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Abstract

In this paper, it is shown that the asymptotic state-observer problem [or a linear time-mvariant system of order
n having ¢ output can he solved through the solution of the same problem for a similar system of order n-g-r
{with 1<r<q,) having ¢, (where ¢, <4g) number of output. The procedure for determiming the parameters of the
asymptotic state-observer (matrces D and G) allows considerable simplification of the computations and can be
repeated in a recursive manner. The result leads to a new algorithm for desigmng asymptouc state-observers for
multivanable linear time-invanant systems.
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1. Introduction

The output or a linear time-invariant system may be used to construct an estimate of the
system-state vector. The device which reconstructs the state vector is called an observer.
The observer itself is a time-invariant linear system driven by the input and output of the
system it observes. Kalman and Bucy® dealt with the problem of state estimation for a
linear, finite-dimensional dynamic plant when all measurements are corrupted by white
noise. Bryson and Johansen? have shown that when the measurements are noise-frec the
optimal estimator will be a modification of the Kalman-Bucy filter. Simon?® and Wonham*
have recognized the duality between the pole-assignment problem and the problem of
building an asymptotic-state observer. Luenberger® has proposed an excellent method for
conslructing an asymptotic-state estimator for a single-output system. His observer design
for a system with @ output can be reduced to the design of g separate observers for a
single-output subsysten. This result is a consequence of a special canenical form. Almost
all of the published solutions resort to canonical forms and are not convenient to work
with in the multiple input-output cases. Since the system is often described in terms of
variables that are of direct interest, a transformation to canonical form is inconvenient.
The present solution does not resort to the use of canonical forms for the multiple observer
design.
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2. Stateraent of the ohserver problem

Assume that a multivariable linear time-invariant dynamical plant with g output

X=Ax-+Bu (1)

y=Hx @
drives an observer

Z=Dz+Bu+Gy 3)

D=A—GH @)

with
x=x{f)=n x | state vector;
w=u(l)=9 x 1 input vector;
y=y(t)=q x 1 output vector;
z(t)=n x 1 reconstructed state vector.

where A, B and H are constant matrices of appropriate dirnensions. Now it is required to find
a linear observer law z=Gy, where z=2z (t) is an n x | observer signal vector and G is an
nx ¢ observer matrix in such a way that the n x n observer system matrix D is assigned
arbitrary dynamies {fig. 1).

H e

Fig. 1. Observer m general representation.
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3. Method of the design procedure

The method of this procedure is based on a step-by-step transformation of the time-invariant
linear mathematical model {eqns ! and 2) of the production engineering process obtained
by means of appropriate process analysis statements and given in a state-space representa-
tion. Calculation and an inverse transformation are subsequently performed. In this
connection, a unique and simple calculation of the observer matrix is aimed at, in such a
way that the system observer matrix D shows the dynamical behaviour demanded.

The procedure presented is recursive and can be used for the observer calculation of any
system/output combination (n/q}.

Based on eqn (4) the observer matrix can be determined as:
G=[A-D]H % (5)
However, this procedure is to be avoided as the output matrix H cannot be inverted
immediately.

In order to perform the observer calculation in any case it is assumed that the output
matrix H is of full rank and can be structured to

H=[H, H,] ©6)
where H, =q x g non-singular matrix.

Now such a transformation matrix is required for allowing H ~! of eqn (5) to be substituted

by Hi'.
1, H{'H,
Tlx[o" ! J M

Iy
where I, is identity matrix of order 4.

Using x=T,p eqns (1), (2} and (4) will be transformed into

p=Ap+Bu ®
y=Hp ©)
where
A-T7ur, =[§i ﬂ (10
H=HT,=[H, 0] (11)
B=T;'B (12)
D=T;'"AT,—T;'GHT, (13)
D=A-GH (14)

where A is the nx n matrix, C, the gx ¢ matrix and in the theorem of Bhandarkar and
Fahmy¢, (¥, E) is an observable pair if and only if (4, H) is an observable pair.
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Thus eqn (14) can be rewritten as

C, E Ay A,

- . 15
HO][ZV:I [A2A4 (15)
Equation (15} is valid if and only if A; =E, A, = V.

5 [ Ci—M ]
5 - g1 16
6-[ 2 Ju: 16)
C,—A,
H{*. 17
g "

The determination of matrices A; and A, is based on the following theorem and is done
in such a way that matrix D has the required dynamical behaviour.

Theorem
A 2g x 2q constant matrix D

_TA, E ‘
iy

where E is the non-singular matrix of order ¢, and ¥ the arbitrary matrix of order g x g,
can be assigned to arbitrary eigenvalues by a suitable computation of A; and 4.

Proof
Let
MD=JM (19)
with
M, M J. R
M=|1 U3 g=l"t
':Mz MJ 0 J, 20)

where J, and J, contain the arbitrarily specified eigenvalues and R is yet to be specified
to guarantee non-singularity of matrix M. Expanding eqn (19), the following becomes valid:

Ay i My
[A,:l 4 [ Mz] @)

M,=RE™%; (22)
M, =[J,~VIE™} (23)
Ay=MT[J M, +RM,J; 24
Ay=J,My—MyA, . 29)

where
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The determination of A; and A, requires that E, M,, and R are non-singular matrices,
and thus the determinant of M is non-zero.

T R ME' O
SRl g

Non-singularity of M implies the similarity of matrices D and J and hence the proof of
the theorem. By choosing M, such that its inverse exists, it can be shown that non-singularity
of M is guaranteed if the determinant of (RM,—M,J,+ M, V) is not zero.

For example, by letting My =0, M, =1, M ™! exists as long as det [R]#0.

4. Computation procedure

Depending on the n/q combination, three special cases have to be distinguished in performing
the observer calculation. These calculations are aimed at separating matrix £ as an invertible
matrix in any case. Thus the methodical procedure will be supported. In this connection,
special cases IT and IIT will be returned to special case I in a recursive manner.

4.1, Special case I

This case assumes that the system/output combination is n=2q and matrix E in eqn (10)
is invertible.

Example 1

Given

Linear time-invariant dynamical plant

Objective

a) Observer matrix G;

b) System observer matrix D.
Step 1

Determination of the transformation matrix T; using eqn (7). -
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Step 2
System trapsformation to eqns (8) and (9}
¢, E
Step 3
Dynamical determination system observer matrix D using eigenvalues.
Ay=—1+1 -1 1 1 0
J 1=, .
dp=—141 -1 -1
= 7 i
7= Ay=—2+1 T
27 ha= =210 -1 =

Step 4
Calculate matrices M, M,, Ay, A, using eqns (22)~(25), and R=1.

-1 1 2 -2
CR P S B
-2 =2 0 -2
S I
Step 5

Calculate matrices G and D using eqns (17) and (4).

34
[cx—m{_3 7] [cz—AZJ=[1(1) ‘3‘]

3 4 -2 =2 11

-3 7 3 -6 21

6= 1 4 b= 0 -2 01
10 3 ~8 =2 1 2

Step 6

Proof: det (4~ D)=0, ie., the system observer matrix shows the dynamical behaviour
demanded.
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4.2. Special case I1

This case assumes that the system/output combination is n<2q and matrix E in egn (10)
is not invertible.

Objective

The non-singularity and hence inversion of matrix E can be achieved by means of
transforming 7, and structuring matrix F into the matrices E; and E, by suitably selecting
matrix P, with ¢ =T,f and
P, O
Ty=| * 27
=0 0] @7

where P is the g x ¢ permutation matrix, and m, n—g. System equs (8) and (9) will be
transformed into

B=AB+Bu 28
y="p @)
with .
Z=T§12T2=[gl ﬂ (30)
2
P E,
E:PQ‘E=|:EJ [€3)]

where Ez is the non-singular m x m matrix. The observer system matrix D is obtained
using cqn (18)

~ [A, E
D= 32
] =
with eqn (31) and
- Jo 0O
B3
A0 | o i,
eqn (32) is extended to
J, 0 E
-~ q ~ ~
D= 0 1A, E, Zm
. (34
0 A, 14
2m

Special case I (D,)

Jy is a (g—m) x (g—m) matrix with (n--2m) specified eigenvalues. The mx m matrices A,,
A, are computed in such a way that matrix D, is assigned to the remaining 2m specified
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eigenvalues in view of the theorem given in §3. The calculation of the observer matrix G
is done by an inverse transformation using eqn (13).

If the matrix E structuring reveals an immediate inversion of E,, translormation T, can
be omitted (E, %0, T,=1).
Example 2
Given

Linear time-invariant dynamical plant

I 21
X=|0 1,2 |x+Bu
2011

=[5

a) Observer matrix G;
b) System observer matrix D.

Objective

Step |

The submatrix H, cannot be inverted immediately, i.e., the permutation of the system is
necessary.

00 1 10{2
P=P7'=|0 1 0| 4=|2 1|0 |n+Bu
1 00 1 217

1 oo
=0 1o {"

Determination of the transformation matrix T, using eqn (7).

Step 2

Step 3

System transformation to eqns (8) and (9).

C, E
S Loog2
¢=12 1i0 |p+Bu
1 2101

c, Vv



A RECURSIVE OBSERVER DESIGN IN MULTI-OUTPUT SYSTEMS 325

=[5 008 ]

H H,
Step 4

. . . . . . E 2 .
System transformation with matrix T, using eqn (27). By inspection Ez[ E’:I=|: ] Itis
2
to be seen that the submatrix E, cannot be inverted. Therefore, a transformation with matrix

T, is necessary.

¢, E

010 1 210
T,=T;'=|1 0 o} B-—.[O 12}/3+§u

001 2 1N

c, v

o 1jo
<[ okl
Dynamical determination system observer matrix D using eigenvalues

Jol0 07 Jo=-1

J [
J=[O‘ f} olJ, R| Jy=-2
2 010 Jy i Jy=-3

Calculate matrices M,, M,, &,, &, using eqns (22)-(25) and R=1.
M;=0,5My=~2A=~6 A= 6

Step 5

Step 6

Step 7
Calculate matrices G and D using eqns (17) and (4).

[51~A1]=[(2) ﬂ [CaAd=02 7]

7 2 1 0 -6
G=|2 2 D=}0 -1 0
70 2 0 -6

Proof: det (4,—D)=0, ie, the system observer matrix shows the dynamical behaviour
demanded.

Step 8
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4.3 Special case 111

This case assumes that the system/output/combination is n>2¢ and E in eqn (10} can not
be inverted (rank r of matrix E is 1<r<gq).

Objective

Provided matrix E, cannot be inverted by transformation T,, the non-singularity of E,
and its ability to be inverted has to be realized by transforming T; and structuring matrix
E into matrices E, through E, by selecting matrix P in T, in a suitable manner.
Transformation T, enables approaching E,=0. Thus, matrix g, can be determined and
hence the observer problem can be solved using eqns (48)—(50). With f= T34 and

I, 0
Ty= [ 0 Pm]’ ) (35)
where P is m x m permutation matrix such that
- E £
E=EpP,=| ' 3
- [ £, EJ (36)
where E, is the non-singular matrix of order r. Using 6= T,yand T,
L0 0
T,=| 0 I, —E;'E, (37
00 ) S

the transformation gives

$=Ay+Bu (38
4 y=fy (39)
with
gl.l.lgl L,ZEI ES
ey Ci2.1Ci2:E, O
A= T IAT = _1.2,1 __1.2,2_2 = .
¢ 4 92.3.1c_2 3,21_/1 KJ (40)
C2.4.1C2.4,2Vl 4
The observer system matrix D will be obtained using eqn (18) with
A, Jy O
_la_| o 3
A1 0 A, “n
A, 0 A
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as
D 42)
Special case II  Special case I
The determination of matrices A, A, and A is done by solving the matrix equation
DRy=R,D, (43)
where R, is the non-singular matrix. With
A, E, ©
D, = éz Y: Zs > 44
A L Vs
i, E o
o=t My, Vs Vi, 43}
0 0 D,
and
_ 5, R7 . . To
= = th R=| _ 46,
D, |: 0 Dsj’ wi [Vs:l, (46)
respectively
I, 0 0
Re=/ 0 I, 0 . (€]
1 92 Dyeger

In this connection, matrix D, is equivalent to matrix J in eqn (20) and g, and g, are
matrices temporarily unknown. However, they can be determined in such a way that the
cigenvalues of D, and D, are identical. Then the calculation of matrix g, is equivalent to
the observer problem solution

Dy=Vy—g,Vs (48)
for the reduced system ’
(49)

(50)

a=Vu

y="V

where V, is 2 matrix of order n—g—r and y involves r output. If the rank of V3 =7, (r, <r)
the effective number of output will be r,.

Based on eqn (43) the following relations for determining matrices A, A, can be given:

V=V, + Vg, (51)
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328
91 = [Vags+ Vo~ g2 Vs1Es (52)
A =, (53)
ZZ=Mz“173g1 (54)
A =g, M,+9:M,~V.g,. (55)

Matrix J, is of order (g—r) x (g—r) and involves (g—r)-dominating eigenvalues.

Matrices D, and D are of the orders 2r x 2r and (n—-g—r) X (n—g—7), respectively, and
involve 2r eigenvalues and (n—g—r) eigenvalue remainder terms, respectively. The
transformation with T can be omitted (T, =1} if the structuring of matrix E reveals that

E,#0,
Example 3

Given

Linear time-invariant dynamical plant

Objective

a) Observer matrix G;
b) System observer matrix D,

Step 1

Determination of the transformation matrix T, using eqn (7). Ty=T;*=I, Rank E=1

E, E,

E={E1 E;]zl:l 1 o]
E, E|T[TT0 0.

E, E4

With E,#0 is obtained Ty=T;=1. With E;*E,=[0 0] is obtained T,=T;'=1l
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Step 2

Systemn transformation to eqns (38) and (39).
C, E

y+Bu

Step 3

Dynamical determination system observer matrix D using eigenvalues.

Step 4
Calculate matrix g, using eqn (48).
0 1
= s y=[1}0]e
o [ i 1}‘ y =[1}0]e
The system calculation is done by system/output combination n = 2q.
Jy=—4, Ag=—5 R=1

My=1, My=~6 A =~10, A,=-30
10 — —10 1
921[31} D3_[—30 1J
Step 5

Determine matrices Vs and g; using eqns (51) and (52).
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Step 6

Determine matrices A,, A, using eqns (45)-(46).
. M, E; _ M, 1] 4,=-2
D,= M, 7 TIM, 1] i3=-3
M, =1, M,=—14, M,=~16, M,=—182

- _ -
A,=—16 A,=—104 A= .

—464
Step 7
Calculate matrices G and D using eqns (41) and (42).
2 0 -1 0110
0 16 0 ~16 1 0 0
G=|1 105 D=| 0 —104 1 1 O
1 272 0 -272 1 0 1
1 465 0 —464 0 1 1
Step 8

Proof: det{i,—D)=0, ie., the system observer matrix shows the dynamical behaviour
demanded.

5. Conclusion

The design procedure developed represents a novel reconstruction theorem for the
deterministic design of complete state observers for multivariable control systems not
requiring any transformation into canonical forms, as well as for system developments into
single systems. Furthermore, all eigenvalue forms can be used without any exception.

The methodical basis of the procedure is a transformation of the time-invariant linear
process model given in state-space representation, the actual design procedure, as well as
a subsequent inverse transformation. Under certain conditions this design cycle will have
to be done repeatedly.

The observer design for a system of complete order is realized by the observer design
for a system of reduced order in a recursive manner. Respective observer laws can be
represented.

It is important to note that it is not necessary to check, for complete observability, the
system given by (1) through the investigation of the rank of the corresponding n x ng matrix.

H(4,Hisa cox_npletely observable pair, the recursive simplification will terminate in
one gf the two special cases discussed in §§4.1. and 4.2, All the eigenvalues can be arbitrarily
specified. All the transformations within the procedure are very simple.
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