A recursive observer design in multi-output systems

Peter K. Krämer
A-Enstem-Straße 4, Hoyerswerda 7700, GDR.
Recelved on January 7, 1987, Revised on September 2, 1988
Abstract

Abstract

In this paper, it is shown that the asymptotic state-observer problem for at imear time-mvartant system of order n haiving a output can be solved through the solution of the same problem for a simular system of order $n-a-1$ (with $1 \leqslant r \leqslant q_{1}$) having q_{1} (where $q_{1} \leqslant q$) number of output. The procedure for determining the parameters of the asymptotic state-observer (matrices D and G) aflows considerable simplfication of the computatrons and can be repeated in a recursive manner. The result leads to a new algorithm for designing asymptonc state-observers for multwarable linear tume-invartant systems.

Key words: System output, system state vector, multrvarable linear time-mvariant systems

1. Introduction

The output or a linear time-invariant system may be used to construct an estimate of the system-state vector. The device which reconstructs the state vector is called an observer. The observer itself is a time-invariant linear system driven by the input and output of the system it observes. Kalman and Bucy ${ }^{1}$ dealt with the problem of state estimation for a linear, finite-dimensional dynamic plant when all measurements are corrupted by white noise. Bryson and Johansen ${ }^{2}$ have shown that when the measurements are noise-free the optimal estimator will be a modification of the Kalman-Bucy filter. Simon ${ }^{3}$ and Wonham ${ }^{4}$ have recognized the duality between the pole-assignment problem and the problem of building an asymptotic-state observer. Luenberger ${ }^{5}$ has proposed an excellent method for consiructing an asymptotic-state estimator for a single-output system. His observer design for a system with Q output can be reduced to the design of q separate observers for a single-output subsystem. This result is a consequence of a special canonical form. Almost all of the published solutions resort to canonical forms and are not convenient to work with in the multiple input-output cases. Since the system is often described in terms of variables that are of direct interest, a transformation to canonical form is inconventent. The present solution does not resort to the use of canonical forms for the multiple observer design.

2. Statement of the observer problem

Assume that a multivariable linear time-invariant dynamical plant with q output

$$
\begin{align*}
& \dot{x}=A x+B u \tag{1}\\
& y=H x \tag{2}
\end{align*}
$$

drives an observer

$$
\begin{align*}
\dot{z} & =D z+B u+G y \tag{3}\\
D & =A-G H \tag{4}
\end{align*}
$$

with

$$
\begin{aligned}
& x=x(t)=n \times 1 \text { state vector; } \\
& u=u(t)=\vartheta \times 1 \text { input vector; } \\
& y=y(t)=q \times 1 \text { output vector; } \\
& z=z(t)=n \times 1 \text { reconstructed state vector. }
\end{aligned}
$$

where A, B and H are constant matrices of appropriate dimensions. Now it is required to find a linear observer law $z=G y$, where $z=z(t)$ is an $n \times 1$ observer signal vector and G is an $n \times q$ observer matrix in such a way that the $n \times n$ observer system matrix D is assigned arbitrary dynamics (fig. 1).

Fig. 1. Observer in general representation.

3. Method of the desiga procedare

The method of this procedure is based on a step-by-step transformation of the time-invariant linear mathematical model (eqns 1 and 2) of the production engineering process obtained by means of appropriate process analysis statements and given in a state-space representation. Calculation and an inverse transformation are subsequently performed. In this connection, a unique and simple calculation of the observer matrix is aimed at, in such a way that the system observer matrix D shows the dynamical behaviour demanded.
The procedure presented is recursive and can be used for the observer calculation of any system/output combination (n / q).

Based on eqn (4) the observer matrix can be determined as:

$$
\begin{equation*}
G=[A-D] H^{-1} \tag{5}
\end{equation*}
$$

However, this procedure is to be avoided as the output matrix H cannot be inverted immediately.
In order to perform the observer calculation in any case it is assumed that the output matrix H is of full rank and can be structured to

$$
H=\left[\begin{array}{ll}
H_{1} & H_{2} \tag{6}
\end{array}\right]
$$

where $H_{1}=q \times q$ non-singular matrix.
Now such a transformation matrix is required for allowing H^{-1} of eqn (5) to be substituted by H_{1}^{-1}.

$$
T_{1}=\left[\begin{array}{cc}
I_{q} & H_{1}^{-1} H_{2} \tag{7}\\
0 & I_{n-q}
\end{array}\right]
$$

where I_{a} is identity matrix of order q.
Using $x=T_{1} \rho$ eqns (1), (2) and (4) will be transformed into

$$
\begin{align*}
& \dot{\rho}=\hat{A} \rho+\hat{B} u \tag{8}\\
& y=\hat{H} \rho \tag{9}
\end{align*}
$$

where

$$
\begin{align*}
& \hat{A}=T_{1}^{-1} A T_{1}=\left[\begin{array}{ll}
C_{1} & E \\
C_{2} & V
\end{array}\right] \tag{10}\\
& \hat{H}=H T_{1}=\left[\begin{array}{ll}
H_{1} & 0
\end{array}\right] \tag{11}\\
& \hat{B}=T_{1}^{-1} B \tag{12}\\
& \hat{D}=T_{1}^{-1} A T_{1}-T_{2}^{-1} G H T_{1} \tag{13}\\
& \hat{D}=\hat{A}-\hat{G} \hat{H} \tag{14}
\end{align*}
$$

where \hat{A} is the $n \times n$ matrix, C_{1} the $q \times q$ matrix and in the theorem of Bhandarkar and Fahmy ${ }^{6},(V, E)$ is an observable pair if and only if (A, H) is an observable pair.

Thus eqn (14) can be rewritten as

$$
\hat{G}\left[H_{1}, 0\right]=\left[\begin{array}{ll}
C_{1} & E \tag{15}\\
C_{2} & V
\end{array}\right]-\left[\begin{array}{ll}
\Delta_{1} & \Delta_{3} \\
\Delta_{2} & \Delta_{4}
\end{array}\right]
$$

Equation (15) is valid if and only if $\Delta_{3}=E, \Delta_{4}=V$.

$$
\begin{align*}
& \hat{G}=\left[\frac{C_{1}-\Delta_{1}}{C_{2}-\Delta_{2}}\right] H_{1}^{-1} \tag{16}\\
& G=T_{1}\left[\frac{C_{1}-\Delta_{1}}{C_{2}-\Delta_{2}}\right] H_{1}^{-1} . \tag{17}
\end{align*}
$$

The determination of matrices Δ_{1} and Δ_{2} is based on the following theorem and is done in such a way that matrix D has the required dynamical behaviour.

Theorem

A $2 q \times 2 q$ constant matrix \hat{D}

$$
\tilde{D}=\left[\begin{array}{ll}
\Delta_{1} & E \tag{18}\\
\Delta_{2} & V
\end{array}\right]
$$

where E is the non-singular matrix of order q, and V the arbitrary matrix of order $q \times q$, can be assigned to arbitrary eigenvalues by a suitable computation of Δ_{1} and Δ_{2}.

Proof
Let

$$
\begin{equation*}
M \hat{D}=J M \tag{19}
\end{equation*}
$$

with

$$
M=\left[\begin{array}{ll}
M_{1} & M_{3} \tag{20}\\
M_{2} & M_{4}
\end{array}\right] \quad J=\left[\begin{array}{cc}
J_{1} & R \\
0 & J_{2}
\end{array}\right]
$$

where J_{1} and J_{2} contain the arbitrarily specified eigenvalues and R is yet to be specified to guarantee non-singularity of matrix M. Expanding eqn (19), the following becomes valid:

$$
\left[\begin{array}{l}
\mathbf{\Delta}_{1} \tag{21}\\
\Delta_{2}
\end{array}\right]=M^{-1} J\left[\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right]
$$

where

$$
\begin{align*}
M_{1} & =R E^{-1} ; \tag{22}\\
M_{2} & =\left[J_{2}-V\right] E^{-1} ; \tag{23}\\
\Delta_{1} & =M_{1}^{-1}\left[J_{1} M_{1}+R M_{2}\right] ; \tag{24}\\
\Delta_{2} & =J_{2} M_{2}-M_{2} \Delta_{1} . \tag{25}
\end{align*}
$$

The determination of Δ_{1} and Δ_{2} requires that E, M_{4}, and R are non-singular matrices, and thus the determinant of M is non-zero.

$$
M=\left[\begin{array}{cc}
R & M_{3} \tag{26}\\
J_{2}-V & M_{4}
\end{array}\right]\left[\begin{array}{cc}
E^{-1} & 0 \\
0 & I
\end{array}\right] .
$$

Non-singularity of M implies the similarity of matrices \hat{D} and J and hence the proof of the theorem. By choosing M_{4} such that its inverse exists, it can be shown that non-singularity of M is guaranteed if the determinant of $\left(R M_{4}-M_{3} J_{2}+M_{3} V\right)$ is not zero.

For example, by letting $M_{3}=0, M_{4}=I, M^{-1}$ exists as long as det $[R] \neq 0$.

4. Computation procedure

Depending on the n / q combination, three special cases have to be distinguished in performing the observer calculation. These calculations are aimed at separating matrix E as an invertible matrix in any case. Thus the methodical procedure will be supported. In this connection, special cases II and III will be returned to special case I in a recursive manner.

4.1. Special case I

This case assumes that the system/output combination is $n=2 q$ and matrix E in eqn (10) is invertible.

Example 1

Given
Linear time-invariant dynamical plant

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll|ll}
1 & 2 & 1 & 1 \\
0 & 1 & 2 & 1 \\
\hline 1 & 2 & 0 & 1 \\
2 & 1 & 1 & 2
\end{array}\right] x+B u \\
& y=\left[\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] x
\end{aligned}
$$

Objective
a) Observer matrix G;
b) System observer matrix D.

Step 1

Determination of the transformation matrix T_{1} using eqn (7).

Step 2

System transformation to equs (8) and (9).

$$
\begin{aligned}
& \dot{\varphi}=, ~
\end{aligned}
$$

Step 3

Dynamical determination system observer matrix D using eigenvalues.

$$
\begin{aligned}
& \left.J_{1}=\begin{array}{l}
\lambda_{1}=-1+\mathrm{li} \\
\lambda_{2}=-1+\mathrm{li} \\
\lambda_{3}=-2+\mathrm{li} \\
\lambda_{4}=-2-\mathrm{li}
\end{array} \quad J=\left[\begin{array}{rr|rr}
-1 & 1 & 1 & 0 \\
-1 & -1 & 0 & 1 \\
\hline 0 & 0 & -2 & 1 \\
0 & 0 & -1 & -2
\end{array}\right], ~\right], ~
\end{aligned}
$$

Step 4
Calculate matrices $M_{1}, M_{2}, \Delta_{1}, \Delta_{2}$ using equs (22)-(25), and $R=I$.

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{rr}
-1 & 1 \\
2 & -1
\end{array}\right] \quad M_{2}=\left[\begin{array}{rr}
2 & -2 \\
-6 & 2
\end{array}\right] \\
& \Delta_{1}=\left[\begin{array}{rr}
-2 & -2 \\
3 & -6
\end{array}\right] \quad \Delta_{2}=\left[\begin{array}{rr}
0 & -2 \\
-8 & -2
\end{array}\right]
\end{aligned}
$$

Step 5
Calculate matrices G and D using eqns (17) and (4).

$$
\begin{aligned}
{\left[C_{1}-\Delta_{1}\right] } & =\left[\begin{array}{rr}
3 & 4 \\
-3 & 7
\end{array}\right] \quad\left[C_{2}-\Delta_{2}\right]=\left[\begin{array}{rr}
1 & 4 \\
10 & 3
\end{array}\right] \\
G & =\left[\begin{array}{rr}
3 & 4 \\
-3 & 7 \\
1 & 4 \\
10 & 3
\end{array}\right] \quad D=\left[\begin{array}{rrrr}
-2 & -2 & 1 & 1 \\
3 & -6 & 2 & 1 \\
0 & -2 & 0 & 1 \\
-8 & -2 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Step 6
Proof: $\operatorname{det}\left(\lambda_{1}-D\right)=0$, i.e., the system observer matrix shows the dynamical behaviour demanded.

4.2. Special case H

This case assumes that the system/output combination is $n<2 q$ and matrix E in eqn (10) is not invertible.

Objective

The non-singularity and hence inversion of matrix E can be achieved by means of transforming T_{2} and structuring matrix E into the matrices E_{1} and E_{2} by suitably selecting matrix $P_{\text {, }}$ with $\varphi=T_{2} \beta$ and

$$
T_{2}=\left[\begin{array}{cc}
P_{4} & 0 \tag{27}\\
0 & I_{m}
\end{array}\right]
$$

where P is the $q \times q$ permutation matrix, and $m, n-q$. System eqns (8) and (9) will be transformed into

$$
\begin{align*}
& \dot{\beta}=\tilde{A} \beta+\tilde{B} u \tag{28}\\
& y=\tilde{H} \beta \tag{29}
\end{align*}
$$

with

$$
\begin{align*}
& \tilde{A}=T_{2}^{-1} \hat{A} T_{2}=\left[\begin{array}{ll}
\tilde{C}_{1} & \tilde{E} \\
\tilde{C}_{2} & V
\end{array}\right] \tag{30}\\
& \tilde{E}=P_{q}^{-1} E=\left[\begin{array}{l}
\tilde{E}_{1} \\
\tilde{E}_{2}
\end{array}\right] \tag{31}
\end{align*}
$$

where \tilde{E}_{2} is the non-singular $m \times m$ matrix. The observer system matrix \tilde{D} is obtained using cqn (18)

$$
\tilde{D}=\left[\begin{array}{ll}
\Delta_{1} & \tilde{E} \tag{32}\\
\Delta_{2} & V
\end{array}\right]
$$

with eqn (31) and

$$
\left[\begin{array}{c}
\Delta_{1} \tag{33}\\
\Delta_{2}
\end{array}\right]=\left[\begin{array}{cc}
J_{0} & 0 \\
0 & \tilde{\Delta}_{1} \\
0 & \tilde{\Delta}_{2}
\end{array}\right]
$$

eqn (32) is extended to

Special case $I\left(\tilde{D}_{1}\right)$
J_{0} is a $(q-m) \times(q-m)$ matrix with $(n-2 m)$ specified eigenvalues. The $m \times m$ matrices $\tilde{\Delta}_{1}$, $\widetilde{\Delta}_{2}$ are computed in such a way that matrix \widetilde{D}_{1} is assigned to the remaining $2 m$ specified
eigenvalues in view of the theorem given in $\S 3$. The calculation of the observer matrix G is done by an inverse transformation using equ (13).

If the matrix E structuring reveals an immediate inversion of E_{2}, transformation T_{2} can be omitted $\left(E_{2} \neq 0, T_{2}=I\right)$.

Example 2

Given
Linear time-invariant dynamical plant

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 1 & 2 \\
\hline 2 & 0 & 1
\end{array}\right] x+B u \\
& y=\left[\begin{array}{ll|l}
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] x
\end{aligned}
$$

Objective
a) Observer matrix G;
b) System observer matrix D.

Step 1
The submatrix H_{1} cannot be inverted immediately, i.e., the permutation of the system is necessary.

$$
\begin{aligned}
P=P^{-1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \dot{\eta} & =\left[\begin{array}{ll|l}
1 & 0 & 2 \\
2 & 1 & 0 \\
\hline 1 & 2 & 1
\end{array}\right] \eta+B_{p u} \\
y & =\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \eta
\end{aligned}
$$

Step 2
Determination of the transformation matrix T_{1} using eqn (7).
Step 3
System transformation to eqnis (8) and (9).

$$
\dot{\varphi}=\left[\begin{array}{cc|c}
C_{1} & E \\
1 & 0 & 2 \\
2 & 1 & 0 \\
\hline 1 & 2 & 1
\end{array}\right] \varphi+B u
$$

$$
y=\underset{\left[\begin{array}{cc|c}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \varphi}{H_{1}} \begin{gathered}
H_{2}
\end{gathered}
$$

Step 4
System transformation with matrix T_{2} using eqn (27). By inspection $E=\left[\begin{array}{l}E_{1} \\ E_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]$. It is to be seen that the submatrix E_{2} cannot be inverted. Therefore, a transformation with matrix T_{2} is necessary.

$$
\begin{array}{rl}
T_{2}=T_{2}^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \dot{\beta} & =\left[\begin{array}{cc|c}
\tilde{C}_{1} & \tilde{E} \\
1 & 2 & 0 \\
0 & 1 & 2 \\
2 & 1 & 1
\end{array}\right] \beta+\tilde{B} u \\
\tilde{C}_{2} & V \\
y & =\left[\begin{array}{ll|l}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \beta
\end{array}
$$

Step 5
Dynamical determination system observer matrix D using eigenvalues

$$
J=\left[\begin{array}{c|c}
J_{1} & R \\
\hline 0 & J_{2}
\end{array}\right]=\left[\begin{array}{c|cc}
J_{0} & 0 & 0 \\
\hline 0 & J_{1} & R \\
0 & 0 & J_{2}
\end{array}\right] \begin{aligned}
& J_{0}=-1 \\
& J_{2}=-2 \\
& J_{2}=-3
\end{aligned}
$$

Step 6
Calculate matrices $M_{1}, M_{2}, \tilde{\Lambda}_{1}, \tilde{\Lambda}_{2}$ using eqns (22)-(25) and $R=I$.

$$
M_{1}=0,5, M_{2}=-2, \bar{\Delta}_{1}=-6, \tilde{\Delta}_{2}=-6 .
$$

Step 7
Calculate matrices G and D using eqns (17) and (4).

$$
\begin{array}{rlrl}
{\left[\tilde{C}_{1}-\Delta_{1}\right]} & =\left[\begin{array}{ll}
2 & 2 \\
0 & 7
\end{array}\right] & {\left[\tilde{C}_{2} \Delta_{2}\right]=\left[\begin{array}{ll}
2 & 7
\end{array}\right]} \\
G & =\left[\begin{array}{ll}
7 & 2 \\
2 & 2 \\
7 & 0
\end{array}\right] & D & =\left[\begin{array}{rrr}
1 & 0 & -6 \\
0 & -1 & 0 \\
2 & 0 & -6
\end{array}\right]
\end{array}
$$

Step 8
Proof: $\operatorname{det}\left(\lambda_{I}-D\right)=0$, i.e., the system observer matrix shows the dynamical behaviour demanded.

4.3 Special case III

This case assumes that the system/output/combination is $n>2 q$ and E in eqn (10) can not be inverted (rank r of matrix E is $1 \leqslant r \leqslant q$).

Objective

Provided matrix E_{2} cannot be inverted by transformation T_{2}, the non-singularity of E_{2} and its ability to be inverted has to be realized by transforming T_{3} and structuring matrix E into matrices E_{1} through E_{4} by selecting matrix P in T_{3} in a suitable manner. Transformation T_{4} enables approaching $E_{4}=0$. Thus, matrix g_{2} can be determined and hence the observer problem can be solved using eqns (48)-(50). With $\beta=T_{3} \delta$ and

$$
T_{3}=\left[\begin{array}{cc}
I_{q} & 0 \tag{35}\\
0 & P_{m}
\end{array}\right],
$$

where P is $m \times m$ permutation matrix such that

$$
E=\tilde{E} P_{m}=\left[\begin{array}{ll}
\hat{E}_{1} & \hat{E}_{3} \tag{36}\\
\hat{E}_{2} & \hat{E}_{4}
\end{array}\right]
$$

where \hat{E}_{2} is the non-singular matrix of order r. Using $\delta=T_{4} \gamma$ and T_{4}

$$
T_{4}=\left[\begin{array}{ccc}
I_{q} & 0 & 0 \tag{3}\\
0 & I_{r} & -\hat{E}_{2}^{-1} \hat{E}_{4} \\
0 & 0 & I_{m-r}
\end{array}\right]
$$

the transformation gives

$$
\begin{align*}
& \dot{\gamma}=\bar{A} \gamma+\bar{B} u \tag{38}\\
& y=\bar{H} \gamma \tag{39}
\end{align*}
$$

with

$$
\bar{A}=T_{4}^{-1} \hat{A} T_{4}=\left[\begin{array}{cc}
\bar{C}_{1.1,1} \bar{C}_{11,2} \bar{E}_{1} & \bar{E}_{3} \tag{40}\\
\bar{C}_{1.2,1} \bar{C}_{1,2,2} \bar{E}_{2} & 0 \\
\bar{C}_{2.3,1} \bar{C}_{23,2} \bar{V}_{1} & \bar{V}_{3} \\
\bar{C}_{2,4,1} \bar{C}_{2,4,2} \bar{V}_{2} & \bar{V}_{4}
\end{array}\right] .
$$

The observer system matrix \tilde{D} will be obtained using eqn (18) with

$$
=\left[\begin{array}{l}
\Delta_{1} \tag{41}\\
\Delta_{2} \\
\Delta_{3} \\
\Delta_{4}
\end{array}\right]=\left[\begin{array}{cc}
J_{0} & 0 \\
0 & \bar{\Delta}_{1} \\
0 & \bar{\Delta}_{2} \\
0 & \bar{\Delta}
\end{array}\right]
$$

as

$$
\begin{align*}
& \bar{D}=\left[\begin{array}{ccc:c}
& J_{0} & 0 & \bar{E}_{1} \\
0 & \bar{\Delta}_{1} & \bar{E}_{2} & 0 \\
0 & \bar{\Delta}_{2} & \bar{V}_{1} & \bar{V}_{3} \\
\hdashline 0 & \bar{\Delta} & \bar{V}_{2} & \bar{V}_{4}
\end{array}\right] \tag{42}\\
& \text { Special case II Special case I }
\end{align*}
$$

The determination of matrices $\bar{\Delta}_{1}, \bar{\Delta}_{2}$ and $\bar{\Delta}$ is done by solving the matrix equation

$$
\begin{equation*}
\bar{D}_{1} R_{0}=R_{0} \bar{D}_{4} \tag{43}
\end{equation*}
$$

where R_{0} is the non-singular matrix. With

$$
\begin{align*}
& \bar{D}_{1}=\left[\begin{array}{ccc}
\bar{\Delta}_{1} & \vec{E}_{2} & 0 \\
\bar{\Delta}_{2} & \bar{V}_{1} & \bar{V}_{3} \\
\bar{\Delta}^{2} & \vec{V}_{2} & \bar{V}_{4}
\end{array}\right], \tag{44}\\
& \bar{D}_{4}=\left[\begin{array}{ccc}
\bar{M}_{1} & \vec{E}_{2} & 0 \\
\bar{M}_{2} & \bar{V}_{3} & \bar{V}_{3} \\
0 & 0 & \bar{D}_{3}
\end{array}\right], \tag{45}
\end{align*}
$$

and

$$
\bar{D}_{4}=\left[\begin{array}{cc}
\bar{D}_{2} & \bar{R} \tag{46}\\
0 & \bar{D}_{3}
\end{array}\right] \text { with } \bar{R}=\left[\begin{array}{c}
0 \\
\bar{V}_{3}
\end{array}\right]
$$

respectively

$$
R_{0}=\left[\begin{array}{ccl}
I_{r} & 0 & 0 \tag{47}\\
0 & I_{r} & 0 \\
g_{1} & g_{2} & I_{n-q-r}
\end{array}\right]
$$

In this connection, matrix \bar{D}_{4} is equivalent to matrix J in eqn (20) and g_{1} and g_{2} are matrices temporarily unknown. However, they can be determined in such a way that the eigenvalues of \bar{D}_{1} and \bar{D}_{2} are identical. Then the calculation of matrix g_{2} is equivalent to the observer problem solution

$$
\begin{equation*}
\bar{D}_{3}=\widetilde{V}_{4}-g_{2} \bar{V}_{3} \tag{48}
\end{equation*}
$$

for the reduced system

$$
\begin{align*}
& \dot{\alpha}=\bar{V}_{4} \alpha ; \tag{49}\\
& y=\bar{V}_{3} \alpha \tag{50}
\end{align*}
$$

where \bar{V}_{4} is a matrix of order $n-q-r$ and y involves r output. If the rank of $\bar{V}_{3}=r_{1}\left(r_{1} \leqslant r\right)$ the effective number of output will be r_{1}.

Based on eqn (43) the following relations for determining matrices $\bar{\Delta}_{1}, \bar{\Delta}_{2}$ can be given:

$$
\begin{equation*}
\bar{V}_{5}=\bar{V}_{1}+\bar{V}_{3} g_{2} \tag{51}
\end{equation*}
$$

$$
\begin{align*}
& g_{1}=\left[\bar{V}_{4} g_{2}+\bar{V}_{2}-g_{2} \bar{V}_{3}\right] \bar{E}_{2}^{-1} \tag{52}\\
& \bar{\Delta}_{1}=\bar{M}_{1} \tag{53}\\
& \bar{\Delta}_{2}=\bar{M}_{2}-\bar{V}_{3} g_{1} \tag{54}\\
& \bar{\Delta}=g_{1} \bar{M}_{1}+g_{2} \bar{M}_{2}-\bar{V}_{4} g_{1} . \tag{55}
\end{align*}
$$

Matrix J_{0} is of order $(q-r) \times(q-r)$ and involves $(q-r)$-dominating eigenvalues.
Matrices \bar{D}_{2} and \bar{D}_{3} are of the orders $2 r \times 2 r$ and $(n-q-r) \times(n-q-r)$, respectively, and involve $2 r$ eigenvalues and ($n-q-r$) eigenvalue remainder terms, respectively. The transformation with T_{3} can be omitted ($T_{3}=1$) if the structuring of matrix E reveals that $E_{2} \neq 0$.

Example 3

Given

Linear time-invariant dynamical plant

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll|lll}
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\hline 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1
\end{array}\right] x+B u \\
& y=\left[\begin{array}{ll|lll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right] x
\end{aligned}
$$

Objective

a) Observer matrix G;
b) System observer matrix D.

Step 1

Determination of the transformation matrix T_{1} using eqn (7). $T_{1}=T_{1}^{-1}=I$, Rank $E=1$

$$
E=\left[\begin{array}{ll}
E_{1} & E_{3} \\
E_{2} & E_{4}
\end{array}\right]=\left[\begin{array}{c|cc}
E_{1} & E_{3} \\
\hline & 1 & 0 \\
\hline 1 & 0 & 0
\end{array}\right] .
$$

With $E_{2} \neq 0$ is obtained $T_{2}=T_{3}=I$. With $E_{2}^{-1} E_{4}=\left[\begin{array}{ll}0 & 0\end{array}\right]$ is obtained $T_{4}=T_{4}^{-1}=I$.

Step 2

System transformation to eqns (38) and (39).

$$
\begin{aligned}
& \dot{\gamma}=\left[\right] \\
& y=\left[\begin{array}{ll|lll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right] \gamma \\
& \bar{H}_{1}
\end{aligned}
$$

Step 3
Dynamical determination system observer matrix D using eigenvalues.

$$
\begin{array}{lr}
J=\left[\begin{array}{ccc}
J_{0} & 0 & 0 \\
0 & J_{1} & R \\
0 & 0 & J_{2}
\end{array}\right] & \begin{array}{c}
J_{0}=\lambda_{1}=-1 \\
R=I
\end{array} \\
J_{1}=\begin{array}{l}
\lambda_{2}=-2 \\
\lambda_{3}=-3
\end{array} & J_{2}=\begin{array}{l}
\lambda_{4}=-4 \\
\lambda_{5}=-5
\end{array}
\end{array}
$$

Step 4
Calculate matrix g_{2} using eqn (48).

$$
\dot{\alpha}=\left[\begin{array}{c|c}
0 & 1 \\
\hline 1 & 1
\end{array}\right] \alpha ; \quad y=[10] \alpha .
$$

The system calculation is done by system/output combination $n=2 q$.

$$
\begin{aligned}
& \lambda_{4}=-4, \quad \lambda_{5}=-5, \quad R=1 \\
& M_{1}=1, M_{2}=-6, \Delta_{1}=-10, \quad \Delta_{2}=-30 \\
& g_{2}=\left[\begin{array}{l}
0 \\
31
\end{array}\right] \quad \bar{D}_{3}=\left[\begin{array}{ll}
-10 & 1 \\
-30 & 1
\end{array}\right]
\end{aligned}
$$

Step 5
Determine matrices \bar{V}_{S} and g_{1} using eqns (51) and (52).

Step 6

Determine matrices $\bar{\Delta}_{1}, \bar{\Delta}_{2}$ using eqns (45)-(46).

$$
\begin{gathered}
\bar{D}_{2}=\left[\begin{array}{ll}
\bar{M}_{1} & \bar{E}_{2} \\
\bar{M}_{2} & \bar{V}_{5}
\end{array}\right]=\left[\begin{array}{rr}
\bar{M}_{1} & 1 \\
\bar{M}_{2} & 11
\end{array}\right] \begin{array}{l}
\dot{\lambda}_{2}=-2 \\
\lambda_{3}=-3
\end{array} \\
M_{1}=1, M_{2}=-14, \bar{M}_{1}=-16, \bar{M}_{2}=-182 \\
\bar{\Delta}_{1}=-16, \bar{\Delta}_{2}=-104 \quad \bar{\Delta}=\left[\begin{array}{l}
-272 \\
-464
\end{array}\right] .
\end{gathered}
$$

Step 7
Calculate matrices G and D using eqns (41) and (42).

$$
G=\left[\begin{array}{rr}
2 & 0 \\
0 & 16 \\
1 & 105 \\
1 & 272 \\
1 & 465
\end{array}\right] \quad D=\left[\begin{array}{rrrrr}
-1 & 0 & 1 & 1 & 0 \\
0 & -16 & 1 & 0 & 0 \\
0 & -104 & 1 & 1 & 0 \\
0 & -272 & 1 & 0 & 1 \\
0 & -464 & 0 & 1 & 1
\end{array}\right]
$$

Step 8
Proof: $\operatorname{det}\left(\lambda_{1}-D\right)=0$, i.e., the system observer matrix shows the dynamical behaviour demanded.

5. Conclusion

The design procedure developed represents a novel reconstruction theorem for the deterministic design of complete state observers for multivariable control systems not requiring any transformation into canonical forms, as well as for system developments into single systems. Furthermore, all eigenvalue forms can be used without any exception.

The methodical basis of the procedure is a transformation of the time-invariant linear process model given in state-space representation, the actual design procedure, as well as a subsequent inverse transformation. Under certain conditions this design cycle will have to be done repeatedly.

The observer design for a system of complete order is realized by the observer design for a system of reduced order in a recursive manner. Respective observer laws can be represented.

It is important to note that it is not necessary to check, for complete observability, the system given by (1) through the investigation of the rank of the corresponding $n \times n q$ matrix.
If (A, H) is a completely observable pair, the recursive simplification will terminate in one of the two special cases discussed in $\$ 84.1$. and 4.2. All the eigenvalues can be arbitrarily specified. All the transformations within the procedure are very simple.

References

1 Kalman, R. E. and BUCy, R S New results in hanear filtering and prediction theory, Trans ASME, J. Basec Engng, Ser. D, 1961, 83, 95-108.
2 Bryson A. E. (JR)AND Johansea, D. E.

3 Simon, J D.
4. WONHAM, W M

5 Luenberger, D. G.
6. Bhandarkar, M V. and Fahmy, M M.

7 Kramer, P.
8. Krimer, P.

Linear filtering for time-varying systems using measurements contaning colored noise, SEEE Trans., 1965, AC- 50,4 - 10.

Theory and applications of modal control, Case Institute of Technology, Research Centre Report SRC-104-A-67-46, 1967.
On pole assignment in mult-input controlable tinear systems, $E E E E$ Trans., 1967, AC-12, $660-665$.

Observers for multwariable systems, IEEE Trans., 1967, AC-12, 290-293.

Testing the controllability of hnear tume-minariant systems, Electron Lett.. 1970, 6, 580-581.

Zum Entwurf von Zustandsbeobachtern, msr, Berlin 26, 1983, 5, S. 258-261.
Rekonstruktion des Zustandes inearer zeitinvarianter engangserregter dynamischer Systeme mot Hulfe des vollstandigen Zustandsbeobachters, msr, Berlin 26, 1983, 10, S. 562-565.

