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ABSTRACT
Formuitae {or an automatic computation of the inversion of a matiix by an ortho-
gonalization (4, 8) method, which is a more powerful form of Gram's orthonormali-
zation process, have been derived. The main featutes of these formulae are the
minimum storage demand with maximum auvtomation. Numerical experiments have
been carried out mainly on near-smgular matrices with this computational procedare.
A simple method for the transformation of two dimensional array to one dimentional

array has also bsen included.

INTRODUCTION

The iaversion poses a seiicus problem when the matrix is near-singular®,
The methods both dirset and iterative encounier rounding errors due to a
good deal of divisions by small determinants® or some functions of determi-
nants and sometimes due to extration of square-roots’. The present method
consists in construcling an orthogonal set of column {or row) vectors from 2
set of ligeurly independent column {or row) vectors of the matrix; and sf a
particular column vector, say, the fifth coiumn vector of a matrix (6 x 6} is
linearly dependent on the preceding vectors, the first four orthogonal vectors
wiil be satisfactorily accurate, only the fifth and sixth one will encounter
some rounding errors {due to divisions only), that are, however, tolerable
when compared to those of other method.’, The Grams orthonormalization
method® will involve, in addition, a very conspicuons source of rounding
errors due to extraction of square-roots,

These derived formulae will require storage for the original matrix 4
{nxn) and for the triangular matrix # (mx #), in addition to that of the
program, but no storage for the orthogonal matrix X (n x ) and for P’s {n x n),
i=1, 2,-++,n of the method that finds description im the subsequent

pALESs,
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The automation resting on the use of these formulae is more pronounced
than when using the orthogonalization method directly, since instructions,
srithmetic operations and storage, in the former case, are comparatively less,

The detajled programming aspects including a brief description of the
method as well as a few typical numerical examples given here, would reveal
the extreme usefuiness of such formulation in solving a system of linear and
non-linear equations™,

A simple method of transformation of two dimensional array of different
forms to linear array has besn mentioned in this connection, assuming a
relation of the subseripts with the memory locations,

4 brief description of the method* B*

Let A=fs,0,0; ... a,] be a matrix of order m where a;= {a,;}’
i=1,2,3,-»+,n denotes the coloum vectors of the matrix 4, while ('}
indicates a transpose.

Lat

Xp=ay [1-1]

MNow we form X, by a linsar combination of x; and @, so that x, and x, are
orthogonal, then

X = Bux; ta {i.2}

where
,ﬁu = (“sxi)” X iz {1'3}

in general, the sth orthogenal vector can be formed from Xis Xa, Xis
*ery Xy Aud 2, in a similar way,
oo Brysay X+ oy oot Ko v Bony, goy Kooy b,
where
s 2
Bi st = —{aex}f|x] fr.4

Agaln,
Xy, X2, v o, X} w AP Pyr + + B 4P {1.5]
where P{w P P+ -« B} is 2n upper triangular matrix of order .
P is simply an identity matrix and P, is an upper triangular matrix of
ths sams order n, whose sth column vectlor is
{Bl-s*l» Boois o, Beior-1s 1,0, - .}'

wud all other vectors are wupit veclors. or more clearly, all the diagonal
vizments are woity.
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tet x' xl-diag {[nl% {xB -, Ix)) be A therefore, X7
= AT'E' where
A7 e g (30 P Yl - oo 1t
From [i.5],
AT wpx ' wPAT X = AT PY° {1el

and the magnitude of the delerminant of 4 is equal to

AL R PN N I P |

FORMULAR FQR AUTOMATIC COMPUTATION

The number of locations reserved for fS-matrix and A-matrix are
nf{n +1)/2 and »* respeciively. It is to be noted that the symbol “«* meuns
‘is replaced by’ inside this caption. For example, g;;=x; meaps the
countents of ¢ are replaced by the contents of x;5.

7,
= \019 5 lp)
1=

f2.13

$2.21

ﬁp{r""l {2'3}
p=1,2,% .-, n

xpom Slay]?, {2.4]
s=¥,2,3 -+, 8

CAEP RN EN {2.3}
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3-2
{ Biso= Bis Eiﬁx,y%~1 Bpit,s [24]

4 Sﬂi+2,i+3s s B

!
Lisl, 2 oe v, B2

= 251,; %,z {27

{
i
‘%5”1,2,3;“"»5
Li=m1,2,3,-°°,8

Procedure : 1t is very jmportant to note that the subscripts inside each left
parenthesis are to be varied sequentially; while varying one subsript, other
subscripts are kept fixed. For example, in Ez-a] we take s=1, then p=1
{which is equal to s) and find By, ; since we can not increase p beyound s in
{21}, we jump to the second [2-2] formula; in {2-2] we start taking i=1
(¢ is already 1} and find a;;, then taking =2 we find @y and similarly a5,
Gg2, %", Gy Dy taking i=3, 4, »-°, 7 respectively, Now s is increased
by 1 (s is now 2}, and we go back to [2:1} to 6ind Bz, Bas (P =1, 2), then
to §2:2], to fied a3, @x5, @3, * 0t s Ga3 (viwl, 2,500, 0}

Then s is again increased (s is now 3) and we go to [2:1] to determine
Bias Bzan Bas {p=1.2.3), them o 2:2] to determine a1, @y 23, " 7,
a%{imlazc v ':n}'

We proceed in this way up to s=n-1,

Now passing on to [2-3], 21l diagonal terras of S-matrix are replaced
by 1, or, mors explicitly, p=l, Buw=l; p=2, fu=1; p=3, By=1; =3
Pty Bun= 1

Then we go 10 {2-5] and find x;, x;, - « +, %, and so on.

Expiunation of the derived Formulae :

Formula (2172 Ras Buss Baas Bus Bass P63 * =3 Bias Pans Fanys * "
P15 are nothing bt £155 B, B F1as Bass Bass 5 Bua-1s fzu-1s
sve, Pumin-t ©f the method. Ia the actual formulation, one right shift of
all the B-elements has been given only to make the f-matrix a perfect upper
sriangular mairix of the same order (ie., #). The actual advantage lies in the
fact that the matrix operation (such as multiplication, addition, subtraction

which necessarily, demand the same order of both the matrix operands) will
he more automatiz,

Formala {3-2]: Here the Jeft hand side clements are nothing but

Xy Pk, 2,500, 53 je=1,2,« ¢+, n  In this connection, it is to be noted
that no serdaate storage has been supplied for X-matrix. Morzover, the

s
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computations involving the successive replacement isstructions are perfectly
auiomatic and no separate woiking locations, even for storing a column, are
BECESSArY.

Formuiz [2.3]:  The left band side clements (which are all unity) are
pothing but the diagonol elements of the P-matrix ; P-mariix is the preduct
matrix Py Po &y 0 Iy

- ) R

Formula [2.4]: The L.B.S. members are Is"!-[, P, 2, =22, &
Though it demands an extra n locations, it enhances the auiomation and
iy simplifies the program.

ConssTULT

Formuia [2.5}: The L.H. terms are the slements of (A™'X'). Iriste
be noted that no separate matrix muliiplication subroutine {for multiplying
A 7' and X'} has been used. thus saving appreciable computing tirme.

Formulz {26): The left hand members are the elements corresponding
to the elements of the P-matrix. ¥t is important o note that the same
locations for B-clements have been used for Pematrix (i.e., the product matrix
Py Py -+« P, this not only improves the automation, but also saves the

storage.
Formula {27} The L.F. members represent (A"l}y of the method.

TRANSFORMATION OF A 2-D ARray TO Lingar ARRAY

Very often this transformation is extremely wuseful and necessary not
only from ths storage point of vitw, but also from the point of view of
hine, SPS or sometimes Autocede langrage, This is pariicularly so for
slar matrix WThe DIMENSION statement, for example, in FORTRAN
languages {FORTRAN 11, 111, 1V, etc.} reserves a memory storage for a two
dimensional array in a rectangnlar or sqeare fashion and not in the two
‘dimensional triangular fashion. In such case, the DIMENSION statement,
if two dimensional array is set for a triangular form {(ie. triangular matriz of
order a2 % m), helps a storage loss of n{n — 1}/2 locations. This faci, of course,
depends on the FORTRAN compilers of different computers. The machine
fanguage, Autocode or SPS of most computers cannot bandie a double-
subscripted vadable and so in such cases, il is essential to convert a double-
subscripted variable to single-subsecripted variable.

Suppose the clements of a square matrix of order » have been stored
columnwise, starting from the location p; onwards, then
location of gy =gy +{j— Vn+ (-1} 3.1}

A lower triangular matrix L of order n with all elements above the
diagonal being zeros, when stored rowise, starting from the location po
onawards, can have a single dimensional representation ag

tocation of Ly=pp 2 i(i-1)/2 47— 1) [3.2}
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For an upper triangular matsix R of order z with all the elements below
diagonal beiné zeros and being stored columnwise, starting from a focation
ps onwards, )

location of ry=ps +J(j—1)2+{i-1} {33

If thers is an array of the form

Pu Pu e Pin
P Pa ttt ttt Pboand

P Pz T ﬁs',n—z

s w4 e e e

"_p'ni .

then starting from the location g, omwards the location of p;, when stored
columuwiss, wiil be equal to

{%+2{j-D+0-1)] forj=2 ]

and

[{3.5]

lasn(i-1)+G-1)~i(j-12+(j~-1)} forj= 3

Al the above transformations have been deduced by assuming the
focation of an element as a polynomical function of 4. j and »n of some degres,
say, 2 or 3, In [3-4f, for example, location of p,, say, P{i, j, n) is given by

Pl jmwgg+di E b da ]+ dsn® 4 dyij + dsjn + dgin 4+ ¢ -

where constants dy, &y, *- -, gy, . -+ will be determined from the given
values ‘of & j, n and corresponding value of P; since [3-4] has been stored
columnwise from location ¢; onwards, we know 7, j and corresponding P.

‘The form in [3-4], though having practically little use in matrix theory,
may find its place in some particular type of statistical problems and so has
been mentioned here.,

Numerical Experiments

The tesis were carried out on Hilbert’s matrices of different orders
and some other matrices including near-singular ones. Here only an example
of Hilbert’s matrix of order 4 along with an experiment on a mathematically
singulur matrix of different orders, bas been mentioned. Hilbert’s matrices
are typical examples of matrices ill-conditioned with respect to inverse ; its
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(7, /¥th element is 1/{i 4+ j ~ ). These matrices are thecretically non-singular,
but appear as singular during numerical computations, The singularity is
motre propounced with bigher order matrices.

All the calculations, unless otherwise stated. were carried out with 8-dit
floating point arithmetic and the results were expressed in rounded 6 significant
digits. Zeros on the least significant side have been suppressed. All the
clements of the original matrices were retainsd correct up to 8 decimal places
in all the cases.

Example : Hilbert’s matrix of order 4

Det A = 0-165336 x 107°

B’s of the method :

Bi1= —0-561951, Bz = — 0-398049, Pis = — 0-309965

Papem — 0106008 x 10,  Bay = — 0991637
Baz = - 0:15375

X=| 1 - 518512 x 107 957983 x 107 - -4923¢ % 107°
’ -5 -523577 % 1070 — -452792 x 1072 -592247 x 1074
I 333333 626829 % 107" 867967 % 107%  ~ 14827 x 107° i
-25 -595122 % 10~ +406661 x 1072 9894 < 107%

A" being symmetric, is given by {suppressing slements below diagonal)

150693 x 162 — -119657 x 10° 239179 x 10°  — 139468 x 10*
119838 x 10 —-2¢9515 x 10* 167751 x 10*

647945 x 10%  —-41997 x 16%

+280244 x 10°

A=

Experiment on ¢ mathematically singular matrix :

A matrix whose (i, flth clement is (i —1) +7, is always mathematically
singular. And always the third column is linearly dependent on the preceding
two columns, An experiment was conducted over this matrix of different
orders with §-dit floating point arithmetie.

Order 4: [x|* = 276 x10%, |x]% = 115942 % 10, [xs]? = .34861 x 1079
Order 6 fx;|? = 2166 x 10% |x,|? = 174515 x 1D, |x3!? = .469891 x 10710
Order 71 [x;]|* = 476 x10% |[x3]? = 210176 x 10, |x4]% = .291638 x 10~'¢
Order 8: [41]% = B416x 104 [ = 228377 x 10, {x3|® w .364335 x 10™°

i
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If the cajculations were carried out with larger significant digits (ﬂoating
point arithmetic}, | x3|? in all the orders will be still smaller.  On 8 signiti.
cant digit work, |x3!% m all the above mentioned cases, can be regarded
good numerical zeros,
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