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Abstract 

In this paper, It is shown thal the usymptotic state-observer problem [or a lmear timc-ll1vanant system o[ order 
/I h;wing Ij output can he solved through the solutIon of the sam!:'! problem for a simIlar system of order JJ-q-r 

(with 1 ~r~ql) havmg qj (where 41 ;:;;;q) number of output. The procedure for determmmg the parameters of the 
asymptotic state-observer (matnces D and G) allows consIderable Simplification of the computatIOns and can be 
repeated in a recursive manner. The result leads to a new algofilhm [or designmg asymptotic state-observers for 
multlvanable Imcar tJme-lDvanant systems. 
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L Introduction 

The output or a linear time-invariant system may be used to construct an estimate of the 
system-state vector. The device which reconstructs the state vector is called an observer. 
The observer itself is a time-invariant linear system driven by the input and output of the 
system it observes. Kalman and Buey! dealt with the problem of state estimation for a 
linear, finite-dimensional dynamic plant when all measurements are corrupted by white 
noise_ Bryson and lohanscn 2 have shown that when the measurements are noise-free the 
optimal estimator will he a modification oftJ!e Kalman-Buey filter. Simon' and Wonham 4 

have recognized the duality between the pole-assignment problem and the problem of 
building an asymptotic-state observer. Luenberger5 has proposed an excellent method for 
constructing an asymptotic-state estimator for a single-output system. His observer design 
for a system with Q output can be reduced to the design of q separate observers for a 
single-output subsystem. This result is a consequence of a special canonical form. Almost 
all of the published solutions resort to canonical forms and are not convenient to work 
with in the multiple input-output cases. Since the system is often described in terms of 
variables that are of direct interest, a transformation to canonical form is inconvemcnt. 
The present solution does not resort to the use of canonical forms for the multiple observer 
design. 
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2, Statement of the observer probiem 

Assume that a multi variable linear time-invariant dynamical plant with q output 

x=Ax+Bu 

y=Hx 

drives an observer 

with 

i=Dz+Bu+Gy 

D=A-Gll 

x = x(t) = n x 1 state vector; 
u = u(t) = it x 1 input vector; 
y = y(t) = q x 1 output vector; 
z = z(t)=n x 1 reconstructed state vector. 

(1) 

(2) 

(3) 

(4) 

where A, Band H are constant matrices of appropriate dimensions, Now it is reqnired to find 
a linear observer law z=Gy, where z=z (t) is an 11 x 1 observer signal vector and G is an 
n x q observer matrix in such a way that the n x n observer system matrix D is assigned 
arbitrary dynamics (fig. 1), 

u 

Fig I. Observer m general representation. 

'~­'J H. 
y 

A 
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3. :vIe/hod of the design procedure 

The method of this procedure is based on a step-by-step transformation of the time-invariant 
linear mathematical model (eqns 1 and 2) of the production engineering process obtained 
by means of appropriate process analysis statements and given in a state-space representa­
tiOD. Calculation and an inverse transformation are subsequently performed. In this 
connection, a unique and simple calculation of the observer rnatrix is aimed at, in such a 
way that the system observer matrix D shows the dynamical behaviour demanded. 

The procedure presented is recursive and can be used for the observer calculation of any 
system/output combination (n/q). 

Based on eqn (4) the observer matrix can be determined as: 

G=[A-D]H -1. (5) 

However, this procedure is to be avoided as the output matrix H cannot be inverted 
immediately. 

In order to perform the observer calculation in any case it is assumed that the output 
matrix H is of full rank and can be structured to 

H=[lI , H2] (6) 

where HI = q x q non-singular matrix. 

Now such a transformation matrix is required for allowing H- l of eqn (5) to be substituted 
by H;l 

T, =[/, HjlH2] 
o I n _ q 

where Iq is identity matrix of order q. 

Using X= T,P eqns (1), (2) and (4) will be transformed into 

p=4p+Bu 

where 
y=fIp 

A= Tj'AT, =[Cl 
C2 

fI=HT,=[H , 0] 

B= T J' B 

~J 

5= Tj 1AT,-T;'GHT, 

(7) 

(8) 

(9) 

(10) 

(1\) 

(\2) 

(\3) 

(14) 

where A is the n x n matrix, C, the q x q matrix and in the theorem of Bhandarkar and 
Fahmy6, (V, E) is an observable pair if and only if (A, H) is an observable pair. 
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Thus eqn (14) can be rewritten as 

'r [C1 E] [t.l t.3] 
GlH I O]= C

2 
V - 6., 6. •. (15) 

Equation (15) is valid if and only if t.3 = E, 6.4 = V. 

(16) 

(17) 

The determination of matrices t.l and 6., is based on the following theorem and is done 
in such a way that matrix D has the required dynamical behaviour. 

Theorem 

A 2q x 2q constant matrix 15 

(18) 

where E is the non-singular matrix of order q, and V the arbitrary matrix of order q x q, 
can be assigned to arbitrary eigenvalues by a suitable computation of Al and 11.,. 

Proof 

Let 
(19) 

with 

(20) 

where J 1 and J 2 contain the arbitrarily specified eigenvalues and R is yet to be specified 
to guarantee non-singularity of m,ltrix M. Expanding eqn (19), the following becomes valid: 

[!;J=M-IJ[~:J (21) 

where M, =RE-'; (22) 

M2=[J2- V]E- l ; (23) 

t.l = M,I [J IM I +RM2]; (24) 

A2=J,M2-M,Al · (25) 
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The determination of ~, and ~2 requires that E, M., and R are non-singular matrices, 
and thus the determinant of M is non-zero. 

[ R M3 J[E- 1 0J 
M= J

2
-V M. 0 I' (26) 

Non-singularity of M implies the similarity of matrices fj and J and hence the proof of 
the theorem. By choosing M. such that its inverse exists, it can be shown that non-singularity 
of M is guaranteed if the determinant of (RM 4- - M 3J 2 + M 3 V) is not zero. 

For example, by letting M3=0, M.=I, M-' exists as long as det [RJ ,,0. 

4_ Computation procedure 

Depending on the n/q combination, three special cases have to be distinguished in performing 
the observer calculation. These calculations are aimed at separating matrix E as an invertible 
matrix in any case. Thus the methodical procedure will be supported_ In this connection, 
special cases II and III will be returned to special case I in a recursive manner. 

4.1. Special case I 

This case assumes that the system/output combination is n=2q and matrix E in eqn (10) 
is invertible. 

Example I 

Given 

Linear time-invariant dynamical plant 

,~[! ; : l}+~ 
y=[~ ~I~ ~} 

Objective 

a) Observer matrix G; 
b) System observer matrix D. 

Step I 

Determination of the transformation matrix T, using eqn (7) .. 
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Step 2 

System transformation to eqns (8) and (9) . 

. =[t~ t:]'P+BU 'P 1 2 0 1 
2 1 1 2 

C2 V 

[I °10 OJ Y=OIOO'P 

Step 3 

Dynamical determination system observer matrix D using eigenvalues . 

.1.I=-I+li [-I 0] 
J I = )'2 = -I + Ii -I -I 0 1 

J= 0 0 -2 I 
.1.3= -2+li 

J2 = ) .• = -2-Ji 0 0 -1 -2 

Step 4 

Calculate matrices M [, M 2 , LlI , Ll2 using eqns (22)-(25), and R = 1. 

MI=[ -~ -:J M2=[ -~ -~J 
11.[ = 11.2 = [-2 -2J [0 -2J 

3 -6 -8 -2 

Step 5 

Calculate matrices G and Dusing eqns (17) and (4). 

[CI-Ll[] = [ -~ ~J [C2 -b2J = [I~ ~J 
[_i 1] [-' -2 I 

1] G= D= 3 -6 2 
I ° -2 0 

10 -8 -2 

Step 6 

Proof: det p.! - D) = 0, i.e., the system observer matrix shows the dynamical behaviour 
demanded. 
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4.2. Special case II 

This case assumes that the system/output combination is n < 2q and matrix E in eqn (10) 
is not invertible. 

Objective 

The non-singularity and hence inversion of matrix E can be achieved by means of 
transforming T, and structuring matrix E into the matrices E, and E 1 by suitably selecting 
matrix P, with If! ~ T2i3 and 

T, ~ [~q 1~.J (27) 

where P is the q x q permutation matrix, and m, n -q. System eqns (8) and (9) will be 
transformed into 

jJ = Ai3+Bu (28) 

y = Hi3 (29) 
with 

- -l-· [<", A~T, AT2= <"2 ~J (30) 

- -, [£lJ E=Pq E= E2 (31) 

where £, is the non-singular m x 111 matrix. The observer system matrix D is obtained 
using cqn (18) 

D ~ [!: (32) 

with e'ln (31) and 

(33) 

eqn (32) is extended to 

q-tfO ,-?-------~-c-l 
D= lLo il, E'iJ ·2m 

o il2 vi 
, _____________ J 

(34) 

/ 2m 

Spccial case I (D, ) 
J o is a (q-m) x (q-m) matrix with (n--2m) specified eigenvalues. The m x m matrices l" 
.1, are computed in such a way that matrix D, is assigned to the remaining 2m specified 
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eigenvalues in view of the theorem given in §3. The calculation of the observer matrix G 
is done by an inverse transformation using eqn (13). 

If the matrix E structuring reveals an immediate inversion of E 2' transformation 7~ can 
be omitted (E, ;,,0, T2 =I). 

Examvle 2 

Give.n 

Linear time-invariant dynamical plant 

x=D II ~}+BU 
y=[~ ~I~} 

Objective 

a) Observer matrix G; 
b) System observer matrix D. 

Step 1 

The submalrix HI cannot be inverted immediately, i.e., the permutation of the system is 
necessary. 

o 2] 
1 0 ry+Bpu 
2 I 

~I~} 
Step 2 

Determination of the transformation matrix Tl using eqn (7). 

Step 3 

System transformation to eqns (8) and (9). 



A RECURSIVE OBSERVER DESIGN IN MULTI-OUTPUT SYSTEMS 325 

y=[~ 0 I ~} 
H1 H2 

Step 4 

System transformation with matrix T2 using eqn (27). By inspection E=[~J=[~l It is 
to be seen that the submatrix E2 cannot be inverted. Therefore, a transformation with matrix T2 is necessary. 

15 1 E 

T2=T,1=n n [1 2 ~}+BU 0 t= 0 I 
0 2 1 

152 V 

y=[~ ~I~]p 
Step 5 

Dynamical determination system observer matrix D using eigenvalues 

Step 6 

[
J 1 I R l [1 0 OJ 10=-1 

1= ~J= 0 11 R 11=-2 
o 0 12 1 2=-3 

Calculate matrices M!, M 2 , Lib Li2 using eqns (22)-(25) and R = I. 

M1 =0, 5, M2 = -2, ii! = -6, ii2 = -6. 

Step 7 

Calculate matrices G and Dusing eqns (17) and (4). 

D=[~ -~ -~J 
o -6 

Step 8 

Proof: det ().,-D)=O, i.e., the system observer matrix shows the dynamical behaviour 
demanded. 
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4.3 Special case III 

This case assumes that the system/output/combination is n>2q and E in eqn (10) can not 
be inverted (rank r of matrix E is 1 "'r"'q). 

Objective 

Provided matrix Ez cannot be inverted by transformation Tz, the non-singularity of E2 
and its ability to be inverted has to be realized by transforming T3 and structuring matrix 
E into matrices E 1 through E4 by selecting matrix P in T, in a suitable manner. 
Transformation T4 enables approaching E4 =O. Thus, matrix 92 can be determined and 
hence the observer problem can be solved using eqns (48)-(50). With f! = Ti'; and 

[
I, 0 ] 

T3 = 0 Pm ' 

where P is m x m permutation matrix such that 

E = EP m = [~1 ~'J 
Ez E4 

where £z is the non-singular matrix of order r. Using Ii = T.y and T4 

[

Iq 0 
T.= 0 I, 

o 0 

the transformation gives 

with 

y=Ay+Bu 
y=f1y 

A=T;;-IAT
4

= <;:1.Z.1~L2'2~Z 
[

C1.1,1
C

1 l,2El E_-o'] 

C2 .3 ,1 C2 3.2 V, V, . 
CZ•4 ,1 C2•4 •2 Vz V. 

The observer system matrix i5 will be obtained using eqn (18) with 

=[1:] =[~o il 
.1. 0 ~ J 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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~j~----O----E;--lE'l U r-----------~ : 

D'~~~: 
as 

(42) 

Special case II Special case I 

The determination of matrices ~,' ~2 and ~ is done by solving the matrix equation 

D,Ro=RoD4 (43) 

where Ro is the non-singular matrix. With 

[K' £2 ~,J D, = ~2 V, (44) 

V2 V4 

[M1 £2 

~, J. D4= ~2 Vg (45) 
0 D, 

and 

- [D2 D4= 0 fJ withR=[~J (46) 

respectively 

U 
0 

o ] Ro= 0
, 

I, o . (47) 

g2 l l1 - q - r 

In this connection, matrix 154 is equivalent to matrix J in eqn (20) and g, and g2 are 
matrices temporarily unknown. However, they can be determined in such a way that the 
eigenvalues of D, and 152 are identical. Then the calculation of matrix 92 is equivalent to 
the observer problem solution 

15, = V4 -g2 V, 
for the reduced system 

ci=V4 a; 

Y= V,,, 

(48) 

(49) 

(50) 

where V4 is a matrix of order n - q - rand y involves r output. If the rank of V, = r 1 (r 1 ,,; r) 
the effective number of output will be r , . 

Based on eqn (43) the following relations for determining matrices ~,' ~2 ,an be given: 

Vg = V, + V,g2 (5\) 
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g, = [V4 9, + V,-g2 Vs]E,J 

ZiJ=MJ 

Zi2=M2-V,gJ 

Zi =gJMJ+g2M2-V.gJ' 

Matrix Jo is of order (q-r)x(q-r) and involves (q-r)-dominating eigenvalues. 

(52) 

(53) 

(54) 

(55) 

Matrices D2 and D, are of the orders 2r x 2r and (n-q-r) x (n-q-r), respectively, and 
involve 2r eigenvalues and (n-q-r) eigenvalue remainder terms, respectively. The 
transformation with T3 can be omitted (T, = 1) if the structuring of matrix E reveals that 
E2 ",0. 

Example 3 

Given 

Linear time-invariant dynamical plant 

II 0 1 1 OJ ° ° 1 ° 0 
X= 1 1 1 1 ° x+Bu 

1 ° 1 ° 1 
1 1 0 1 1 

[
1 010 0 0J 

Y= 0 1 0 0 0 x 

Objective 

a) Observer matrix G; 
b) System observer matrix D. 

Step I 

Determination of the transformation matrix TJ using eqn (7). T
J 
= T, J = J, Rank E = I 

E, E, 

E=[!: !:J=D I ~ ~J. 
E2 E4 

With E,#O is obtained T2=T3=I. WithE,'E4 =[O 0] is obtained T
4

=T;;'=1. 



A RECURSIVE OBSERVER DESIGN IN MULTI-OUTPUT SYSTEMS 

Step 2 

System transformation to eqns (38) and (39). 

C1 E 

l' 'I' .oj o 0 1 o 0 
y= 1 1 I I 0 y+Su 

I 0 I ° 0 
I 1 0 1 0 
C2 V 

y=G °1 0 0 ~} 1 0 0 

H1 Hz 

Step 3 

Dynamical determination system observer matrix D using eigenvalues. 

Step 4 

[

10 0 
.1= 0 .1, 

o 0 

},,=-2 
11 = ,13=-3 

Calculate matrix gz using eqn (48). 

. [Or IJ -a=[TIl a; y=[IIO]a. 

The system calculatiou is done by system/output combination n = 2q. 

,{4=-4, }'5=-5, R=I 

M 1 =1,Mz =-6,A 1 =-1O, A2 =-30 

gz=[~~J D3=[ =~~ :J 
Step 5 

Determine matrices 175 and 9, using eqns (51) and (52). 
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Step 6 

Determine matrices ~"K2 using eqns (45)-(46). 

- [M' EV=-5'J=[jM~2' lJ ·i·
2 =-2 D2 = M2 11 i· 3 =-3 

M1 = 1, M2 = -14, M, = -16, M2 = -182 

~, = -16, ~2= -104 ~=[ =~~~J 
Step 7 

Calculate matrices G and Dusing eqns (41) and (42). 

G~li ~~J D{ =1~ : j lJ 
Step 8 

Proof: det(l.,-D)=O, i.e., the system observer matrix shows the dynamical behaviour 
demanded. 

5. Conclusion 

The design procedure developed represents a novel reconstruction theorem for the 
deterministic design of complete state observers for multi variable control systems not 
requiring any transformation into canonical forms, as well as for system developments into 
single systems. Furthermore, all eigenvalue forms can be used without any exception. 

The methodical basis of the procedure is a transformation of the time-invariant linear 
process model given in state-space representation, the actual design procedure, as well as 
a subsequent inverse transformation. Under certain conditions this design cycle will have 
to be done repeatedly. 

The observer design for a system of complete order is realized by the observer design 
for a system of reduced order in a recursive manner. Respective observer laws can be 
represented. 

It is important to note that it is not necessary to check, for complete observability, the 
system given by (1) through the investigation of the rank of the corresponding n x nq matrix. 

If (A, H) is a completely observable pair, the recursive simplification will terminate in 
one ofthe two special cases discussed in §§4.1. and 4.2. AU the eigenvalues can be arbitrarily 
specified. All the transformations within the procedure are very simple. 
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