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Abstract 

Axgsymmetric free convectlon due to  a travellmg thermal wave mposed on the circumference af a long vertml 
column of a nmd-saturated porous medium wlth circular cross-sectmn a studled analytically. Solutions far both 

~ ~ 

the velocity and temperature fields are obtamed usmg the long-wave approximation The medlum 1s assumed to be 
highly porous and the fluid saturating the medium Bouss~nescl mcom~ressible. The mteraction of the first-order . ~ . . 
nuctuat~ons gves m e  to  second-order mean an the velocity and temperature fields for whlch analytical solutions 
are obtained. 
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1. Introduction 

Free-convection flow and heat transfer In enclosures filled with porous materials is one of 
the contemporary subjects of study owing to its intrinsic importance in various fields of 
geological and geophysical interest. Consequently for such problems of flow and heat 
transfer, several investigators have presented at~alytical, numerical and experimental results 
for many of the fundamental geometries1-'. 

Fluid flow induced by a moving source of heat in the form of a travelling thermal wave 
was investigated both analytically and experimentally by Whiteheadx. By postulating series 
expansions in the square of the aspect ratio (assumed small) for both the temperature and 
flow fields, Whitehead obtained an analytical solution for the mean flow produced by a 
moving source. Theoretical predictions regarding the ratio of the mean flow velocity to the 
source speed were found to be in good agreement with experimental observations in 
mercury which therefore justified the validity of the asymptotic expansions a posteriori. 
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Following Whitehead" Nanda and Purushothamang made a linearised analysis of the free- 
convection flow induced hy a travelling thermzl wave on the circumference of a long vertical 
circular cylindrical pipe filled with a thermally conducting viscous fluid and obtained 
solutions for the velocity and temperature fields using the long-wave approximation. 

In the present work, we investigate yet another problem of fundamental interest, namely, 
the unsteady flow induced by a travelling thermal wave imposed on the circumference of a 
long vertical cylindrical column of a fluld-saturated porous medium with a circular cross- 
section. The medium is assumed to.be homogeneous and isotropic and of porosity close to 
unity: for instance, the xylem of a plant containing the pith cells. As the medium is highly 
porous, non-Darcian phenomenon is predominantly felt near the boundary lo, and therefore 
we consider the generalised equation of Darcy's law taking into account both the viscous 
and inertia effects. Assuming the wave to be sinusoidal, we carry out the analysis for the case 
of both incoming and outgoing waves, and following Whiteheada, we seek a perturbation 
solution using the long-wave approximation. Owing to nonlinear interactions of the lower- 
order effects a secondary mean flow is encountered for which an analytical solution is 
obtained. The interest in this topic is motivated in part by the growing emphasis on the 
possible convective transport processes in highly porous media like the pappus of dandelion 
and fibres when they are exposed to periodic fluctuations in the temperature. 

2. Mathematical formulation 

We consider the free convection flow through a porous medium in a long vertical cylinder of 
circular cross-section due to  a travelling thermal wave imposed on its boundary. We assume 
the boundary to be impermeable and the wave to be sinusoidal of amplitude At, wave length 
?n,'k and frequency, w. The fluid in Boussinesq incompressible with the density temperature 
relation. 

where p is the fluid density, p,  its value in the reference state, P the thermal expansion 
coefkient and T the temperature. 

A cylindrical polar coordinate system (r, rp,z) is chosen with the z-axis as axis of symmetry 
and in the direction opposite to that of the gravity vector. On account of axial symmetry 
neither (o nor the rp-component of velocity appears in the analysis. Then, neglecting the 
compressibility erects of the fluid, the equations for the conservation of mass, momentum 
and energy in the medium in the absence of dispersion eNects are: 
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ZT T  ZT (id: IZT b 2 T )  
7 + l 1 7 + 1 ~ ; - = S (  -+--+- 
ct rr cz r- r  Zr ai2  ' 14) 

where p is the pressure, s the kinematic viscosity, K the medium permeability, a the effective 
thermal diffusivity, r the time and u and w  are the velocity components in the increasing 
directions of r and z, respectively. It is further assumed that both the medium and the 
saturating fluid are in thermal equilibrium. 

The boundary conditions necessary for the completion of the mathematical formulation 
are 

u = O , w = O ,  T=ATs in (kz+~ t )on r=a ,u ,w ,  Tfinite at r = 0 .  ( 5 )  

We take advantage of the continuity equation (2) to define the stream function ~ such 
that 

and eliminate the pressure terms in the momentum equations through cross differentiation. 
Following Whiteheads, we introduce the non-dimensional variables r', z', t', $', T': 

r' = r/a, z' = zk, t' = (vk2)t, *' = ( ~ / a k i , ~ ,  T' = T / A  T  (7)  

and substitute into (3) and (4) to  obtain for the conservation of momentum and energy (after 
dropping the primes), 

where 

K' is the permeability parameter (Kk2) ,  ?. the aspect ratio (ak), P the Prandtl number (v /a)  
and G the Grashof number [=(l(a2g/kv')AT].  In this formulation, the boundary 
conditions reduce to 

l a $  l a $  -- .- 
I az,  

a r .  T finite at r=O, 

where V ( = ~ / s k ~ )  is the non-dimensional form of the velocity of propagation. Positive and 
negative Vs represent, respectively, an incoming and an outgoing wave. While the 
boundary condition ( I lb)  ensures the regularity of the flow along the axis of the pipe, the 
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continuity requirements insist that the total mass flux across any normal section must be a 
constant. This then implies 

j"lz[I rwdr dv = constant, 

yielding one additional condition, namely, 

$( l , z .  t )  = constant, 

which we shall denote by Q. 

- 3. Results and discussion 

In view of the boundary conditions and the assumption of the validity of long-wave 
approximation (2 < I), we seek solutions for $ and T as suggested by Whiteheads in the 
form 

Substituting (13) into (8) and (9) and collecting terms of equal powers in I, we obtain the 
equations for the solutions of the functions $i and O,(i = 0,1,2, ...). The appropriate 
boundary conditions are obtained from (11) and (12) with the help of (13). 

3.1. Zeroth-order solution 

The functions $, and Bo are found from the solutions of the equations 

where L is the differential operator defined by 

The appropriate boundary conditions are 

-- la'' -- ' "' nite at r=0, 
r az ' r  ar f i  

$ d l .  r t )  = Q. 
System (14)-(16) yields, 

$, = Q(2r2 - r4), 8, = sin(z + Vt). 
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As expected, the zeroth-order solutions do not involve the permeability parameter K'. 
Further, the expression for $,, being independent of z and t, corresponds to Poiseuille flow 
due to the constant mass flux in the axial direction and it exists in the zeroth order only. 

3.2. First-order solution 

Substituting (13) into (8)  and (9)  and collecting the coefficients of A*, we obtain the equations 
for the determination of $, and 8,: 

The associated boundary conditions are 

We note that equation (20c) is a direct consequence of the fact that there is no mass flux at 
higher orders. From (18)-(20) we have 

+ 3V(r6 -2r4+rz ) )  cos (z+ Vt)+  3(r6 -2r4+rz )  sin (z+ V t ) ]  (21) 
and 

1 
c o s ( z + V t ) - - ( I - r 2 ) s i n ( z + V t ) .  (22) 

4 

The expression for 8, consists of two parts: the first relating to free convection and the 
second to pure diffusion only. On the other hand, the first term in the expression for $, 
represents the mean mass flux which is essentially due to the porous medium whereas the 
second term is due to the thermal forcing. 

The vertical velocity. fluctuations, caused by the buoyancy force, induce fluctuations 
in the radial velocity also and are found to be not in phase with the forcing mechanism. 
These phase differences, which are functions of r only, are necessary to support the 
mean flow in the fluid. As the interaction of the first-order fluctuations in the stream 
function and temperature gives rise to the second-order mean in the velocity and 
temperature fields, the coefficients of A4 in (13) can be split into two parts, one dealing with 
the second-order mean and the other, the unsteady second harmonic ~ o l u t i o n ~ ~ ~ ' ~  

Thus if $,, and O,, denote the second-order mean in the stream function and 
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temperature, respectiwly, then 

From (23)-(25) we obtain 

and 
&, = (GP2,'lS432)[Q. H ( r )  + V. J ( r ) ] ,  

where 
H ( r )  = - (r8 - 16r6 + 42r4 - 40r2 + 13); 

The mean axial velocity is now given by 

u here, 
X(r)  = 2r6 - 6r4+ 5r2 - 1 ,  

In the limit K'-+m, we recover the results obtained by Nanda and Purushothamang. 
Graphs ofthe functions X, Y and Z are plotted in fig. 1 from which one can observe that the 
functions X and Yare both negative near the axis of the pipe and positive in the core region 
near the boundary, and that they are not affected by the phase velocity. On the other hand, 
the function Z is strongly dependent on the direction of V and it plays a dominant role in 
the assessment of the magnitude of w,,. When the wave is incoming the magnitude of w,, is 
suppressed by Z, whereas it helps in increasing the magnitude of w,, when the wave is 
outgoing, so that the mean flow is more rapid when the wave is outgoing than in the 
opposite case. However, w,, is negative near the axis of the pipe and positive in the core 
region near the boundary so that it tends to zero somewhere midway between the axis and 
the boundary and on the side opposite to that of the axis. When the wave is incoming, back 
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Fic. 1 Graphs of the functions X ,  Y, Z; (a) incornlng 
rva\c- 103Z, (b) outgomg wave: 103Z. 

flow sets in this core region near the boundary, whereas the mean flow near the boundary is 
in the same direction as that of the travelling wave when the wave is outgoing. Physically 
this is meaningful, since the heated fluid is displaced upwards by the ambient fluid from 
approximately its own level due to density variations in this buoyancy-driven thermal 
convection. One of the striking features of the flow is that for smaller values of K', w,, is 
large. In fact, lower the value of K' is, higher is the mean velocity w,,. This is physically 
possible, because, when the permeability of the porous medium decreases, the medium 
becomes less porous and hence the flow resistance decreases. Lastly we note that the mean 
flow will be absent if the thermal wave is stationary and the imposed flow rate is zero. In the 
absence of mass flow rate, the mean axial velocity is independent of the parameter K' and is 
directly proportional to the square of the amplitude of the thermal forcing which is the same 
as obtained by Nanda and Purushothamang. 
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