JOURNAL OF

THE

INDIAN INSTITUTE OF SCIENCE

PLANE COUETTE FLOW WITH SUCTION OR INEECTION AND HEAT TRANG?G

(Received : March 25,1067)

Abstract

ABSTRACK In this proper we have discussed the problem of suction and ingection and of heat tansfor in a plane Couette flow whout imposing the condion of smathess on the suction parameter or such similar conditions on the 聚eynolds number to allow series solution. We have uthized some important properties of differentiat equations and some transformathons which enable us to solve the wo-point boundary value and cigenvilue problems whthout using tho triai and error method. In fact, each integration provides us with a sofetion for a suction parameter anc a Reynolds mamber. We beicive that the mehot outhed here can be easidy adopted to a wide class of similar problema.

1. INrgobuccion

In this paper we have discussed the problem of suction and injection and of heat traasfer in a plane Couette flow without imposing the condition of smallness on the suction parameter or such similar conditions on the Reynoids number to allow series solution. We have utilized some important properties of differential squations and some transformations which enable us to solve the two-point boundary value and eigenvalue problems without ksing the trial and ertor method. In fact, each integration provides us with a solution for a suction paramerer and a keynolds number.

We believe that the method outlined here can be eatily adepied to a whe class of simular probiems. Besides, we have applied the staten wi injucten only on the fixed plate so that the usual boundary eondifin of the cossfow, namely the injection at one plate is equal to the suchon at biswht, bas tot been employed.

2. Basic Equations on the Problene

Let the infinite plane $y=0$ be stationary while the plune $y \quad a$ be moving with uniform velocity U_{0} in the direction of the x-ixis We mantath these planes at coustant temperatures T_{0} and T_{1} respectively, Moreover. uniform injection or suction with velocity $v= \pm \nu_{0}\left(\%_{0}>0\right)$ is applied on tha phat y. 0 , while the upper plane is non-porous. lifere the plus sign refers to nigeotion and the minus sign to suction.

Since we have taken the suction or injection to be unifurm, we assume that the cross-velocity \mathfrak{v} is a function of y alone. We shall use the dimennionless variables $u_{8} v, x, y, p, \theta$ for

$$
\frac{u}{U_{0}}, \frac{\partial}{v_{0}}, \frac{x}{a R}, \frac{y}{a},-\frac{p}{\rho} U_{0}^{2}, \frac{T-T_{0}}{T_{1}-T_{0}}
$$

and denote the suction parameter $v_{0} a / v$. Reynolds number $U_{0} \sigma_{1}^{\prime} \nu$, Damall

Thus the equations of the problem and the boundery condtions refuce to the following :

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\lambda \frac{d u}{d y}=0 \tag{2,1}\\
\frac{\partial u}{\partial x}+\lambda v \frac{\partial u}{\partial y}=-\frac{\partial p}{\partial x}+\frac{\partial^{2} u}{\partial y^{2}} \tag{2,2}\\
v \frac{d v}{d y}=-\frac{R^{2}}{\lambda^{2}} \frac{\partial p}{\partial y}+\frac{1}{\lambda} \frac{d^{2} v}{d y^{2}} \tag{2,3}\\
P\left[u \frac{\partial \theta}{\partial x}+\lambda v \frac{\partial \theta}{\partial y}\right]=\frac{1}{R^{2}} \frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+E P\left[4 \frac{\lambda^{2}}{R^{2}}\left(\frac{d v}{d y}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right] \tag{2.4}
\end{gather*}
$$

with

$$
\begin{align*}
& y=0 ; u=0, v= \pm 1, \theta=0 \\
& y=1: u=1, v=0, \quad \theta=1 \tag{2.5}
\end{align*}
$$

3. Frome [2.1] wa have

$$
\begin{equation*}
u(x, y)=-x v^{\prime}\left(y+x+z v^{\prime}(y),\right. \tag{3.1}
\end{equation*}
$$

Where w(y) is an abitery function to be derermined later. Equation [3.1] determines is (x, y) in tems of u_{0} and of (y).

Since u: 0 at $y=0$ and $u= \pm$ at $y=1$ for all values of x, we have the following boundary conditions to be sacisfied by u_{0} and v^{\prime} :

$$
\begin{array}{ll}
u_{v}(0)-0, & v^{\prime}(0)=0 \\
u_{0}(1)=1, & v^{\prime}(1)=0 . \tag{3.2}
\end{array}
$$

Similarly, the integration of the equation [2.3] gives ws

$$
\begin{equation*}
p\left(x_{x} y\right)-\frac{\lambda^{2}}{x^{2}}\left[-\frac{1}{2} v^{2}+\frac{1}{\lambda} v^{1}\right]+p_{0}(x)_{0} \tag{3.3}
\end{equation*}
$$

where $p_{0}(x)$ is so fir an arbitray function to bo determined later ou. Equation $[3,3]$ desermines $p(x, y)$ in terms of $n(y)$ and $p 0(x)$.

Usiag [3.1] and [3.3] 级 [22] and concentrating on the powers of x that ocedr the resulting equation, wi fad hat we should take the following expression for dop $(x) / d x$:

$$
\begin{equation*}
-A_{p_{0}}(x) / d x=A_{0}+A_{1} x_{n} \tag{3.4}
\end{equation*}
$$

where A_{0} and A_{1} are constants and ther the equation breaks into the following two equations which are indeperdent of x :

$$
\begin{align*}
& \lambda o(y) u_{0}^{\prime}(y)-\lambda v_{0}(y) v^{\prime}(y)=A_{0}+w_{0}^{p}(y) \tag{3.5}\\
& \lambda^{2}\left[v^{\prime}(y)\right]^{2}-\lambda^{2} \varphi(y) v^{\prime \prime}(y)+\lambda v^{\prime \prime}(y)=A_{1} \tag{3.6}
\end{align*}
$$

Equation [3.6] determines of for prescribed values of λ and A_{12} while [3.5] then determines the value tro for preses bed value of A. Boundary conditiona for 3.6$]$ are

$$
\begin{align*}
& y=0: y= \pm \pm 1, b^{2}=0 \\
& y=1: v=0, \quad y^{\prime}=0, \tag{3.7}
\end{align*}
$$

white for [3.5] they are the following:

$$
\begin{equation*}
u_{0}(0)=0_{n} u_{0}(1)=1 \tag{3.8}
\end{equation*}
$$

We shat first concentrie on the equation [3.6] which is of thind ores und has so zatisfy four bounday condurons $[3,7]$. Therefore, we shan beat this two point bowary yatue problen as an wigonvalue problem and
 It is convenimp to use reverable $Z=1-y$ so that we can stant with two aut conditions $y=0,0$ n $y^{\prime}=0$. Eurther the transformation

$$
\begin{equation*}
\tau=\left[\frac{H^{\prime}}{\lambda}\right] F \operatorname{stc} \quad Z=\left[\frac{1}{A_{1}^{B}}\right] G \tag{3.9}
\end{equation*}
$$

Fadmest the eqution and bouncary nondions to the following form:

$$
\left(y^{\prime}\right)^{2}-y^{\prime} 9^{\prime \prime \prime}-y^{\prime \prime \prime}= \pm \frac{1}{2}
$$

with

$$
\begin{equation*}
\xi=0: \quad \forall=0, \quad \forall^{\prime}=0, \tag{3.17}
\end{equation*}
$$

$$
E=c_{0}=A_{1}^{1,6}: V= \pm \lambda N_{1}^{1 / 4}, V^{\prime}=0
$$

We fave put dowa the sign on ho what hand side of 3.10$]$ in order to escure that A_{3} spogitue in $[3.2\}$. we stat the integration at $\xi=0$ with

 ungi Yo we determine the vahe of H_{1} and λ from the boundary condinions $[12]_{1}^{5}$ via.

 for dithenc suthon paramene Whe note that excb iotegration with arbitary
 corrapomdng tigemphe Az. Sind A is mot tecessarily equal to zero, but a detime thate rombur for each vate of suction parameter, we conclude that
 s (wide egrotian [34]

We shall wow dravs the cquation [3.5]. In order to avoid ine specific
 nake the followime substution:

$$
\begin{equation*}
z_{0}=\bar{U}+A^{2} y(y) \tag{3.14}
\end{equation*}
$$

with

$$
\begin{equation*}
U(0)=1, U(1)=0 \tag{3.16}
\end{equation*}
$$

provided we use

$$
\begin{equation*}
A_{0}=-A_{1} \lambda \tag{3.17}
\end{equation*}
$$

Knowing the value of A_{1}, λ and G_{0} fron the integration of V equation [3.10], we know A_{0} and the coefficient of $U^{\prime t}$ in equation [3.15]. We start the solution at $Y=1$ with $U^{\prime}(1)=n$ (say) and stop the integration at $Y=0$ giving us $U(0)=K$ (say). Since the equation $[3.15]$ is homogeneous linear equation in U, the solution (U / K) will satisfy the boundary condition $U(0)=I$ for the value of λ and A_{0} determined above.

4. Solution of the Heat Transfer Problem

In this section we shall discuss the solution of the equation [2.4] with the boudary conditions given in [2.5]. If we substitute the value of $u(x, y)$ from equation [3.1] in [2.4] and concentrate on the powers of x that occur in the resulting equation, we find that we must take

$$
\begin{equation*}
\theta=\theta_{0}(y)+\theta_{1}(y) x+\theta_{2}(y) x^{2} \tag{4.1}
\end{equation*}
$$

If now, we equate the coefficients of various powers of x on the two sides of this resulting equation, we get the following three equations to be solved:

$$
\begin{align*}
& P\left[u_{0} \theta_{1}+\lambda \theta_{0}^{\prime}\right]=\left(2 / R^{2}\right) \theta_{2}+\theta_{0}^{\prime \prime}+E P\left[\left(4 \lambda^{2} / R^{2}\right)\left(v^{\prime}\right)^{2}+\left(u_{0}^{\prime}\right)^{2}\right] \tag{4.2}\\
& P\left[2 w_{0} \theta_{2}-\lambda v^{\prime} \theta_{1}+\lambda v \theta_{1}^{\prime}\right]-\theta_{1}^{\prime \prime}+E P\left[-2 \lambda v^{\prime \prime} u_{0}^{\prime}\right] \tag{4.3}\\
& P\left[-2 \lambda v^{\prime} \theta_{2}+\lambda v \theta_{2}^{\prime}\right]=\theta_{2}^{\prime \prime}+E P \lambda^{2}\left(v^{\prime \prime}\right)^{2} \tag{4.4}
\end{align*}
$$

with

$$
\rho_{0}(0)=\theta_{1}(0)-\theta_{2}(0)=0
$$

and

$$
\begin{equation*}
\theta_{0}(1)-1, \quad \theta_{1}(1)=\theta_{2}(1)=0 \tag{4.5}
\end{equation*}
$$

We first consider the equation [4.4] in $\theta_{2}(v)$. We note that here we have to prescribe apriori the values of P and E, but the Regnoids yumber does not occur explicitly. Moreover λ and the corresponding values $n(y)$ and its derivatives are known to us. We write the equation in the form

$$
\begin{equation*}
\theta_{2}^{\prime \theta}+P_{1}(y) \theta_{2}^{\prime}+Q_{1}(y) \theta_{2}=R_{1}(y) \tag{4.6}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{1}(y)=-\lambda P_{v} \\
& Q_{1}(y)=2 \lambda P_{v}^{\prime} \\
& R_{1}(y)=-E P \lambda^{3}\left(v^{\prime \prime}\right)^{2} \tag{4.7}
\end{align*}
$$

to be solved ander two poiat boundary conditars

$$
0_{2}(0)=0, \theta_{2}(1)=-0
$$

Iat $\theta_{2}=\theta_{n}$ and $\theta_{2}=\theta_{0}$ be two solutions $\because{ }^{\circ}$; , the ; conditions

$$
\begin{align*}
& \theta_{a}(0)=0, \theta_{a}^{y}(0)-a(\text { say }) \tag{4.9}\\
& \theta_{b}(0)=0, \theta_{b}^{r}(0)-b(\operatorname{say}) \tag{3}
\end{align*}
$$

Fig. 1
Hot of y yersus y

Fac. 2
Pios of w versus y

Then we can easily chuck that
 trons.

Wo note that this procedure allows us the sure the. . . boundary value problem without any trial and error.

$$
\begin{equation*}
\theta_{2}^{\prime \prime}+P_{4}(y) \theta_{i}^{r}+Q_{2}(y) \theta_{1}=\mu_{2}(y) \tag{4.12}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\partial_{1}(0)=0, \quad b_{1}(1)=0 \tag{4,13}
\end{equation*}
$$

Fig. 3
Plot of 0_{2} versus y
where

$$
\begin{align*}
& p_{2}(y)=-\lambda p_{3} \\
& Q_{2}(y)=\lambda P_{0}^{\prime} \\
& R_{2}(y)=\lambda \lambda E P_{0}^{\prime \prime} \alpha_{0}^{\prime}+2 P_{i u_{0}} \theta_{2} \tag{4.14}
\end{align*}
$$

We mote that the cocficjents p_{2}, Q2 and R_{2} are known to as from prewoma integrations for the chosen values of λ, P and ${ }^{2}$.

Fig.
bion of ou wexas y

$$
\begin{equation*}
\theta_{1}(y)=a_{n}(1) \quad\left\{(y) \cdots \frac{\left(n_{1}(0)\right.}{\theta_{1}(1)-n_{1}(i)} n_{n},(y)_{2}\right. \tag{+15}
\end{equation*}
$$

 boundary conditions

$$
\begin{align*}
& 0_{A}(0)=0, U_{A}(0)=A(\mathrm{say}) \\
& A_{H}(0)=0, \theta(0) \cdot B(\mathrm{say}) \tag{4:7}
\end{align*}
$$

Fre. 5
Plot of of versus y

We write the equation [42] in the following form:

$$
\begin{equation*}
\left.\partial_{0}^{\prime \prime}+P_{3}^{\prime} y\right) \theta_{0}^{\prime}=R_{3}(y) \tag{4.18}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\theta_{0}(0)=0_{i} \theta_{0}(1) \approx 1 \tag{8.19}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{3}(y)=-\lambda P_{p} \\
& R_{3}(y)=-\left(2 / R^{2}\right) \theta_{2}+P_{H_{0}} \theta_{1}-E P\left[\left(4 \lambda^{2} / R^{2}\right)\left(v^{p}\right)^{2}+\left(v_{0}\right)^{2}\right] \tag{4.20}
\end{align*}
$$

We note that $p_{3}(y)$ and $R_{3}(y)$ are known to us provided we apriort prescribe the the value of the Reynolds number R.

Let θ_{0} m θ_{α} and $\theta_{0}=\theta_{\beta}$ be the solutions of thes equation satisfying the boundary conditions

$$
\begin{align*}
& \theta_{a}(0)=0, \theta_{m}^{z}(0) \cdots a(\operatorname{say}) \tag{4.21}\\
& \theta_{p}(0)-0_{s}, \theta_{p}^{y}(0) \times \beta(\operatorname{say}) \tag{4.22}
\end{align*}
$$

Then we can easily check that the solution of [4. $]$ satisfying the prescribed boumdary condtions is

$$
\begin{equation*}
\theta_{0}(y)=\frac{\theta \beta(1)-1}{\theta_{p}(1)-\theta_{\alpha}(1)} \theta_{a}(y)+\frac{1-\theta_{a}(1)}{\theta_{\beta}(1)-\theta_{a}(1)} \theta_{\beta}(y) \tag{4.23}
\end{equation*}
$$

Tn summary, we like to mention that the proceduce prescribed above low the following advantages:
(1) The integration of the various equations toes not invotpe any trial and error method in spite of the fact that all our equations beve to satisfy two point boundary conditions.
(2) The eigenvalue A_{1} occuring in the cross fow velociny is determined automatically duing the process of integration of Fequation.
(3) No doubt, we do not solve the cross flow velocity equation for an aprion prescribed value of the suction parameter λ, but for the prescribed value of $y^{\prime \prime}(0)$ which leads to the determination of the corresponding value of λ. Thus two or three integrations with properly chosen values of $p^{\prime \prime}(0)$ will enable us to guess what value of $y^{\prime \prime}(0)$ be chosen to give approximately the solution for the prescribed value of λ.
(4) We bave to make the specific choice of the Prandty number and Eckect number in ofder to solve θ_{1} and θ_{2} equations, but we inave not to prescribe the value of R tull we come to the sulmion of Qecquation.

We have performed the numerical watulation fior the butan bet

Figures 1 and 2 give the plots of y and t_{0}, white the tieures $3,4,5$ pinc the plots of θ_{3}, θ_{2} and θ_{0} respectively for $R=100_{x} E+5, p, 08$. Sirce the main purpose of the present paper is to establish a compatant methat ther solving the flow and hest transfer problems, wo have undertane: wiy a limited number of numerical casea. This mehod is casily. 'hin!' i wh bur geometrits.

ACKNOWLEDGRAENT

I am thankul to Me. S. S. Krishaz wurthy for : Pw
 helping in drawing the graphs of this paper.

