NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

By S. S. KIISHNA MURTHY
(Central Instruments and Services Laboratory, Indian Institute of Science, Bangalore-12 India)

(Received: March 17, 1967)

1. ABSTRACT

There are many methods available to obtain approximate roots of a given svstem of nonlinear equation. Newton's method, method of steepest descent and iterative method are some of important methods with the help of which one can improve the accuracy of approximation. A method is presented here which involves less arithmetic than Newton's and stcepest descent methods on the whole. Moreover, the present method does not demand the evaluation of partial derivatives.

2. Introdection

Let $\left(X_{1}, X_{2}, \cdots X_{12}\right)$ be the exact root of the system of equations

$$
\begin{equation*}
f_{i}=f_{i}\left(x_{1}, x_{24} \cdots x_{n_{i}}\right)-0 \tag{2.1}
\end{equation*}
$$

for

$$
\dot{E}=1,2,3, \cdots n
$$

Let $\left(x_{1}^{*}, x_{2}^{*}, \cdots x_{n}^{*}\right)$ be an approximation so the actual solution $\left(X_{1}, X_{2}, \cdots X_{n}\right)$.
$x_{1}{ }^{*}, x_{2}{ }^{*}, x_{3}{ }^{*}, \cdots x_{n}^{*}$ are now each assumed to be functional of $f_{1}, f_{2}, \cdots f_{n}$
i.e.,

$$
\begin{equation*}
x_{1}^{*}=f_{1}\left(f_{1}, f_{2}, \cdots f_{n}\right) \tag{2,2}
\end{equation*}
$$

for

$$
i=1,2,3, \cdots n
$$

x_{i}^{*} can be expanded with the origin at X_{i} by means of a Taylor's series. On retaining the first two terms of the expansion, we have

$$
x_{i}^{*}=X_{i}+\left(\Delta f_{1} \cdot>F_{n} / f_{1}+\Delta f_{2} \cdot 3 F_{i} / f_{2}+\cdots+\Delta f_{n} \cdot \Xi F_{i} / \partial f_{n}\right)+\cdots[2.3]
$$

where
for

$$
\begin{aligned}
& \Delta f_{i}=-f_{i} \\
& i=1,2, \ldots n
\end{aligned}
$$

We assume a linear relationship between x_{i}^{*} and $f_{1}, f_{2}, \ldots, f_{n}$ The partial derivatives $\partial F_{i} / \partial f_{j}$ in $[2.3$,$] which are to be evaluated at f_{i}-0$ become constants but unknowns as a result of the linear relationship assumed.
E

$$
\begin{aligned}
& \mathrm{e}^{(2)}-\left(x_{2}^{*}+h, x_{2}^{*}{ }_{3} \cdots, x_{3}^{4}\right)+\left(x_{2}^{(2)}, x_{2}^{(2)} \ldots x_{n}^{(2)}\right) \\
& a^{(2)}=\left(x_{1}^{4}=x_{2}^{4}+b_{y} \cdots x_{n}^{10}\right)=\left(x_{1}^{(3)}, x_{2}^{(3)}, \ldots x_{n}^{(3)}\right) \\
& x^{(i+1)}=\left(x_{1}^{*}, x_{2}^{*}=\cdots x_{i-1,}^{*} x_{i}^{*}+k, x_{i-1}^{*} ; \cdots x_{n}^{*}\right\} \\
& =\left(x_{1}^{(+1)}, x_{2}^{(6+1)} \cdot \cdots x_{n}^{(6+1)}\right) \\
& g^{(2)+1)}=\left(x_{1}^{*}: x_{2}^{*}, \cdots, x_{n-1}^{*}, x_{n}^{*}+h\right) \\
& x=\left(x_{1}^{(n+1)}, x_{2}^{(n+1)}, \cdots=x_{n}^{(n+1)}\right)
\end{aligned}
$$

Where in 枵 wome arbiuray ginail constant.

Then

$$
f_{i}^{(p)} f_{1}\left(\alpha_{0}^{(j)}\right)=h_{i}\left(x_{2}^{*}, x_{2}^{*}, \cdots, x_{g-1}^{*}+h_{3}, \cdots, x_{n}{ }^{*}\right.
$$

If we substitule $a^{(1)}, s^{(2)} ; \cdots a^{(n+1)}$ in $[2,3]$ and taking $i=1$, we have the $(n+1)$ eguations

$$
\begin{aligned}
& x_{2}^{(t)}=x_{1}+\left(\Delta f_{i}^{(1)} \cdot \partial F_{2} / f_{2}+\Delta f_{2}^{(1)} \cdot \varepsilon F_{1} / c f_{2}+\cdots+\Delta f_{n}^{(n)} \partial F_{1} / d f_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{3} \rightarrow A_{1}+\left(\Delta f_{i}^{\left.(n-1)_{n} \partial F_{j} / f_{1}+\Delta f_{2}^{(n+1)} \cdot \partial F_{i} / \Delta f_{2}+\cdots+\Delta f_{n}^{(n+1)} \cdot \partial g_{1} / \partial f_{n}\right)}[2.5]\right.
\end{aligned}
$$

The them of equations carrespondigg to [2.5] for all valaes of

$$
\begin{equation*}
D V_{\text {is }} Y \tag{2.5}
\end{equation*}
$$

wicre

$$
\begin{aligned}
& D=\left\{\begin{array}{lcccc}
1 & \Delta f_{1}^{(1)} & \Delta f_{2}^{(1)} & \cdots & \Delta f_{n}^{(1)} \\
1 & \Delta f_{1}^{(2)} & \Delta f_{2}^{(2)} & \cdots & \Delta f_{n}^{(2)} \\
\cdot & \cdot & \cdot & \cdots & \cdots
\end{array}\right\} \\
& W_{=}=\left\{\begin{array}{lllll}
x_{1}^{(1)} & x_{2}^{(1)} & x_{3}^{(1)} & \cdots & x_{n}^{(1)} \\
x_{1}^{(2)} & x_{2}^{(2)} & x_{3}^{(2)} & \cdots & x_{n}^{(2)} \\
\cdots & \cdot & \cdots & \cdots & \cdots \\
x_{1}^{(n+1)} & x_{2}^{(n+1)} & x_{3}^{(n+1)} & \cdots & \cdots \\
\cdots
\end{array}\right\} \\
& U=\left\{\begin{array}{lllll}
X_{1} & X_{2} & \tilde{X}_{3} & \cdots & \frac{K_{n}}{n} \\
\frac{\partial F_{1}}{\partial f_{1}} & \frac{\partial F_{2}}{\partial f_{1}} & \frac{\partial F_{3}}{\partial f_{1}} & \cdots & \frac{\partial F_{n}}{\partial f_{n}} \\
\cdot & \cdots & \cdots & \cdots & \cdots \\
\frac{\partial F_{1}}{\partial f_{n}} & \frac{\partial F_{2}}{\partial f_{n}} & \frac{\partial F_{3}}{\partial f_{n}} & \cdots & \frac{\partial F_{n}}{\partial f_{n}}
\end{array}\right\}
\end{aligned}
$$

From [2.6] we have

$$
\begin{equation*}
U-D^{-\S} Y \tag{2.7}
\end{equation*}
$$

provided D is ronsingular.
The first row of $D^{-1} Y$ in $[2.7]$ gives $\left(X_{1}, X_{2}, X_{3} \ldots X_{n}\right)$.
3. One might be inclined to solve the linear system of equations in $[2.6]$ instead of resorting to find the inverse of D and then finding $D^{-1} Y$. It is our intention to show that finding the inverse of D can be exploited in a better way so as to reduce the further work.

We have $f_{i}^{(j)}$ in our earlier caloulations
Eet

$$
\begin{gather*}
\theta_{j}=\sum_{i=1}^{n}\left[f_{i}^{(j)}\right]^{2} \tag{3.1}\\
j-1,2, \cdots,(n+1) .
\end{gather*}
$$

Let the value of $\left(X_{1}, X_{2}, \ldots X_{n}\right)$ obtained in [2.7] be $\left\langle x_{1}^{(n)}, x_{2}^{(p)} \ldots\right.$ $\left.x_{n}^{(p)}\right)$ and the values of f_{i} 's corresponding to these values of x_{i} 's be $f_{i}^{(p)}$. Then let θ_{k} be the minimum of θ_{j} 's found in [3.1]. Thea replace the k-th row of D and Y by

$$
\left.\begin{array}{l}
\left(1 . \Delta f_{1}^{(p)}, \Delta f_{2}^{(s)}, \cdots \Delta f_{n}^{(p)}\right) \\
\left(x_{1}^{(p)}, x_{2}^{(p)}, \cdots, x_{n}^{(p)}\right) .
\end{array}\right\}_{j=1,2,3, \cdots,(n+1) .}^{\text {where } p m^{(3)}}
$$

We call the matim D in which the $k-$ th row hes been replaced by an enother zow as D_{1} and the corresponding Y as Y_{1}.

Then me caver

$$
\begin{equation*}
D_{\Sigma}^{-1}=D^{-1}-\left[1 /\left(1+v \dot{i}_{k}\right)\right] d_{2}\left(v D^{-1}\right) \tag{3.2}
\end{equation*}
$$

where v is the k-th row of D_{1}, d_{z} is the k-th column of D^{-1}. So, the nexi approximation is obtained from $D_{1}^{-1} Y_{1}$ as in [2.7].

The procedure of section 3 can be repeated as many dimes as required to obian the required accuracy.
4. When $n-1$, that is, when $f\left(x_{1}\right)=0$ has to be solved, the method described reduces to the well known "method of chords" or the " methed of hinear iterpolation".

Let $x_{1}^{(1)}$ and $x_{2}^{(1)}$ be the two approximations. Then we have froma [2.4]

Tiem

$$
\begin{aligned}
x_{1}^{(1)} & =x_{1}-f_{1}^{(1)} \cdot \partial f_{1} / \geqslant f_{1} \\
x_{1}^{(2)} & =x_{1}-f_{1}^{(2)} \cdot \partial f_{1} / \partial f_{1} \\
x_{1}^{\prime} & =\left(x_{1}^{(2)} f_{1}^{(1)}-x_{1}^{(1)} f_{1}^{(2)}\right) /\left(f_{1}^{(1)}-f_{1}^{(2)}\right) \\
& =x_{1}^{(1)}-\left[\left(x_{1}^{(1)}-x_{1}^{(2)}\right) /\left(f_{1}^{(1)}-f_{1}^{(2)}\right)\right] f_{1}^{(1)}
\end{aligned}
$$

So, the metod ducribed is a generwise, linear interpolation method.

5. Concelesion

The method of siepest descert ${ }^{1}$ and Newton's mothod ${ }^{1}$ require the ewahation of partial derivatives during each cycle of iteration. In problems where the expressions involve complicated transcendental functions, the work involved ia findiag the partini derivatives is so much, the desire to avoid the calculation of parial derivatives ofien arises. In addition to this, though the Newtor"s method has a better convergence fnctor of the initial approximathon is close enough to the actual root, the process may diverge if the initial geess is not good. Secondiy, we have to solve a set of linear simultancous equations each time during the iterative cycle. The method which has been described here coes not demand the evaluation of partial derivatives. Secondiy, the inverse of the matrix D in $[26]$ can be obtained easily from the procecture of section (3), without actually resorting to find the inverse, which saver time and involves less arithmetic. It is very unusual that in any method, the first cycle gives good enough accuracy. It will be necessary to repeat

Tanle 6.1

Number oflterallons	SYSTEM				SySTEM If			
	Present Method		Newton's Method		Present Method		Newtons Method	
	x	y	*	y	x	y	*	y
0	30	5.0	3.0	5.0	3.0	5.0	3.0	5.0
1	1.81167	11.1883	1.60000	11.400000	189043	3.68688	1.695374	3.68,836
2	1.28088	11.7191	-0.0.42758	13.42758	1.30395	3.55565	0.166748	3.919783
3	086639	12.1332	-53.40888	66.40888	0.888815	3.62577	-118.4137	8.650002
4	0.494560	12.5054	diverges		0.514820	3.71263	- 78.91054	--265.47
5	0.135214	12.8648			0.129541	3.78305	diverges	
10	- 1.59712	14.5971			-2.6144	3.08303		
15	-2.25244	15.2524			-1.60028	3.28713		
20	-2.29564	15.2956			-2.04678	2.77605		
22	-2.29568	15.2957			-2.03794	2.98269		
25					-2.00379	2.99926		
30					-2.00000	3,00000		

the ittrative procedure several times to obtain the required accuracy. As sueh, we find the mothod described a very aseful one in solving a set of non-inear equations and especially so where the partial derivatives can bo calculated whith much diticulty.

6. Ninerical Reampen

Two sitems of equations are considered here.

$$
\text { sparm } I: \quad f_{1}=x+y-13-0, f_{1}-3 x^{3}+y+21=0
$$

S siten HI: $\quad f_{1}=x^{2}+y^{2}-15=0, f_{2} \cdot 3 a^{3}+y+21=0$
The rul root of System t is

$$
(-2.295679336,15.295679336)
$$

and that of System II are

$$
(-2,3) \text { and }(-1.81319376,-3.11646122)
$$

An appramation for both the systems was takon to be $(3,5)$ ard the reults are civen in Table 6.1.

ACKNOWLEDGEMENT

The euthor is very gateful to Prof. P. L. Bhatuagar for his valuable suggetitors.

Rufergnces

1. Zagusitis V. L. Handrook of Numerical methods for the sofution of algebraic and transcendental equations, Chapter 6, p. 171.176, [Pergamon Press, 1961.$]$
2. Faddev D. F. and \%. N, Fadicera.. Camputatiomal methods of linear algebra. Chapter 2, p. 173-178. [W. H. Freeman and
Company, 1963].
3. Scarbwergiz \%. Numerical Mathematical Analycis Chapter X, p. 192-211. Wrford Bsok Cempeny, 1964].
