage 1: Form the augmented affinity graph for the processes. The links among the resource
nodes are formed as follows. Let R, be the set of resources in the left subtree of the current
tree for which allocation is to be performed. Similarly, let R, be the set of resources in the
right subtree of the current tree for which allocation is to be performed. The set DR for
this allocation is given by DR= (R UR,)—(R,snR,). Form the augmented affinity graph

314 R. SATYANARAYANAN AND C. R MUTHUKRISHNAN

for the processes assigned to this tree. In this augmented affinity graph, for all r,, r.€Ry,
link r;, r; with edges of weight co. Similardy for all ., r;e R, link r;, 7, with edges of weight co.

Stage 2: Perform a two-way partitioning of the augmented affinity graph in the same way
as in section 4.1, where all operations are performed with respect to the processes assigned
to the current tree. Let Py, be the block containing the elements of R;;— R, and let P, be
the block containing the elements of R,,—~ R,,. Assign the processes in Py, to the left subtree
of the current tree. Assign the processes in P, to the right subtree of the current tree.

The above two stages are repeated until the left and the right Subtrees are individual
processing elements. As an example, consider the tree-structured system in fig. 1. When the
allocation is started, in the initial augmented affinity graph, resources ry, rs, ¥, and r, are
linked with edges of weight oo. Similarly, resources r,, 74, 7's, and rq are linked with the edges of
weight co. After the first level of allocation, we get two blocks, one each for each of the subtrees
with roots COMM_P_1 and COMM_P_2. When the allocation for the tree with
COMM_P_1 at the root is performed, the edge connecting resources r¢ and r¢ has a weight
of oc in the augmented affinity graph for the processes in the block assigned to this tree.
Similarly, resources r; and r, are linked by an edge of weight co. Resource r; does not
figure in the augmented affinity graph corresponding to the allocation for the tree with
COMM_P_1 as the root since it is present in both the left and the right subtrees, namely,
PROC.1 and PROC_2. Similarly, the augmented affinity graph for the tree with
COMM_P_2 as the root is formed. Two partitions are performed on each of the two
augmented affinity graphs formed as above. Out of the four blocks obtained, the block
with resources r; and r, is assigned to PROC_1. Similarly, the other blocks are also assigned
to their respective processing nodes. The processes in each block are processed on the
processor to which the block containing them is assigned.

An example of a binary-tree-structured system was given to show the importance of the
architecture of the system in designing the allocation algorithm. The binary tree structure
enabled the use of divide and conquer strategy in allocation. Similar techniques could be
applied to a certain class of hypercube systems also”. For a general distributed system of
arbitrary interconnection structure the following method could be followed. The affinity
graph is formed as described in Section 3. To augment the affinity graph all resources
except those present in all nodes are added as vertices in the graph. All the resources
present in a given processor are interlinked by edges of weight 0. Each process p; is linked
by an edge of weight yU (i, j) to the resource r; present in the graph. After the augmented
affinity graph is formed, a multiple-way partitioning® is performed on the graph. The
processes which are in the block containing a given set of resources are allocated to the
processor with which the resources are associated.

5. Conclusions

In this paper, we have presented a graph-based model for process allocation on distributed
computing systems. In this model, called the affinity graph model, the vertices represent
the processes to be allocated. The vertices are linked by edges with weight equal to the
affinity the vertices have for each other. The affinity has been defined in such a way that

STATIC ALLOCATION FOR DISTRIBUTED COMPUTING SYSTEMS 315

allocation of processes with more affinity as close as possible contributes towards the goal
of load balancing as well as minimising interprocessor conmmunication. In the affinity graph,
both the load balancing and the minimisation of interprocessor communication criteria
are reflected in a single representation. [t is also possible to vary the weightage given to these
two criteria, We have presented a way of augmenting the affinity graph so as to take into
account the heterogencity of the system arising out of the distribution of the resources in
the system over the processing nodes. By the use of the augmented affinity graph, it is also
possible to minimise the overhead due to usage of remote resources in addition to load
balancing and minimising interprocessor communication. An algorithm for aflocation of
processes for a two-processor system uses the augmented affinity graph. We have also
briefly outlined how the allocation could be done for systems with a larger number of
processors by using a binary-tree-structured system as an example. Simulation studies have
shown that the proposed method has good load-balancing characteristics and is alsc
responsive to changes in weightage given to different criteria®.

Acknowledgements
The authors sincerely thank the referees for their very careful review, encouraging comments,

and helpful suggestions. Their suggestions played a crucial role in moulding the paper to
its present form.

References

L. Cau, W. W.eral Task allocation in distributed data processing, JEEE Computer, 1980,
13, 57-69.

2. Ma, P.Roeral A task allocation model for distributed computing systems, {EEE
Trans., 1982, C-31, 41-47.

3. SHEN, C. AND Tsal, W. A graph matching approach to optimal task assignment 1n distnbuted
computing systems using minimax criterion, [EEE Trans., 1985, C-34,
197-203.

4. Cuot, T. C. K. anp Load balancmg in distributed systems, TEEE Trans. 1982, SE-8,

ABRAHAM, J. A. 401-412.

5. StonE, H. S. Multiprocessor scheduling with the aid of network flow algorithm, IEEE
Trans, 1977, SE-3, 85-93.

6. BokHARI, S. H. Dual processor scheduling with dynamic reassignment, IEEE Trans.,
1979, SE-5, 341-349,

7. SATYANARAYANAN, R. AND A task allocation schemc for hypercube distributed computing systems

MUTHUKRISHNAN, C. R. using the affinsity graph model, Proc. IEEE Region 10 Conf., Bombay,

1989.

8. KerniGHAN, B. W. anD LiN, S, An efficient heuristic procedure for partitioning graphs, Bell System
Tech. J., 1970, 291-307.

9. SATYANARAYANAN, R. anD A static scheduling scheme for tree-structured parallel computing

MUTHUERISHNAN, C. R. systems, communicated to Microprocessors and Microsystems.

