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ABSTRACT 

Formulae for an autom5iic computation of the inversion ofo matli"C by an ortl10-
~onalization (4, 8) method, which is a more powerful form of Gram'b: orthonormaliu 
zation process, have bc('n derived. The main features of these formulae ar.;: the 
minimum storage deman,J with maximum automat!On. Numerical cxperiml.'nts have 
been carr1ed out mainly on near-smglliar matnces with th1s computatwnal procedure. 
A sirnole method for the tnm!iforrnation of two d1rnensional array to on~ o:.hmt!o.tional 
array has also b;;en included. 

IN rn.on~.JcnoN 

The inversion poses a se.Iious problem when the matnx 1s near-s.ingular9~ 
The methods both d1rect and iterative encounter rounding errors due to a 
good deal of divisions by small determinants3 or some functions of determi
nants and sometimes due to extration of square-roots9

• The present method 
consiMs in constructing an oifthogonal set of column (or row) vectors fron1 a 
set of line•rly independent column (or row) vectors of the matrix; and 1f a 
particuL1r column vector, say, the fifth column vector of a matrix (6 x 6) is 
lit1early dependent on the preceding vectors, the first four orthogonal vectors 
will be satisfactorily accurate, only the fifth and sixth one will encounter 
some rounding errors (due to divisions only), that are~ however, tolerable 
when c.orJ?aced to those of other method..'. The Grams or<honorrnaiization 
method9 will involve, in addition, a very conspicnons source of rounding 
errors due to extraction of square-roots. 

These derived formulae will require storage for the original matrix A 
(n x n) and for the triangular matrix P (n x n), in addition to that of the 
program, but no storage for the orthogonal matrix X(n x n) and for P;'s (n x n), 
i -1, 2, • • • , n of the method that finds description in the subsequent 
pages. 
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The automation resting on. the use of these formulae is mere pronounced 
than when using the orthogonalization method directly~ since instructions, 
arithmetic operations and storage, in the former case, an~ comp2ratively !ess. 

The detailed programming aspects including a brief description of the 
method as well as a few typical numerical examples given here, would reveal 
the extreme usefulness of such formulation in solving a system of linear and 
non-linear equations 11

• 

A simple method of transformation of two dimensional array of different 
forms t9 linear array has bem mentioned in this connection, assuming a 
relation of the subscripts with the memory locations. 

A. brief J .. crlplion of the method 4
• '·"': 

Let A=[a1 a2 a3 ••• a\'t] be a matrix of order n where a1 = {a
1
iV 

i =I, 2, 3, • • ·, n denotes the coloum vectors of the matrix A, while (') 
indicates a. transposea 

Lot 

Now we form x2 by a linear combination of x 1 and a2 so that x1 and x2 are 
orthogonal, then 

[1.2] 

where 

[H] 

In general, the sth orthogonal vector can he formed from x, , x
2

, x
3

, 

H*• x.,,... 1 and a: in a similar way, 

Xs- Ptli.r-1 XI+ fh, s-1 x2 + OQ. + fls-1, .s-1 Xs-~ +as 
whore 

Again, 

X- (x,, x2, • • • , x,) ~ AP1 P2 • • • P,- AP 

where P(- P, Pz • • • P,,) is an upper triangular matrix of order 11• 

[1.4] 

[1.5] 

P, is simply an identity matrix and P, is an upper triangular matrix of 
the s&.ma order n~ whose sth column vector is 

{J3'!•E-l> p'l;,a-1.,.""' G J /ls-1 D£-1, 19 0, 0 "•}' 

awl all other ~ectors are unit vectors. or more clearly, all the diagonal 
elments are nmty. 
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Let X' X{~ diag 
= IS. -t .• :r' where 

/:; _, , diag 

From [;.5], 

1". i x, 1', 

and the mugnitade of tbe deiermionnt of A is equal to 

be !:>. therefore, x-·! 

[i.e] 

FORMULAB FQR AUTO'I!AT!C COMPUTA"HON 

'The nmnbcr of locations reserved for p~rnatrix and A~matdx. are 
n(n + 1)/2 and n2 tespeclivcly. lt is to be noted th&t 1he symbo), '-' moans 
'is replaced by~ inside this caption. For example~ a;;= x;1 me.aus the 
conteats of ai<i are replaced by the contents of Yij. 

t<.2l 

s .,_., 2, 3, · n -- L 

.r~Pl'""" 1 
[:u] 

( p ~I, 2, 3, n 

ixs""""':;:: !aJsr~. 
~ l=l 

1 s-!. 2, 3, 

[2.4] 



4\) 

s-2 

~ f:J;,' ~ /11,' + ;:, -fJ,,pH {tp'.-l, 9 

i s ~ i+ 2, i :;: . . . ' " 

\ i = 1, 2. • • •, n- 2 

[2.6] 

" 
{ Ui,,s = 2J3:,y as,p 
j P""J 

[2·7] 

i s=l, 2, 3, 

Procedure: It is very important to note that the subscripts inside each left 
parenthesis are to be varied sequentially; while varying one subsript, other 
subscripts are kept fixed. For example, in [2·1] we take s- l, then p- l 
(which is equal to s) and find fl12 ; since we can not increase p beyond s in 
[2·1], we jump to the second [2·2] formula; i» [2·2] we start takmg i -1 
(sis already 1) and find a 12 , then taking i- 2 we find a22 and similarly a 32 , 

04., .. ~ ~ a ., by taking i- 3, 4, ~ .. o 5 n, respectively. Now s is increased 
by 't (s ;; n;~ 2), and we go back to [2·1] to find fl 13 , /323 ( ·: p =I, 2), then 
to [2~2], to find an' 4;23' 033,. • ~ ~ p a1!3 ( ~: i ..... 1, 2, a .. ~, n). 

Then sis again increased (sis now 3) and we go to [2·1] to determine 
{'

14
, fl24 • (334 , (p = l, 2. 3), then to {2·21 to determine a14 , "'-", a34 , 

""'· (i = l, 2, · • ·, n). 
We proceed in this way up to s- n- l. 

Now passing on to {2·3], all diagonal terms of {3-matrix are replaced 
by I, or, more explicitly. p- l, f3u- 1; p- 2, /i22 = 1 ; p = 3, /333 = 1 ; • · • · 
p ~ n, {$."-!. 

Then w• go to [2·5J and find x 1 , x,, · · ·, x,. and so on. 

ExplanatiM of the derived Formulae: 

Formula[2.1]: jl,; f3t3•fJ23; f],.,,B,.,f!,.; "•; fJ, .• ,fJ,,.,f!,,., ... , 
f.~-t, n are noth1ng but f:u; f312, fJ22; ~13, /323, /333; ,u; fl1.n-1, f!z,,~-1· 
···, #.-- 1• ,. 1 of the method. In the actual formulation, one right shift or 
all the B-elements has been given only to make the fJ-matrix a perfect upper 
triangul~r rna:l'ix of the same order (i.e., n). The actual advantage lies in the 
fact that the matrix op~ration (such as multiplication, addition, subtraction 
which necessarily, demand the same order of both the matrix operands) will 
he ruore automatic. 

Fon:;<ia [~·2]: Here the left han:i side elements are nothing but 
x,1• t ~~· 1, 2, " ~ ~ , n: J = 1, 2~ · · · , n. In this connection, it is to be noted 
that r.o t--~}.::l1Ut\! &h .. r.1ge has been supplied for X-matrix~ Moreover, the 
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c.:;n1puu~tior..s involving the sncce~sive repbc(;ment instructions are perfectly 
automatic and no :;ep:::tralc \Vmking locations~ even for storing a column., litfl.';: 

necessary. 

Formula 
nothing but tlu:: 
matri:{ J\ P2 P3 ~ P,"). • 

left band side clements (whkh ar~ all nniiy) are 
elem~nts of the P-n~atrix; P-mattix is the preduct 

Forrnu!a [2~4] : 'Ihe Lvi{.S. members are ) Xi[·\ i = l, 2~ ~ ,. " ~ 1'3. 

Though it dcman:Js an extra n locations, it enhances the au~on1ation and 
;:onsec·u·:n:.J.y shnp1iiles the progran1. 

Fonm,/a [2.5]: The L.H. terms arc the elements of (f1 -lx')'. 1t is to 
be noted that no separ;:-;te matrix multiplication subroutjne (for multiplying 
i:J._ -t and X'J has been used, thus saving appreciable computing time. 

Formuia [2 6]: The !eft hand members are the el-ements corre:spondi.ng 
to the e!emen ts of the P-matrix. H is important to note that the s~une 
locations for /~-eleinents have been used for P-matrh (i"e.~ the product matrix 
P 1 P2 • • • Pn); this not only improves lhe automation, but also saves th~e 

storage. 

Formu/11 [2.7}: The LH. m'mbers repccsent (A- 1)' of the method. 

TRANSFORMATION OF A 2~D ARRAY TO LtNEAR ARP.AY 

Very oft:z:n this transfJnnation. is extremely ust:fu! and t:ecessary not 
cn1y from tbe storage point of vi~w. but also from the point of view of 
Machbc~ SPS or sometimes .Autoccck. la.ngn?.ge. This -is pankukarly so for 
a trian;;ubr rnatrix -The DiMENSJON s.ta~ement, for example, in FORTRAN 
languages (FORTRAN H, IH, !V~ etc.) reseP.1es a memory stoTage for a two 
d~m.ensional an~iY in a rectangular or square fashion and not in the two 
di1nensional triangular fashion.. ~n s:uch case. the DIMENSION sratement~ 
if two dimensional array is set for a triangt1lar forn~ (i.e. trinnguiar matrix of 
order n x n)~ he1ps a. storage loss of n (n- l)/2 locations. This fact, of course~ 
depends 011 the FORTRAN compiiers of different computers. The machine 
language, Autocode or SPS of most computers ~annot h'tndle a double· 
subscripted variable and so in such cases. it is essential to convert a double:"" 
subscripted variable to single-subscripted variable. 

Suppose the elements of a square matrix of order " have been stored 
co~urr.mwise, srarting from lhe location p 1 onwards, th.en 

location of a 11 =p, + (j- 0 n + (i- I) [3.1] 

A lower triangular matrix L of order n with all elements above tl!e 
diagonal being zeros, when stored ro wise, starting from the location p2 

onwards, can have a single dimensional representation a~ 

location of l,i "'p2 +I (i- i)/2 + (j -· l) 
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For an upper triangular matrix R of order ? with all. the elements bel?w 
diagonal being zeros and being stored columnwiSe, •tarhng from a locatiOn 

Ps onwards, 
location of r11 - p3 + j (j- 1)/2 + {i- l) [3.3] 

If there is an array of the form 

,-
Pn. Pin I 

I Pu I 

i pz, n··l I 
P2l PZ:'l. l I Ps1 Pn Pl, n-2 

I I [3.4] 

I 
I 

I 
I_Pnl• I 

then starting from the location q0 onwards the location of P!i, v.hen stored 
columuwis::, ~?iiil be equal to 

[<Io+n(j-1) +(i-1)] forj~2 

(qo+n(j-l)+(i-1) -j(j-1)/2+ (j-1)1 
~ 

for j-;, 31 

((3.5] and 

AU the above transformations have been deduced by assuming the 
location of an element as a polynomical function of L j and n of some degree, 
say, 2 or 3. In [3·4j, for example, location of Pu, say, P(i, j, n) is giveu by 

P(i, j, n) = q0 + d1 i
2 + d,/+ d.,n2 + d4 ij + d5jn + d6 in + · • · 

where constants d,' d,, ... ' a,' ... will be determined from the given 
values 'of i, j, n and corresponding value of P; since [3·4] has been sto<ed 
column wise from location qo onwards, we know i, j and corresponding P. 

The form in (3·4], though having practically little use in matrix theory, 
may find its place in some particular type of statistical problems and so has 
be-en mentioned bere. 

Nurr¢Brical Experiments 

The tests were carried out on Hilbert's matrices of different orders 
and some other matrices including near~singular ones. Here only an example 
of Hilbert's matrix of order 4 along with an experiment on a mathematically 
slngu~ar matrix of different orders. has been mention-ed. Hilbert's matrices 
are typic~! examples of matrices ill-conditioned with respect to mverse ; its 
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(i, j~th element is 11 (i + j- !). These matrices are thecretically non-singular, 
but appear as singular during numerical cmropu:ations. The singularity is 
more pronounced "'ith higher order matrices. 

All the calculations, unless otherwise stated. were carried out with 8-dit 
floating point arithmetic and the results were expressed in rounded 6 £ignificant 
digits. Zeros on the least significant side have been suppressed. All the 
element. of the original matrices were retained correct up to 3 decimal places 
in all the cases. 

Example: Hilbert's matrix of order 4 

Det A- 0·165336 x w-• 
f3's of the method : 

[3 11 - - 0·561951, f3 12 = - 0·398049. 
.e22- - o-totoos x 10, 

(0 13 ~ - 0· 309965 

f-23- - 0·99!637 

/333- - 0·153 75 

X=r - ·6195!2 x w-• ·957983 x w-' ·-· ·49239 x w-s 

·5 ·523577 x w-' - ·452792 x w-z ·592247 x w-• 
I 

·333333 ·626829 x w-' ·867967 x w-3 - ·14827 x w-' 

l ·25 ·595122 x w-' ·406661 x w- 2 ·9894 x w- 4 

A_, being symmetric, is given by (suppressing elements below diagonal) 

-I 
I 

_I 

A-I= ,-·159693 X 102 
- •119657 X 103 •239179 x !03 - •!39468 x 103 -~ 

l ·119838 X 104 
- •2(96!5 X 104 •167751 X 104 r 

I · 6479~5 x w• - ·41997 x w• l I 
, ·280244" w• _i,· 
1-

Experiment on a mathematically singulor matrix: 

A matrix whose (i, jlth element is (i- l) + j, is always mathematically 
singular. And always the third column is linearly dependent on the preceding 
two columns. An experiment was conducted over this matrix of different 
orders with 8-dit floating point arithmetic. 

Order 4: J x,! 2 = .276 x 103
, I x2 J 

2 
= , 115942 x 10, [ x 3 /

2 = .34861 x 10-1' 

Order6· [x1 [
2

- .216~x104, [x2 [
2 = .l74515xl0, Jx3 !2 = .469891x!0- 10 

Order 7: Jx,j 2
- .476 X 10\ jx,! 2

- .210176 x 10, jx3 j2 = .291638 X 10-IO 

Order 8: I ).,[ 2 
- .9416 x 10', I x2 [

2 = .228377 x 10, I x,J 2 
- .364335 x 10-9 
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If the caiculutions were carried out with l~rger significant digits (floating 
point arithmeticl, I <3 I 2 in all the orders will be still smaller. On 8 sigmli
cant digit work, ]x3 !1

, J.U all the above mentioned cases, can be r.!gurded 
good numedcal :zeros9

• 
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