Interfacial area for packed towers' .

M. S. MURTHY and A. V. RAO*
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012 , Indja

Received on September 28, 1978; Revised on December 24, 1978

Abstract

A model for predicting the values of interfacial area from liqud hold-up is presented for variousfins io and shapes of packings generatly cmployed in laboratorios and industry. The value of the liquid holdup has been evaluated from the vertical surface model and random angle model proposed by Davidson. The calculated values are in good agreement with the reported values of wetted area and interfacial area (maximum value) obtained by the chemical method. It is observed that with the increase in size of the packing, the packing behaves as a vertical surface. The reported values of interfacial area for physical absorption and evaporation are also compared with the calculated values.

Key words: Liquid hold-up, packed columns, packings, interfacial area, mass transfer, absorption.

1. Introduction

Design of mass transfer equipment and the prediction of rates of absorption into reacting solutions require the knowledge of mass transfer coefficients of individual phases and the interfacial area.

Experimental data on the performance of absorption towers are usually teported as volumetric mass transfer coefficients ($k_{I} a$ or $k_{G} a$). The volumetric coefficients can be easily determined by physical absorption measurements. Separation of these volumetric coefficients into ' k_{L} ' or ' k_{G} ' and ' a ' requires the knowledge of either individual mass transfer coefficient (k_{L} or k_{G}) or specific interfacial area.

Several investigators visualized the interfacial area of the liquid in a packed tower to consist of the surfaces of both rapidly moving streams and quiescent accumulations. The thickness and the speed of the liquid layer will also vary from point to point. In the case of physical absorption, the effective interfacial area is that of the rapidly moving liquid, since the thin and slow moving parts of the liquid layer will become saturated with dissolved gas. These parts of the surface may contribute little to interfacial area for physical absorption. On the other hand, in evaporation experiments all parts of the liquid surface will be effective. Thus, the effective interfacial area for evaporation

[^0]HSc hitumelore

will be more than that for physical absorption (Yoshida and Koyanagi ${ }^{1}$). Shulman et al^{2} discussed the absorption experiments of ammonia into water and solutions of sulfuric acid. It was observed that the value of interfacial arca obtained (from $k_{e} a$ measurenents) increased with acid concentration tending to a constant value when the concentration of the acid reached a value of 2 M . This is an indication of difference in interfacial area effective for physical absorption and absorption accomparied by chemical reaction. Joosten and Danckwerts ${ }^{4}$ ard Patwardhan discussed the differences in interfacial area for physical absorption and absorntion with chenical reaction.

Davidsons observed that the values of interfacial area are much less that the wetted areas, the difference being nuch more marked in the case of smaller rings. Also, sufface tension forces are able to retain comparatively large volumes of water between the rings, thereby filling up the pore space, and wetting the solid surface without exposing much interface. It is also possible that with the smaller rings theie are stagnant pockets of gas within the packing, so that some of the liquid surface is not accessible to the gas flowing through the tower. Onda at al have shown that the values of wetted arca a_{w} are equal to the values of interfacial area obtained by absorbing CO_{2} into solutions of NaOH .

A model has been presented here to evaluate the interfacial area for mass iransfer operation in packed towers from liquid hold-up for four different types of packing (Raschig rings, Berl saddles, Pall rings ard Intalox saddles).

2. Hold-up

The liquid hold-up is an important characteristic of packing owing to its reation to the wetted area, pressure drop and hooding characteristics. Fumas and Eellinger", Jesser and Elgin" showed that the hold-up varicd from 0.94 to 0.74 power of liquid rate. Shulman ct al measured the total hold-up by weighing the column packing while liquid flow was maintained. The operating hold-up was obtained by deducling the static hold-up. The static hold-up was measured as the weight of liquid retained when the column had drained to a constant weight. Shulman et al${ }^{2}$ observed that the operating hold-up is independent of the nature of the packing surface, whereas the static hold-up may vary with the porosity of the material of the packing. Broz and Kolar ${ }^{3}$ observed that for low iquid flow rates the hold-up is almost constant and increases only near the flooding, and gas flow rate has little effect. Mohanta and Laddha ${ }^{\text {no }}$ proposed a correlation for operating hold-up based on the velocity of fiquid (based on empty column) and the number of pieces per cubic foot. Otake and Okada ${ }^{\text {a1 }}$ proposed dimensionless correlation for operating hold-up in a bed of Raschig rings and Bell saddles. Varrier and Rao ${ }^{24}$ correfation appears to be a modification of Otake and Okada ${ }^{\text {r2 }}$ correlation.

Davidson ${ }^{3}$ obtained a correlation based on theoretical considerations. These investigations showed that the hold-up depends mainly on the size of the packing. But static
hold-up is more on the smaller packings owing to the quantity of liquid held by capiliary forces at the points of contact of the packing and these points of contact will be moie for smaller size packings.

3. Development of the model

In an absorption tower liquid usually flows as a film over the surface of a solid packing and exposes a large area for absorption. The thickness and velocity of the film are normally such that the flow is streamlined. For laminar flow over a vertical plate, the velocity profile is given as ${ }^{13}$

$$
\begin{equation*}
V_{z}=\frac{\rho g}{2 \mu}\left(m^{2}-x^{3}\right) \tag{1}
\end{equation*}
$$

where ' m ' is the film thickness.
The maximum velocity exists at a point farthest from the wall (at $x=0$) is given by

$$
\begin{equation*}
\Gamma_{z \max }=\frac{p g m^{2}}{2 \mu} \tag{2}
\end{equation*}
$$

The average volumetric flow rate of liquid (Q) is given by

$$
\begin{equation*}
Q=\int_{0}^{\infty} \int_{0}^{m} V_{z \text { avg }} d x d y=V_{x \text { avg }} \int_{0}^{w} \int_{0}^{m} d x d y=w m V_{s \text { arg }} \tag{3}
\end{equation*}
$$

where $w=$ width of the film.
Average velocity, $V_{n \text { arg }}=\frac{\text { Total flow rate }}{\text { Total cross-sectional area }}$

$$
\begin{equation*}
=\frac{\int_{0}^{w} \int_{0}^{m} V_{z} d x d y}{\int_{0}^{w} \int_{0}^{m} d x d y}=\frac{\int_{0}^{w} \int_{0}^{m} V_{z} d x d y}{w_{m}} \tag{4}
\end{equation*}
$$

In eqn. (4), V_{s} is a function only of x and not of y. Therefore

$$
\begin{equation*}
V_{z_{\text {avg }}}=\frac{w \int_{0}^{m} V_{z} d x}{w m}=\frac{\int_{0}^{m} V_{z} d x}{m} \tag{5}
\end{equation*}
$$

Expressing V_{2} in terms of x

$$
\left(V_{s}\right)_{\mathrm{avg}}=\frac{\int_{0}^{m} \frac{\rho g}{2 \mu}\left(m^{2}-x^{2}\right) d x}{m}
$$

$$
\begin{equation*}
=\frac{p g m^{3}}{3 \mu m}=\frac{\rho g m^{2}}{3 \mu} . \tag{6}
\end{equation*}
$$

Substituting the value of $\left(V_{2}\right)_{\text {ave }}$ from eq̧. (6) into eqn. (3), the volunctric flow rate,

$$
\begin{equation*}
Q=\frac{p g n^{2}}{3 \mu} w m=\frac{\partial g w m^{3}}{3 \mu} \tag{7}
\end{equation*}
$$

From eqn. (7), film thickness, ' m ', is given by

$$
m=\left(\frac{3 \mu Q}{\rho g W}\right)^{1 / 3}
$$

Hence for a given mass flow rate $L_{m}=a \rho_{0} p^{\prime}$, the film thickness

$$
\begin{equation*}
m=\left[\frac{3 \mu L_{n t}}{a p^{2} g}\right]^{1!} \tag{8}
\end{equation*}
$$

where $a=$ suthee area per unit volume $\mathrm{cm}^{2} / \mathrm{cm}^{5}$ and $L_{m}=$ mass flow rate $\mathrm{g} / \mathrm{cni}^{2} \mathrm{sec}$. The Reynolds number for vertical surfaces is given by

$$
\mathrm{Re}_{1}=4 L_{n} / \alpha \mu
$$

The Grashof number, $\mathrm{Gr}=\mathrm{g} d^{3} / v^{2}$. Eqn. (8) can be written in terms of Re_{1} and $\mathrm{Gr}^{\text {, }}$ as

$$
\begin{align*}
m & =\left(\frac{3}{4} \frac{\mathrm{Re}_{1}}{\mathrm{Gr}} \cdot d^{2}\right)^{1 / 3} \\
& =0.909 d\left(\frac{\mathrm{Re}_{1}}{\mathrm{Gr}_{r}}\right)^{1 / 3} \tag{9}
\end{align*}
$$

where "d' is the characteristic length of the packing. It is assumed that the solid packings are made up of large number of either vertical surfaces of height ' d ', or consistirg of a Iarge number of surfaces inclined at an angle to the horizontal and each of length ' d ', adequately and equally wetted by the liquid.

A method of prediction of interfacial area from Davidson's vertical sufface (VS) model and random angle (RA) model is presented here. Davidson predicted the hold-up of liquid using Higbje's assumptions ${ }^{18}$. In the vertical surface model, the packing is assumed to consist of a numbe; of vertical surfaces of height ' d ' (characteristic lergth of the packing) whereas in the random angle model, the packing is assumed to consist of a number of inclined surfaces, eact of length ' d ', the inclination 10 horizontal being random.

The mean film thickness ' m ' in terms of operating liquid hold-up ' h ' (tctal volume of liquid within anit volume of tower) was given by Davidson as:

$$
\begin{equation*}
\frac{m}{d}=\frac{h}{a d} . \tag{10}
\end{equation*}
$$

Combining eqns. (9) and (10), the hold-up for the vertical surface model is given by:

$$
\begin{equation*}
l_{\mathrm{Vs}}=0.909 \mathrm{ad}\left[\mathrm{Re}_{1} / \mathrm{Gr}\right]^{1 / 3} \tag{11}
\end{equation*}
$$

Substituting for Re_{1} and Gr , eqn. (11) becomes

$$
\begin{equation*}
h_{V S}=0 \cdot 145\left[L_{m} \mu a^{2} / \rho^{2}\right]^{113} \tag{1.2}
\end{equation*}
$$

where

$$
g=\mathrm{cm} / \mathrm{sec}^{?} .
$$

Similarly, the hold-up from Davidson's random angle model is given by

$$
\begin{equation*}
h_{B A}=1.217 \mathrm{ad}(\mathrm{Re} / \mathrm{Gr})^{1 / 3} \tag{13}
\end{equation*}
$$

where Re is the Reynolds number for random packing

$$
=2 \pi I_{m} / a p
$$

Substituting for Re and Gr in eqn. (13),

$$
\begin{equation*}
h_{R A}=0.226\left[L_{\mathrm{m}} \mu a^{2} / \rho^{\Sigma}\right]^{1 / 3} \tag{14}
\end{equation*}
$$

From the definition of hold-up, h (volume of liquid held per unit volume of packing) and the voidage, ϵ (free space available for gas and liquid per unit volume of packing) the volume occupied by the liquid per unit volume of tower is

$$
\begin{align*}
& V_{V S}=h_{V S} / \epsilon \tag{15}\\
& V_{R A}=h_{R A} / \epsilon \tag{16}
\end{align*}
$$

In packed towers considerable amount of liquid is in the form of liquid held between packings (patticularly in smaller size packings) and in the form of thin films, which do not contribute significantly to mass transfer in the case of physical absorption. This may be due to the fact that thin and slow moving films get saturated. However, these will be contributing to mass transfer in evaporation and absorption with chemical reaction due to the absence of concentration gradients in the liquid phase. Thus, the interfacial area effective for evaporation and for absorption with chemical reaction will be more than that of the physical absorption alone. The interfacial area obtained by chemical method refers to the maximum value which is independent of reactant concentration.

An attempt has been made to evaluate the effective interfacial area available for evaporation and absorption with chemical reaction as follows: The interfacial area is assumed to be the surface area of a sphere occupying the volume of liquid hold-up ($V_{V S}$ and $V_{R A}$). Thus if the total liquid is ' V ' then the surface area is evaluated as:

$$
\begin{equation*}
V=\frac{4}{3} \pi r^{3} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
r=(3 F / 4 \pi)^{1+3} \tag{18}
\end{equation*}
$$

The surface area of the sphere

$$
\begin{equation*}
S A=4 \pi r^{5} . \tag{19}
\end{equation*}
$$

Substituting for ' r ' from equ. (18)

$$
\begin{align*}
S A & =4 \pi(3 V / 4 \pi)^{213} \\
& =4.8387(/)^{213} \tag{20}
\end{align*}
$$

The interfacial area is evaluated for various packings from the volume of liquid holdup. Though the wetted area range from $20-80 \%$ of the total surface area, the effective interfacial area could be much less because of the liquid hold-up in the packings. As the hold-up varies with the size of the packing (d) an attempt has been made to account. for the extra contribution to interfacial area due to reaction considering the size of the packing. From the data collected this extra contribution to interfacial area (a_{s}) is estimated, taking into account the size of the packing. Comparing the value of SA with the literature data on wetted area and interfacial area for absorption with chemical reaction it was found that the area in excess of $S A$ could be empirically related to the nominal size of the packing (d) as:

$$
\begin{equation*}
a_{\mathrm{S}}=\frac{0.5}{d} \tag{21}
\end{equation*}
$$

The effective interfacial area for physical absorption based on vertical surface model hold-up volume from eqn. (20) is

$$
\begin{equation*}
I A_{V S}=4.8387\left(V_{V S}\right)^{23} \tag{22}
\end{equation*}
$$

and that based on random angle model is

$$
\begin{equation*}
L A_{E A}=4 \cdot 8387\left(V_{R A}\right)^{2 / 3} \tag{23}
\end{equation*}
$$

The effective interfacial area for absorption with chemical reaction and evaporation based on vertical surface model hold-up volume and that based on randon angle model from eqns. (20) and (21) can be written as

$$
\begin{align*}
& I A_{V S}=4.8387\left(V_{V S}\right)^{2 / 3}+(0.5 / d) \tag{24}\\
& I A_{B A}=4.8387\left(V_{R A}\right)^{2 / 3}+(0.5 / d) \tag{25}
\end{align*}
$$

4. Results and discussion

For four types of packings, viz., Raschig rings, Berl saddles, Pail rings and Intalox saddles, the values of interfacial area from eqns. (22), (23), (24) and (25) have been calculated. The geometric surface area of the packing is calculated from the shape factor ' $a_{8} D_{P}$ ' given by Onda et al l^{14}. These values are given in Table l, along with
the values of voidage (ϵ). The physical properties for water have been used in all the calculations as most of the properties of solutions lie in the same region.

Table I

Values of Voidage (ε) and shape factor ($a_{i} D_{p}$)

Tacking	Shape factor $a_{t} D_{p}$	Voidage ($¢$)					
		for sizes (cm)					
		$1 \cdot 27$	$2 \cdot 54$	$3 \cdot 81$	$5 \cdot 08$	$7 \cdot 62$	$10 \cdot 16$
Raschig rings	4.7	$0 \cdot 64$	0.73	0.68	$0 \cdot 74$	$0 \cdot 74$.
Bers saddles	$5 \cdot 6$	0.65	0.69	0.72	\cdots	\cdots	-
Pall rings	$5 \cdot 8$.	$0 \cdot 73$	0.76	$0 \cdot 78$	-	0.82
Intalox saddles	$7 \cdot 1$	$0 \cdot 78$	0.77	0-80	$0 \cdot 79$	-	-.

5. Eftective interfacial area for craporation and absorption with chemical reaction

The values of effective interfacial area from eqns. (24) and (25) based on vertical surface model ($/ A_{V G}$) and random angle model $\left(I_{R A}\right)$ for absorption with chemical reaction and evaporation are given in Tables II to V .

The wetted surface area (a_{w}) of the packing is calculated from Onda's equation ${ }^{5}$:

$$
\begin{equation*}
\frac{a_{W}}{a_{t}}=1-\exp \left[-1 \cdot 45(\sigma c / \sigma)^{0 . \%_{0}}\left(\frac{L}{a_{t} M_{L}}\right)^{0.1}\left(L^{3} a_{l} / \rho^{2} g\right)^{-0.05}\left(L^{2} / \rho \sigma a_{i}\right)^{0 . \varepsilon}\right] . \tag{26}
\end{equation*}
$$

The wetted areas calculated from this equation for various shapes and sizes of packing are given in Tables II to V. They include the values of effective interfacial area calculated from eqns. (24) and (25) and the values of intef facial area for the absorption of carbon dioxide in the temperature tange $20-25^{\circ} \mathrm{C}$. Eqn. (26) is applicable within $\pm 20 \%$ error for ' $a_{t 0}$ ' to the column packed with Raschig rings, Berl saddles, ceramic spheres, glass and polyvinyl chloride spheres.

5.1. Raschig rings

Table II indicates that the values of interfacial area calculated by the use of vertica] surface model are in good agreement with the calculated valnes of wetted area (Onda et al ${ }^{5}$) and values of interfacial area reported by Danckwerts and Sharma ${ }^{15}$ up to the superficial liquid flow rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Above this superficial flow rate, the calcu-
lated valuts of interfacial area by randon angle model [eqn. (25)] are in good agreement with those values of wetted area (Onda et al ${ }^{3}$) and interfacial area (Danckwerts ${ }^{5}$) for 1.27 and 2.54 cm Raschig rings.

From Table if it can be seen that the values of interfacial area calculated based on vertical surface model [eqn (24)] are in good agreement with those values of wetted area (Onda et $a l^{3}$). These values are also reasonably satisfactory compared to those reported by Danckwerts and Sharma for 3.81 cm Raschig rings. It can also be observed that with increase ir, size of the Raschig rings, the packing behaves as a vertical surface.

5.2. BerI saddles

From Table III it is exident that values of interfacial area for 1.27 cm and 2.54 cm Berl saddies are in good agreement with those predicted from eqn. (26) (for wetted area). The above values are in close agreement with those reported by Onda et ab ${ }^{5}$ for $\mathrm{CO}_{2}-\mathrm{NaOH}$ system. The values of wetted area presented in Table III for 3.81 cm Berl saddles are in good agreement with the values calculated from vertical surface model.

5.3. Pall rings

Table IV indicates that the values of interfacial area calculated from vertical surface model agree reasonably well with the wetted areas [eqn. (26)] up to a superficial liquid flow rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Beyond this superficial liquid flow rate, the values are in agreement with those predicted by random angle model for 2.54 cm and 3.81 cm Pall rings. However, the values of interfacial area by chemical method ${ }^{15}$ are bigher compared to the values of interfacia! area calculated by random angle model. This may be due to the complex geometry of the Pall rings which may influence the liquid flow and the mixing characteristics.

The values of interfacial area from vertical surface model are in good agreement with the values of wetted area [calculated from eqn. (26)] for 5.08 and 10.16 cm Pall rings (Table IV).

5.4. Intalox saddles

In the case of Intalox saddles, the values of interfacial area calculated from random angle model for 1.27 cm and 2.54 cm sizes are lower than the values of wetted area [eqn. (20)] and interfacial area reported by Danckwerts and Sharma ${ }^{15}$. However, for sizes 3.81 cm ard 5.04 cm , the values of interfacial area calculated by vertical surface model with $0.15 \mathrm{~cm} / \mathrm{sec}$ and $0.2 \mathrm{~cm} / \mathrm{sec}$ superficial liquid flow rates respectively are in good agreement with the values of wetted area [eqn. (26)]. Above this superficial

Table II

Effective interfacial area of columms with Raschig rings ($\mathrm{cmi}^{2} / \mathrm{cm}^{3}$)

Superficial liquid fow rate, L cmisec	Interfacial area $\mathrm{cm}^{2} / \mathrm{cm}^{3}$			Wetted area $\mathrm{cm}^{2} / \mathrm{cm}^{3}$ eqn. (26)	\% deviations from columns		
	Vertical surface model eqn. (24)	Random angle model cqn. (25)	Danckwerts and Shama ${ }^{1.5}$		2\&5	$3 \& 5$	$3 \& 4$

Size 1.27 cm

0.05	0.9942	1.1989		0.75	24.56	37.44	
0.10	1.0924	1.3319		1.00	8.46	24.92	
0.15	1.1587	1.4200		1.13	2.48	20.42	
0.20	1.2090	1.4873	1.15	1.22	-0.91	17.97	22.68
0.40	1.3440	1.6682	1.54	1.54	-14.58	7.68	7.68
0.60	1.4326	1.7877	1.81	1.73	-20.76	3.23	-1.25
0.80	1.4684	1.8802	2.00	1.88	-28.03	0.00	-6.37
1.00	1.5575	1.9547	2.09	2.00	-28.42	1.95	-6.92

Size 2.54 cm

0.05	0.6437	0.7376		0.51	20.77	30.86	
0.10	0.6665	0.8271		0.62	6.98	25.04	
0.15	0.7105	0.8866		0.70	1.48	21.04	
0.20	0.7444	0.9490	0.72	0.76	-2.10	19.92	24.13
0.40	0.8358	1.0536	1.00	0.92	-10.07	12.68	5.09
0.60	0.8953	1.1344	1.18	1.02	-13.93	11.22	-4.02
0.80	0.9413	1.1960	1.28	1.10	-16.86	8.03	-7.02
1.00	0.9790	1.2466	1.35	1.17	-19.51	6.14	-8.29

Size 3.81 cm

0.05	0.4831	0.6036	0.37	23.41	38.70

Table II (contd.)

Superficial liquid flow rate, L $\mathrm{cm} / \mathrm{sec}$	Interfacial area $\mathrm{cm}^{2} / \mathrm{cm}^{3}$			Wetted area emidem? eqn. (26)	\% deviation from columns		
	Vertical surface model eqn. (24)	Random angle model eqn. (25)	Danckwerts and Sharma ${ }^{1 \text { T }}$		$2 \& 5$	$3 \& 5$	384

Size 3.81 cm

0.10	0.5414	0.6817		0.46	15.04	32.52	
0.15	0.5801	0.7340		0.52	10.36	29.16	
0.20	0.6102	0.7736	0.37	0.57	6.59	26.32	52.17
0.40	0.6895	0.8806	0.50	0.68	1.38	22.78	31.86
0.60	0.7422	0.9507	0.77	0.76	-2.40	20.06	19.01
0.80	0.7824	1.01 .12	0.93	0.81	-3.53	19.90	8.03
1.00	0.8148	1.0490	1.04	0.85	-4.32	18.97	0.86

Sixe 5.08 cm

0.05	0.3913	0.4914	0.29	25.89	40.98
0.10	0.4398	0.5467	0.37	15.87	32.32
0.15	0.4716	0.5995	0.42	10.94	29.93
0.20	0.4962	0.6327	0.45	9.31	28.88
0.40	0.5624	0.7218	0.54	3.98	25.19
0.60	0.6061	0.7803	0.60	1.00	23.11
0.80	0.6390	0.8248	0.63	1.05	23.62
1.00	0.6666	0.8621	0.66	1.00	23.44

Size 7.62 cm

0.05	0.3098	0.3937	0.22	28.99	44.12
0.10	0.3504	0.4479	0.27	22.95	39.72
0.15	0.3642	0.4839	0.31	14.88	35.94
0.20	0.2977	0.5427	0.34	14.51	37.35
0.40	0.4528	0.5859	0.41	9.45	30.02
0.60	0.4893	0.6348	0.44	10.08	30.69
0.80	0.5173	0.6720	0.46	11.08	31.55
1.00	0.5399	0.7030	0.47	12.95	33.14

Table III
Effective interfacial area with Berl saddles ($\mathrm{em}^{2} / \mathrm{cm}^{3}$)

Size 1.27 cm

0.05	1.06	1.29	0.88	16.98	31.78
0.10	1.15	1.42	1.11	3.48	21.83
0.15	1.21	1.50	1.26	-4.13	16.00
0.20	1.27	1.56	1.38	-8.66	11.54
0.40	1.40	1.75	1.77	-26.43	-1.14
0.60	1.50	1.88	1.99	-32.67	-5.85
0.80	1.58	1.99	2.16	-36.71	-8.54
1.00	1.65	2.09	2.29	-38.79	-9.57

Size 2.54 cm

0.05	0.64	0.80	0.57	10.94	28.75
0.10	0.72	0.90	0.69	4.17	23.33
0.15	0.77	0.96	0.77	0.00	19.79
0.20	0.81	1.01	0.84	-3.70	16.83
0.40	0.92	1.15	1.03	-11.96	10.43
0.60	0.99	1.24	1.15	-16.16	7.26
0.80	1.04	1.32	1.25	-20.11	5.30
1.00	1.07	1.38	1.33	-24.30	3.62

Size 3.81 cm

0.05	0.50	0.62	0.41	18.00	33.87
0.10	0.56	0.71	0.51	8.93	28.17
0.15	0.60	0.76	0.58	3.33	23.68
0.20	0.63	0.80	0.63	0.00	21.25
0.40	0.71	0.91	0.76	-7.94	16.48
0.60	0.77	0.98	0.84	-9.09	14.29
0.80	0.81	1.04	0.89	-9.88	14.42
1.00	0.84	1.09	0.93	-10.71	14.68

Table IV

Effective interfacial area with Pall rings ($\mathrm{cm}^{6} / \mathrm{cm}^{3}$)

Superficial	Interfacial area $\mathrm{cm}^{2} / \mathrm{cm}^{3}$			Wetted area $\mathrm{cm}^{3} / \mathrm{cm}^{3}$ eqn. (26)	\% deviation from columns		
rate, L $\mathrm{cm} / \mathrm{sec}$	Vertical surface model eq̧. (24)	Random angle model eqn. (25)	Danckwerts and Sharma ${ }^{10}$		$2 \& 5$	$3 \& 5$	384

Size 2.54 cm

0.05	0.6397	0.7903		0.55	14.02	30.41	
0.10	0.7124	0.8885		0.70	1.74	21.22	
0.15	0.7603	0.9539		0.80	-5.22	16.13	
0.20	0.7976	1.0032	1.24	0.87	-9.08	13.28	-23.60
0.40	0.8982	1.1368	1.61	1.08	-20.24	5.00	-41.63
0.60	0.9631	1.2253	1.81	1.21	-25.64	1.25	-47.72
0.80	1.0134	1.2935	1.92	1.30	-28.28	-0.50	-48.43
1.00	1.0545	1.3487	1.96	1.37	-29.92	-1.58	-45.33

Size 3.81 cm

0.05	0.4903	0.6132	0.44	10.26	28.25
0.10	0.5496	0.7062	0.53	3.57	24.95
0.15	0.5892	0.7549	0.59	-0.14	20.90
0.20	0.6191	0.7865	0.65	-4.99	17.36
0.40	0.7000	0.8949	0.80	-14.29	10.60
0.60	0.7531	0.9670	0.89	-18.18	7.96
0.80	0.7948	1.0222	0.95	-19.53	7.06
1.00	0.8277	1.0672	0.99	-19.61	7.23

Table IV (contd.)

Superficial	Interfacial area $\mathrm{cm}^{2} / \mathrm{cm}^{3}$			Wetted arca $\mathrm{cm}^{2} / \mathrm{cm}^{3}$ cq. (26)	\% deviation from columns		
rate, L	Vertical surface	Random angle	Danckwerts and		2\&5	$3 \& 5$	384
	model	model	Sharma ${ }^{1.5}$				
	eqn. (24)	equ. (25)					

Size $5 \cdot 08 \mathrm{~cm}$

0.05	0.4086	0.5152	0.35	14.34	32.07
0.10	0.4602	0.5844	0.42	8.74	28.13
0.15	0.4949	0.6298	0.47	4.92	25.37
0.20	0.5208	0.6652	0.52	0.15	21.83
0.40	0.5902	0.7585	0.63	-6.74	16.95
0.60	0.6366	0.8210	0.71	-11.53	13.52
0.80	0.6715	0.8689	0.76	-13.18	12.53
1.00	0.7010	0.9076	0.80	-14.12	11.86

Size $10 \cdot 16 \mathrm{~cm}$

0.05	0.2695	0.3451	0.21	22.08	39.15
0.10	0.3060	0.3944	0.26	15.03	34.08
0.15	0.3303	0.4267	0.29	12.20	32.04
0.20	0.3487	0.4514	0.31	11.10	31.32
0.40	0.3983	0.5184	0.37	7.11	28.63
0.60	0.4312	0.5624	0.40	7.24	28.88
0.80	0.4570	0.5963	0.425	7.00	28.73
1.00	0.4770	0.6244	0.44	7.76	29.53

liquid flow rate, the values of wetted area are in agreement with those values (Table V) calculated from random angle model [eqn. (25)].

In this type of packing, the lower value of interfacial area could be explained due to complexity of the geometry of the packing as in the case of Pall rings.

Table V

Effective interfacial area with Intalox saddles ($\mathrm{cm}^{2} / \mathrm{cm}^{3}$)

Size 1.27 cm

0.05	1.0256	1.2410		1.00	2.50	19.42	
0.10	1.1297	1.3808		1.33	-17.73	3.68	
0.15	1.1984	1.4737		1.53	-27.67	-3.82	
0.20	1.2511	1.5439	1.52	1.68	-34.28	-8.82	1.55
0.40	1.3924	1.7345	2.23	2.06	-47.95	-18.77	-28.57
0.60	1.4868	1.8604	2.74	2.34	-57.38	-25.78	-47.28
0.80	1.5584	1.9561	3.17	2.56	-64.27	-30.87	-62.06
1.00	1.6169	2.0355	3.53	2.74	-69.46	-34.61	-73.42

Size $2 \cdot 54 \mathrm{~cm}$

0.05	0.6616	0.8203		0.64	3.26	21.98	
0.10	0.7385	0.9239		0.80	-8.33	13.41	
0.15	0.7889	0.9921		0.90	-14.08	9.28	
0.20	0.8281	1.0444	0.88	0.99	-19.55	5.21	15.74
0.40	0.9331	1.1847	1.20	1.24	-32.89	-4.67	-1.29
0.60	1.0018	1.2776	1.44	1.40	-39.75	-9.58	-12.71
0.80	1.0545	1.3487	1.65	1.52	-44.14	-12.70	-22.34
1.00	1.0981	1.4073	1.88	1.62	-47.53	-15.11	-33.59

Table V (contd.)

Superficial liquid flow rate, L $\mathrm{cm} / \mathrm{sec}$	Interfacial area $\mathrm{cm}^{2} / \mathrm{cm}^{3}$.			Wetted. area $\mathrm{cm}^{2} / \mathrm{cm}^{2}$ eqд. (26)	\% deviation from columas		
	Vertical surface model equ. (24)	Random angle model egn. (25)	Danokwerts and Sharma ${ }^{15}$		$2 \& 5$	$3 \& 5$	384

Size 3.81 cm

0.05	0.5108	0.6409	0.48	6.03	25.11
0.10	0.5737	0.7251	0.60	-4.58	17.25
0.15	0.6152	0.7812	0.68	-10.53	12.95
0.20	0.6467	0.8238	0.76	-17.52	7.74
0.40	0.7328	0.9389	0.94	-28.28	-0.0 .12
0.60	0.7889	1.0149	1.07	-35.63	-5.43
0.80	0.8320	1.0730	1.12	-34.62	-4.38
1.00	0.8678	1.1209	1.17	-34.82	--4.38

Size 5.04 cht

0.05	0.4349	0.5502	0.42	3.43	23.66
0.10	0.4907	0.6250	0.50	-1.90	20.00
0.15	0.5276	0.6748	0.56	-6.14	17.01
0.20	0.5559	0.7126	0.60	-7.93	15.80
0.40	0.6317	0.8147	0.74	-17.22	9.17
0.60	0.6816	0.8819	0.83	-21.77	5.89
0.80	0.7303	0.9337	0.89	-29.63	4.68
1.00	0.7518	0.9739	0.93	-23.70	4.51

6. Effective interfacial area for physical absorption

The valnes of effective interfacial area for physical absorption as given by Shulntan ct al (based on Fellinger's data of NH_{3} absorption in water) and the calculated values from vertical surface model [eqn. (22)] are given in Table VI for Raschig rings and

Table VI

Effective interfacial area for physical absorption ($\mathrm{cm}^{2} / \mathrm{cm}^{3}$)

Superficial iiquid flow rate, L em/sec	Size 1.27 cm		Size $2 \cdot 54 \mathrm{~cm}$		Size 3.81 cm		Size 5.08 cm	
	From equ. (22)	Shulman ef al	From egn. (22)	Shulnan et al	From eqı. (22)	Shulman atal	From eqn. (22)	Shulman et $a l$

Raschiz rings

0.2	0.809	0.320	0.544	0.490	0.477	0.420	0.396	0.520
0.4	0.944	0.365	0.636	0.610	0.556	0.580	0.462	0.610
0.6	1.033	0.385	0.695	0.680	0.609	0.650	0.506	0.660
0.8	1.068	0.395	0.741	0.740	0.649	0.690	0.539	0.690
1.0	1.157	0.400	0.780	0.780	0.681	0.720	0.567	0.720

Berl saddles

0.2	0.87	0.38	0.61	0.53	0.50	0.46
0.4	1.00	0.42	0.72	0.61	0.58	0.57
0.6	1.10	0.46	0.79	0.69	0.64	0.61
0.5	1.18	0.43	0.84	0.74	0.68	0.63
1.0	1.25	0.48	0.87	0.75	0.71	0.64

Berl saddles. From this table, it is observed that the values of effective interfacial area for physical absorption are less than those calculated from eqn. (22) for 1.2 cm Raschig rings and Berl saddles. This can be explained on the basis of stagnant liquid (liquid trapped in pockets surrounding the points of contaci) which inhibits further mass transfer. This stagnant liquid gets saturated quickly and becomes ineffective for mass transfer.

The values of interfacial area calculated from eqn. (22) are in good agreement with the reported values ${ }^{2}$ for 2.54 cm and 3.84 cm Raschig rings and are in reasonable agreement for 5.08 cm Raschig rings and 2.54 cm and 3.81 cm Berl saddles.

The values of interfacial area reported by Yoshida and Koyanagi ${ }^{1}$ for absorption and vaporisation are given in Table VII for 2.54 cm Raschig rings along with the values

Table VII
Effective interfacial area for absorption and vaporisation on $2 \cdot 54$ ean Raschig rings ($\mathrm{cm}^{2} / \mathrm{cm}^{3}$)

Superficial liquid fiow rate, L $\mathrm{~cm} / \mathrm{sec}$	Absorption	Vertical surface model eqn. (22)	Yoshida and Koyanagi		Vaporisation
Vertical surface model eqn. (24)	Yoshida and Koyanagir				
0.05	0.44	0.25	0.64	0.35	
0.10	0.47	0.34	0.67	0.47	
0.15	0.51	0.42	0.71	0.56	
0.20	0.54	0.49	0.74	0.63	
0.40	0.64	0.74	0.84	0.92	

of interfacial area calculated by eqns. (22) and (24). This table indicates that the reported values ${ }^{1}$ for interfacial area for absorption and vaporisation are in agreement with the calculated values except at the lower superficial liquid flow rates. This is the case even with the values of interfacial area reported for mass transfer with chemical reaction discussed earlier.

7. Conclusions

The values of interfacial area of the various sizes and shapes of packing from the vertical surface model and random angle model based on liquid hold-up have been found to be in good agreement with the reported values of wetted area by Onda et ait and the values of interfacial area by chemical methods ${ }^{15}$ for Raschig rings and Berl saddles. Due to the complex nature of the packing geometry, the values are not in complete agreement for Pall rings and Intalox saddles. In addition, Davidson's model is strictly not applicable to Pall rings, Intalox saddles and Berl saddles, as flow cannot take place in all directions.

Nomenclature

```
a, att = geometric surface area per unil volume, cm'/cm3
a,o =- wetted area per unit volume, cm
```

d. $D_{P}=$ nominal size of the packing element. cm
$g \quad=$ acceleration due to gravity
Gr $=$ Grashof number, $\mathrm{gd} / \mathrm{H}^{2}$
$h \quad=$ liquid hold-up. $\mathrm{cm}^{2} / \mathrm{cm}^{3}$ of solid free bed [eqns. (15) and (16)]
IA $=$ interfacial area, $\mathrm{cm}^{3} / \mathrm{cm}^{*}$
$L_{m} \quad=$ mass liquid flow rate $\mathrm{g} \mathrm{cm}^{\prime s e c} L_{/}$
$L \quad=$ superficial liquid fow rate, emesec
$r==$ radius of the sphere of equivalent volme to the liquid holdap, cm
Re $=$ Reynolds number for random packing $=2 \pi L_{m} / a \mu$
$\mathrm{Re}_{\mathrm{I}}=$ Reynolds number for vertical surfaces $=4 L_{m} / a \mu$
$m \quad:=$ film thickness
S. $=$ surface area of the sphere, cm^{2}
$V \quad=$ volume of the sphere of equivalent volume to the liquid hold-up, cm*
$\mu \quad=$ viscosity of the liquid, $\mathrm{g} / \mathrm{cm} \mathrm{sec}$
$r \quad=$ kinematic viscosity, $\mathrm{cm}^{2} / \mathrm{sec}$
$\rho \quad=$ density of the liquid, $\mathrm{g} / \mathrm{cm}^{\text {B }}$
$\epsilon \quad=$ voidage of the packed bed

Subscripts

RA $=$ for random angle
WS = for vertical surface

References

1. Yosembl, F. 4×0 Koyanter, T.
2. Shulman, H. L., Ullarich, C. F. And Weirs, N.
3. Davioson, J. E. Trans. Lustan. Chem. Engrs. (London), 1959, 37, 131.
4. Joosten, G. E. H. And DANCKIVERTS, P. V.
5. ONOA, K, Sada, E, and Takemecti, H .

AICHE J, 1062. 8, 309.

ATCHE J., 1955, 1, 247.

Chem. Eng. Sici., 1973, 28, 453.
J. Chem. Engg. (Japan), 1968 b, 1, 62.
6. Patwardhaivy V. S.
7. Furnas, C C. and Bellinger, F.
8. Jesser, B. W. and Elgin, J. C.
9. Bros, S. and Kolar, V.
10. Moganta, D. M, and Laddha, G.S.
11. Otake, T. and Okada, K.
12. Varrier, C. B. S. and RAO,K. R.
13. Bird, R. B., Stewart, W E. Tomsport Phenoment, John Wiloy and Sons, Inc., N.Y., 1960 and Lightfoot, E. N.
14. Onda, K., Hiroshi Il. Chem. Emgg. (Japan), 1968 a, 1, 56.

Takenchi and Yoshio Okumoto
15. Danckwerts, P. V, and Sharma, M. M.
16. Higbie, R.

Can. J. Chem. Enge., 1978, 56, 56.
Trans. Amer: Insth. Chem. Engrs., 1938, 34, 251.

Thans. Amer: Imyth. Chem. Engrs., 1943, 39, 277.

Coll, Czechosloי. Chem. Comm, 1968, 33, 349.
Chem. Engg. Sci., 1965, 20, 1069.

Chem. Engg. (Japan), 1953, 17, 176.
Chem. Age of India, 1963, 14, 345.

The Chem. Engg., Oct. 1966, CE 244.

Trans. Amer. Instn. of Engrs., 1935, 31, 365.

[^0]: * Gammon Nirman Ltd., Ce ${ }^{\text {Innttta }} 700019$, Jndia.

