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Abstract

The problem of an external crack m a semi-mfinite circular cylinder has been nvesugated under a special type
of loading of the curved boundary of the cylinder The problem has been solved through*the approach of dual
series relations mvolving Bessel functions and their reduction to a system of Fredholm integral equations The
resulting Fredholm equations have been solved numertcally and the results have been presented in the form of
graphs for vanous values of the parameters involved.
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1. Introduction

The use of integral equation methods in mixed boundary-value problems of elasticity theory
forms a wide topic in applied mathematics. A special class of axisymmetric problems, in
the cylindrical coordinate system, is known to result in the problem of solving a dual
integral equation or a dual series relation (see Sneddon?), involving Bessel functions of the
first kind. Various authors®~® have tackled a variety of axisymmetric problems of elasticity
theory and viscous flow theory, by using the method of reduction to dual integral equations
and allied ideas. In the area of fracture mechanics, the problems of internal and external
cracks in half-spaces have been tackled by Srivastava and Singh® and Dhawan'®,
respectively, and it is observed from the works of Sneddon and Tait'', Chakrabarti'?,
Sneddon and Srivastav'? and Srivastav'* that there exists a certain amount of mathematical
complexity to handle similar axisymmetric probiems associated with cylinders of finite
radius.

In the present paper, we have demonstrated the application of dual series relations to
an axisymmetric mixed boundary-value problem of elasticity theory associated with an
external crack in a semi-infinite cylinder whose flat end is stress free and the curved boundary
is constrained in a particular manner. Using standard notations'!!2-!5 the boundary
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conditions of the problem are given by:

¢,.,=0=0,, onz=—h for0<r<a (L.1)

u=0=0,, onr=g for —h<z<owm (1.2

0., 07) = 0,.(r.0%) = = p(r), for t<r<a (13)
and

6,.(n07)=0,.(r,0%}=0, forI<r<a (1.4)

where 1, u, and u, represent the components of displacement and 6,,, 0., etc., represent
the components of stress in the cylindrical polar coordinate system (r, 8, 2) with its origin
Iying on the plane of the crack situated at a distance h(> 0) from the flat end of the
semi-infinite circular cylinder of radius g, the crack itself occupying the region 1 <r <a of
the plane z =0.

The above problem will be solved here by using an approach similar to that employed
by Sneddon and Tait'* and Chakrabarti!? involving the application of dual-seties relations
to such boundary-value problems where the problems of an internal penny-shaped crack
in an infinite and a semi-infinite circular cylinder, respectively, have been tackled. By
following the procedure of Sneddon and Srivastav'® and Srivastav'“, we have reduced the
present problem to that of solving a system of Fredholm integral equations. After showing
the connection of the solution of these equations with the quantities of practical interest
to workers of fracture mechanics, we have solved these equations numerically and have
presented the solution in the form of graphs for various values of parameters.

2. Reduction to a system of Fredholm integral equations
We start with the following representations of the biharmonic axisymmetric stress function

W{r,z) (see Chakrabarti'? and Love'®) in the two regions z>0and —h<z<0 (0 <r<a),
respectively:

{18

Yir,z)=

n

(A, + B,2) ] (£, exp(—&,2), (for z>0,0<r <a) 2.1)

1

and
X

Y(r,z)=Y [C,cosh&,(z+h)+ D,sinh &,(z + )+ E,(z + h)cosh &,(z + h)

=1
+F(z+hsinh &, (z+ W], (&9 (for ~h<z<0,0<r<a) 22)

where A,—F, are arbitrary constants to be determined with the help of boundary
conditions (1.1)~(1.4) and ¢,s are positive zeros of J, (&), J. ,(x) being the Bessel function
of the first kind of order y. The choice of the ¢,s automatically satisfies the conditions (1.2),
and the rest of the conditions in (1.1)-(1.4) lead to the following system of dual series
relations {see Sneddon and Tait'! and Chakrabarti'2) for the two sets of unknowns 4,
and G,:

; (M, A, + N,G)E2J (510 =00<r<1 (2.3)
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S (Pt + QGG TG =0,0<r <1 4
a=1
Z A+ =20GI1ET (&N =-prhl<r<a 2.5)
S (e = 21G)E T (6N =01 <r<a 28
n=1

where 7 is Poisson’s ratio of the material of the cylinder,
G, =Bt
Yn=Cuh 2
Mop o (2 —2n)(1 T y,cosech? y, +coth y,)

yZcosech?y, — 1

Ny=—2qM, - K,, 239

Q,=K,+(1-2n)P,,

K, = 2 - 2my; Czosechz In.
yicosech®y, —1

The procedure by which one arrives at the system of dual series relations {2.3)-{2.6) is
laborious, but automatic and straightforward, if one makes use of the two representations
(2.1) and {2.2) for the stress function in the two regions, expressions for the displacements
and stresses in terms of ¥ and looks at the boundary conditions (1.1)-(1.4).

We next reduce the above system of dual series relations into a system of Fredholm
integral equations by an analysis that is similar to that of Sneddon and Srivastav*® and

Srivastav'®.
Setting
[4,+(1—=21)G,}é¢= T,=R,+ R,
[4,—2G,1& =S, (29)

and choosing

2 a
R = TR JZ(a-_é‘)j ud,(Epu) plu) du 2.10)
n n 1
so that
Z RME T (EN=0, forO<r<l (2.11)
and
Z RME, (&)= —p(r), forl<r<a. (2.12)

n=1

We observe that the system (2.3)—(2.6) is equivalent to the following system of dual relations
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for the unknowns R, and S,:

i {@P, + Q)R+ & (1= 20)P, — @18, } To(&r)
i -

=

2r1P + 0IRP I, 0<r < 1)

uMa

=

3 {@nM, + N,)R, + & [(1 = 2)M, = N,15,}J (&7)
n=1

~ 3 1M, + NIRI T, E,0<r< 1)
n=1

Ies

&I =0= § S <r<a) @13)

n

The first two equations in the above system can further be reduced to

=0 § RGN = § KRG~ 3 GRS =00 <r <1
(2.14)

- KRR+t ¥ SN - T 6 ST

=¢(r),(0<r<l) (2.1%)
by making the following substitutions
Xy=4—4n—~(2P, +Q,)
Y,=4—dy—[(1~2)M,~N,] (2.16)

both of which tend to zero as y, - co [¢f. equations {2.8)], and writing ¢, {r) and ¢, (r), for
the terms on the right of these equations, which take the forms [by the relation (2.10)]

(4 an — X ) (E,) T, (E,r
bil)=—5 f fp(t)[ & J3aE,) ]dt

2 2 K&, (&0
by(r)= ‘Fjl lp(l)[n;xw]dt. 2.17)

Assuming the unknowns R, and S, to have the following forms, in terms of two unknown
functions g, () and g,(t):

R,= WJ g;(0)cos &, tde
and

_ 2 1g,0) .
S, = WaZJi(a.f,,) foTsm g,tdt (2.18)

and following the procedure adopted by Sneddon and Srivastavi®, Srivastavi* and



AN EXTERNAL CRACK IN A SEMI-INFINITE CYLINDER 345
Chakrabarti'®, we see that the last two of the equations (2.13) are automatically satisfied
and the first two which have been rewritten as the equations (2.14) and (2.15) get transformed

into the following system of Fredholm integral equations:

1
g.(n + J [Li(r0)g1{0) + Lo(r0)g2 ()] dt = £, (1) (2.19)
0

r)+j [M(r,)g:(t) + M,(r,0)g, (D] dr = f5(r) (2.20)

for 0 <r< 1, where

4 4 (= 1 tx (rx 2
L= ——+— L Kl(x)[mcosh (;)cosh \7> —;:'dx

mﬂl1 - 2 = Coz(fgil?i = (2.21)

L) = = 11 — 1 ": K, Su;(j t()::j (&) o)
QR S

(2.23)

Y, sin (£, ) cos (&,7)
&P T3 ag) _
Z Y, sin (&, ) sin (&,r) 02 Z Y, sin(£,¢) sin(€,7)
2r”2 S ERJ3aé,) = SR I3eg,)

1 1 1
M2<’*”=‘mz —5

=
,l[\’]a

2 .,
—— PR L1210 5 31K 5,1, 120 56)] (2.24)
it

4—dn— X )], (Et)cos (&,1) :
fiO=20 n)f i [ g, J3(aZ,) } ! (2239

and
1 & K,J, (&, sin(E,r)
fz(')“mf ”’"[ 23 et
K, J (& nsin(é,r) 1 K, J (€t cos(&E,7)
2,.1/2 ZI—EW 2 Y Z Tf(ﬂf)—_}dt {2.26)

All notations appearing in the above equations have the same meanings as those utilised
in the works of Sneddon and Srivastav'® and Srivastav'* and all series appearing there
can be easily tested for their uniform convergence for r,t¢(0, 1).
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The equations (2.19) and (2.20) are the desired Fredholm integral equations for the mixed
boundary-value problem posed through the conditions (1.1)~(1.4).

3. Quantities of physical interest

Using the expressions (2.10) and (2.18) as well as the expressions for displacements and
stresses in terms of i/ (see Love' ) and some standard resuits available in Sneddon’s book?,
we obtain, after some lengthy but straightforward manipulations, the following results:

1 bog/()d
0= 2 [ A0 6
d [t gy{)dt
0= =2 [ B0 0<r <, 62)
and
om0 =40-n & L&D [f
ur,0%)= E |: 2 £ E T3, jltp(t)./',,(f,,t)dt

! nd:r 41
200 | G2

_ 1
7 W)J g, ()a® — )2 dr
a 0

41—n = K, (y) ty ry
- fo gl(t){fo y—wll(y)cosh <;>[211(y)—y10<;>]dy}dt]

forl<r<a, (3.3)

where, and even before I,(x) and K,(x) represent the modified Bessel functions of the first
and second kind, respectively.

The most important quantities of practical interest such as the stress-intensity factors
(K, K,) at the tip of the external crack and the work done (W) in opening the crack are
then given by the following relations:

Ky =lm{{2(1 - n}*"*{o,.(r0:0<r < 1}]
=g.(1), (3.4
Ko=lm[{2(1 - N} {o,r0:0<r<1}]
r—1

=4g,{1), (3.5)
and

W=27rj rp(r)u,(r,0)dr. (3.6)
1
In order to facilitate the computation of the above quantities of practical interest, we have

taken up a particular case of the crack being opened by a constant pressure p, and have
presented in the next section, the numerical method of solution of the system of Fredholm
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equations (2.19) and (2.20). Using these numerical solutions the stress-intensity factors X
and K, are presented in the form of graphs.

4. Numerical solution of integral equations: Case of constant pressure (p,)

In order to solve the system of integral equations (2.19) and (2.20), numerically, we have
reduced the system to a system of algebraic equations by a technique similar to that
described by Srivastav and Narain'”. The integrals involved in the kernels L, , and M, ,
have been evaluated by ten-point Gauss quadrature formula whilst the series appearing
therein have been summed up by taking 10 terms. Then the integrals in the equations (2.19)
and (2.20) have been replaced by Simpson’s 11-point formula of the type:

j Li(r,t)g,(t)dt = _i w, Li(r,t;)g(t,). 4.1
Q i=

We have thus obtained a system of 22 algebraic equations for the 22 unknown quantities
g1(r.), g2(r:)i=1,2,...11, where we have taken r, = (.1)(i — 1). The inversion of the resulting
system of algebraic equations has then been carried out for

a=16, 20
and
1 =0.05,0.45, by taking a number of values of A. 4.2)

Using the numerical solution thus obtained, of the integral equations (2.19) and (2.20), and
using the relations (3.4) and {3.5), the variations in the stress-intensity factors K, and K,
as functions of k, @ and » are presented in the form of graphs (fig. 1-4).

a=2.0
a=1.6
450
100}~
m
e
* 400}
£ =0.05
<
3501~ 7=0.45
L 1 i X 1

FiG. 1. Shear stress-intensity factor vs depth of the Fig. 2. Normal stress-intensity factor vs depth of the
crack. crack.
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-7710

-7750

Kilpy % 165

7790
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FiG. 3. Shear stress-mntensity factor vs depth of the Fic.4 Normal stress-intensity factor vs depth of the

crack.
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