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AilS TRACT 

In thi~ pnper we have discussed the problem of sm .. ··don and injection and of 
heat transfer in a pilln~ Couette flow wit bout imposing the condion of smallness on 
ttle suction parameter or su...:h similar conditions on tbe Reynolds number to allow 
series solution. We have utilized some important properties of differential 
equations and s:ome transformations which. enable us to solve the two-point 
boundary valu~ and cigcnvaiw..~ ptobl~mil. W!thout us ink~ the trial and error method. 
In fact, each integration provides us with a s.olntion for a .:.:u.rtlon parameter and. a 
Reynolds number. We: bdeive lhat tho melhoJ outlin;:od here c~uu btJ easHy 
adopted to a vdJc class of.simHa.r p1obl~ms. 

I. ] !' !'RODU CT!ON 

In this paper we have discussed the problem of suction and 
injection and of heat transfer in a plane Couelte flow without impo;ing the 
condition of smallness on the suction parameter or such similar conditions 
on the Reynolds number to allow series solution. We have utilized some 
important properties of differential equations and some transformations 
which enable m; to solve the two-point boundary vaiue and eigenvalue 
problems without using the trial and error method. In fact, each integration 
provides 11s with a solution for a suction parameter and a Reynolds number, 
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We believe that the method outlined here c~:n brJ en-..ii.;; ;,t~Lpu~d ·~n D, \".df.J{~ 

ciass of similar problems. IJesides~ w~ have applied the snc[ivd o:;: i:!.k~~il'll 
only on the fixed plate so d.a! the usuoJ boundary conditi<'ll ''" c:r .. s;­
:fiow, namely the injection at one pkte is equa1 to the sue don at t::~ c...d h..:.r ~ 
has not been employed. 

2~ BASIC EQUATiON~ OF TilE PROHLb:-! 

Let the infinite plane y = 0 be stationary whHe the pL1nf: y a he ::nt"lving 
with uniform velocity U0 in the d]recticn of the x-nxls \Ve m;,dnt~1in these 
planes at coustant temperatures 7.0 and T1 :re-spectively. I'doreover. unif~!rm 

injection or suction with velocity v ~ ± v0 I "o > 0) is anplied on tile plane y 0, 
while the upper plane is non-porous. Here the plus sign rcf•:r> to lnjection 
and the minus sign to suction. 

Since we have taketl the suction or injection to be unif,>rm, we assmne 
that the cross~velocity o is a. function of y alone. We shall use the di!:icruion­
less variables u, v, X, y, p, e for 

and denote the suction parameter v0 a/v. Reynolds number U0 a/v, !'J;!JH.lt1 
number !J.Cp/k, Eckert number UJ/(c. (T1 - T0 )] by il, R, p,u:d E :> . '' 

Thus the equations of thov problem and the boundary condition::; reduce 
to the following: 

with Y=O: U=O, v- ::1;1, 8-0 

Y=l: U=l, v~O, e-1. 

[2.2} 

(2.3] 

[2.4] 

[2.5) 



:3. From 

where uu(Y) is ::tn 3rbitrary functiDn l.o be determined later. Equation 
dollermines "(x, y) in terms of u0 and (y ). 

Since u- 0 at y ~ 0 and u = l at y ~ I for all values of x, we have the 
following boundary conditions to be satisfied by u0 and v'; 

,,(o)-0, v'(O)=O, 

ii0 (l)·•l, v'(!)-0. [3.2] 

Similarly, the integration of the equation gives us 

p(x,y)~ I 1 . l , ] ( ) ---- v + v +Po x , 
2 

where p0 ( :..) so fu.r an arbitrary function to be determined later en. 
Eq!llalion determines p(x,y) in terms of v\y) and p0 (x). 

Using [l.l] and in [2.2] auj concentrating on ihe powers of x that 
occur in i:he equation, we find that we should take the following 

-dpn(x)!dx"' Ao +A, x, 

where A 0 and A1 are constants and then thi' equation breaks into the following 
two equations which are indeper.dent of x: 

' Uo ~ Ao + u~' (y) , 

A. 2 [v' (y )]2 --A. 2 "(y) ," ;y) + il/" 

[3.5] 

[3.6] 

Equation [3.6] determines " for prescribed values of A and A., while [3.5] 
then determines the value u0 for presc1 ibed vaLle of A0 . Boundary conditions 
for [3.t] are 

[3.7] 

while for [3.5] l.h~y ;ere the following: 

[3.8] 



'V'Je ~l::.:.tH nrst evnccn:r.~.te on 1hc equn~lvn v.'hich :ls of third ord;::r 
:u1d ha~ :o satisfy four boundary con..Ji:lcns 7]. Therefon:, '"'e s.:-~•~H 
~re:!.t ~hi" two pDiK:.;. bcn2nC:ary ·.;a~ue· pr::biern a! au 
Jet:::rmine tht; eig:;,r:.v~due A 1 ;J::.e he 1 p of the: fo·~:rth co:v.wiUon, 

is convenk:nt t<:;> u:se d.:e variable = ~- .5'' so that we can start '~<ith t\t<!O 

null co::tdhiuus -v _. t(, ,/ = 0 e~;: Y = f.L F~1rtber the transfor:.:nation 

the following form: 

[3.9] 

[3.Hj 

[3.12] 

V<le hav-e put dow a the ± the :r~ght hand skie of in ord<ar 
to enQ.u.re that A1 :~• posi~h'e ii1 \Ve ~ta-rt tbe: integration at -.. 0 with 
ad.d:it:omi! ccndition yn = m J.nd <=·O!ltLEte the till the 
CtH.ltHt1on v·~- 0 i'i """ t'n with v(~o) = Knowing Eo 
~~nd Yi}" w.e d:~<e-rmlr~.e lh>e ·~.;aluc of and A from tte b.Jur.,rla:-y conditions 
fJ. i2l viz .. 

ThtH -..ve tw.v~ ..:~btu.ined 
eJge1iv.sJua 

at~25tm1;'1d,'·n 

[3.J3] 

and. the 
Different 

t.I::::.t ~J.ch inae~ra~ion ·;vith arbitrary 
\'alue cf Stlc!i(J'i1 p2i&meter ard 

Sinc.e- A, fs nc,'£ nt:"cessa.ri1y equal to zero. but a 
e::n:·j vodtoe cf suction tJ,f;\r8.met:er. we cocci ude that 

1~-;du,:.:~s a prcs~:ure gr,:id.ient which is dependent on. 

[3.5), 1n order to avoid the specific 
va~ue c:·f t.be co:o.st~nt Ao occuring in it. we 

asl~,;ke th\;: foHo .. vir.g sub£:;Jtutivn : 

;?:::.G \W(;rk tbr~.,:.:.gn the '.'1Hbbie Y~ instead of yg deiined above. "J>le thus have 
tQ (l,t.:,h·re tb~ -..:.r pobn boundary value equation:: 

(1/$o) f.i" + VU'- VO=O 
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with u(o) = 1, u(l) ~ o. [3 !6] 

provided we use 

[3.17] 

Knowing the value of A 1, ;\ and fo from the integration of V-equation [3.10}, 
we know Ao and the coefficient of U" in equation [3.15]. We •tart the 
solution at Y =I with V' ( l) = n (say) and stop the integration at Y = 0 giving 
us U(O} = K(say). Since the equation [3.15] is homogeneous linear equation 
in U, the solution (U/K) will satisfy the boundary condition V(O) = 1 for the 
value of,\ and Ao determined above. 

4. SOLUTION OF THE HEAT TRANSFER PROBLEM: 

In thi• section we shall discuss tbe solution of the equation [2.4] 
with the boudary conditions given in [2.5). lf we substitute the value of 
u(x,y) from equation [3.1] in [2.4] and concentrate on the powers of x that 
occur in the resulting equation, we find that we must take 

[4.1] 

If now, we equate the coefficients of various powers of x on the two sides of 
this resulting equation, we get the following three equations to be solved: 

P [uo 19, + l>o 8~] = (2/ R1
) 82 + e~' + EP[( 4,\2

/ R')(o' )2 + (u;)'] [ 4.2} 

P[2uo IJ2- ;>,v' 19 1 +>we;]= e;• + EP[- 2 l<v" u~] [4.3] 

P [- 21-.o' 82 t ?we;}= e~' + EP ,\ 2 (v")2 [4.4] 

with fo (o) = e, (o)- IJ2 (o) = o 

and &o (1)- l, e, (I)- e2 (I)= 0. [4.5] 

We first consider the equation [4.4] in 82 ( v). We note that here we 
have to prescribe apriori the values of P and E, but the Reynolds number 
does not occur ~xp!icitly. Moreover II. and the corresponding values o (y) 
and its derivatives are known to us. We write the equation in the form 

where 

e;• +P, (y) e; + Qd'y) e2 = R, (y), [4.6] 

1'j (y)- ->.Pv 

Q1 (y) - 2/.Po' 

R,(y)= -EP/.2 (o"? [4.7} 



to be solved un<Jer two point boundary condiliors 

n, ~ 0, 02 (I) -- 0. 

Let 82 - &, and 82 = f!b be two solution~ 

cenditi-ons 

e"(o)-o. e~ 

-o, a;.(o)~b(suy). 

l (·r·----- ------------------------· 
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0·2- '~, 
0-6, " 

t
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F1o.1 
Plot of,. VOfSUS y 
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[.t. 



Fro. 2 
Plot of u0 V·trsus y 



is the solution of the equmion 
tions. 

We note that this procedure allows us tn S<>i\e no 
value problem without any trial and orwr. 

w~ shall now con~:,ider the cquatk>t1 [4,3] in ~~! (y) v~ bki1 ~. ('>.'~ 
contajn :;-, ·~ ,.· '· numbe:r R. \Ve \Vrite. lhis equ~Jion in tln.: f~,trJ<t 

e;'+P,(y)e;+Ql(y)al R,(y) 

with boundai'y conditions 

)' 

FIG. 3 
PJot of (1 2 v.::rso~ y 
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P2(y) =- )\ Pv, 

Q2 (y) --= ;\ Pv', 

R2 "'· 211 El'v" "~ ~- 2 P ''" 80 • 

~·e note th~t the ccefficients P2, Q-y. und R 2 arc JcnO\J\.'1.1. to us from previo:~·;;; 
integr<::.divns for the c.hQsen values of)\, P and !.:,~. 

--------------------------- _______ ...! 

Fm. 4 
Plot o.f h Wi:.l(tf'~ 



ProceeJing as !n the 
this equation satisfying the 

•r,,' 

t) 
,: '(v) 

Where 81 """'eA. and $1 '= &,v ::lfe the :SO!Uti'"~fL:> \.lf thi1) 
bouridary conditions 

f1dO) ,. 0, Of, (o) . li (say). 

fiG. 5 
Plot of o• vem» y 

~ ' l .. the 
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\Nc write the equatio11 [4 2j ill ~he foHowing form: 

with boundary cond.iHo;nlS 

'where 

p 3 ry) = -)..Po 

R,(y)=-

e;,' ~ P, 'y) 0~ = Rs (y) 

[4.20) 

We note that P3 (y) ami R, are known to us provided we aprior! 
prescribe the the value of the Reynolds number R. 

Let eo·- e. and 00 = ef! be the solutions of this eq;ualion satisfying the 
boundary conditions 

Oa ~ D, 0~. (0) - u (say), 

e 0 ( o) ~ o, e;; ( o) •. f! 

Then easily check that the solution of [4.':] satisfying the prescribed 
boundary conditJ\ons is 

[4.23] 

.fn summ3ry, we like to mention that the proced!Jre prescribed above has 
the foHowing advautagcs: 

(1) Tbe integration of the various equations does 1;ot ~n.voive any trial :and 
error method in spitf:: of the fact that aU our equations have to satisfy 
two point boundary conditions. 

(2) The eigenvalue A1 occuring in the cross flow velocity is determined 
automatically dudng the process of integration of V~equatio:.tL 

(3) No doubt, we do not solve the cross flow velocity 
apriori prc!;cribcd value of tbe suction pa:-am-eter 
prescribed value of f/fP which leads to the determination of the 
corresponding value of Thus two or three integrations with 

chosen values of v" (0) wi!1 enable us to guess what value 
be chosen to give approximately the solution. for the 
volue of ('.. 

(4) 'VVe have to make the specific choice of the Prandt1 number and Eckert 
number in order to solve 81 and B2 equations, but we Dave not to 
presc.ribe the value of R lJ.H we come to the sulution of Oc,-cquatlon. 



l:! 

\Ve h3Ve performed. the nun1edcal t.:<JkuiatJvn f,,r t(ic {1f 

n~""" 1~~ ~}, - 1, ~ :h the fi, !·t tv:o w!th rius si~\n in -.:qn ~n uq. v. rd:~· 'Le 
1.a.s1 tW<) with the n.:::gath·e fllgn in [3~ Tne f, ::. ;H~~ viH.';'. 1hl: \'tdt.t.S. 

of rt/ 1
p u .. ~ on tbe bouudurie~ .and the y:dw::~ i.d' A, .f,), A1 : 

: s;,,r, ot 
ru : r.h ::.. , 

';nr.J !U; 

l I + 
l/21 + 

-i I-
-l/21 -

1.48S9 
l 0.0>:25 

t.:::29i 
0.08-12 

A, 

--31.7S28 2U46~ 
-- {).0825 l 01)01 

-1'.3461) 12.4S62 
·-0.0842 LOCXll 

)1";0; ,ll 

u 
(J 

.. ,'t(( 

Figures l and 2 give the plots of,; and u0 , whi!~ the ti;:cm·> 1, -1. 5 
the plot' of(), e, nnd 80 respectively for R ·• !00, E., 5, P · 0 H. Si:oc.·~ tile 
main purr)ose of the pr\:sent paper is to estabHsh u i!.;onvr:rdt:nt m~!!.f;d f!<r 
solving the flow and he.lt transfer probAcmsv we have mldGrt<d-.,(:n on!v ;; 
limxtcd number of numerical cases. This :method is ca:<>ily . (i.~ ~ r ~ k1 <);"t~vr 
Ji:eornetries. 
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