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Abstract

We give 2 method to obtain a nonnegative solution of any system of linear equations, if such a solution
exists. The method writes linear equations as a linear programming problem and then solves this
problem using a Simplex method.
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1. Iatroduction

In many pbysical problems, the negative of quantities like path, matter, time, ete.,
does not arise. Any such problem giving rise to linear cquations invelving such un-
known quauntities needs nonmegative solution.

The method described here investigates equations By = g, consistent or not, under-
determined or overdetermined, as a linear programming (Ip) problem and gives a non-
negative solution y when it exists, To solve the Ip problem the method involves a
particular form of the artificial basis technique's 2

2. Definitions
Extended (Simplex) tableau
Consider the Jp problem
Minimize f = ¢*x subject to dx =25, x>0. (1y
The initial extended tableau (i.e., Extended lablean 0) for this /p problem,
where
d; = Cppaty + Corallos =+ ** F Cotmlng — ¢; F=1(1) 0
=y X 1=ty =0 j=n+10n+m
uymin = Cnaby + Cusabs + * 0 F Cuimbue
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(c)) (ci) (cn) (enr) (tars)  (Cogm)

Kot Xy, Xy Xpit T KXot 77 Xatm b
(Cuet) Ypu1 Gy a4, Oy t 0 0 by
(Cnsep) Fnsig it Digss gy 0 1 0 by, (D
(Cnim) Xptm w1 gy Uon 0 0 1 b
& d;, ds dyy dotip urm Gutoen

Objective function

The function f= f(x) = ¢*x, or equivalently, f(X) = ¢\xy + ** - Cprm¥nin Which is
to be optimized (minimized or maximized) is called the objective function.

The Checking rule for g Simplex tablequ

The foregoing relationship between d; and ¢, ¢;, bholds in ail tableaux. This relation-
ship is referred to as the Checking rule for a tableau. Satisfaction of this rule is neces-
sury for a tableau to be correct but it is not sufficient (ie., the rule may be satisfied
even if a computational mistake cccurs).

Note : The role of ¢y, .., ¢up I8 OVEr as soon as dy, .., d,., are computed. The
subsequent extended tabieaux (viz, Extended tableaux 1, 2, ..) are computed from
the Extended isblean 0 using Simplex rules. The d4-row has to be nonpositive (for the
minimization problem considered here) in the optimal (firal) Extended tableau.

Restricted {Simplex) tableau

Consider the /p problem (1). The initial restricted tablean (i.e., Restricted tableau 0)
his jp problem is the Extended tsbleau 0 with columns containing unit vectors
The subsequent restricted tableaux are computed from the Restricted tableay 0
using Simplex rules’. The d,-row has to be ponpositive (for the minimization problem
considered here) in the optimal (final) Restricted tableau.

3. The problem

Obtain a nounegative solution of By = g (if it exists) .
where B = (b;) is 2 given m X n matrix, g = (g,) is a given 3)
nonnegative m-vector, and y = (¥;) is an n-vector.
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Note: There is no loss of generality in considering g > 0. If this is not so, then
multiply the equations with negative g, by — L

4, Existence of a nonmegative solution

By = g has a nonnegative solution y if and only if B°z > 0, g'z < 0 has no solution z.
Equivalently, By = g has no nonnegative solution y if and onlyif A*z>> 0, g*z < 0 has
a solution z.

For proof sec Farkas® and Vajdat.

This result is nct of immediate use. However, the method tells if a nonnegative
solution of By =g dces not exist. In fact, the necessary and sufficient condition for
By = g to have a nonnegative solution is the method producing one.

%, The method

Write (3) as an /p problem and solve this problem using an artificial besis technique,
as below :

(1) Eguivalent Ip problem

Let y aud B be now extended to (# + m)-vector x and m x (n + m) matrix 4, vespectively.
Further, let the last m columns of 4 form an m X m unit matrix 7,,. The Jp problem
equivalent to (3) is

Obtain x so that

Min f= Xz 4 ** -+ X, = 0: Objective function

subject to ©

Ax = b : Constraints

x 3> 0: Nonnegativity conditions

(if) Artificial basis technigue in ‘ Extended tablean’®

Step 1: Set up the extended Simplex tableau for (4), and write the cocflicients (in
parentheses) which x; have in the objective function and the last row, i.e., dyrow using
the Checking rule as below :

© © © @ o )
X1 v X X X2l 0 Xpigy *° Xntm b
O Xs  au @y, G 1 0 0 by
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M) Xty @ gty Gogn 0 1 0 by (5)
(D) Xyt Gm [2e [, 0 0 1 b
dy dy, dn 0 0 0 [ —

Step 2 (pivot selection): Let d, be positive. Consider then, for all positive a;,,
the ratios byfay, and take the smallest. Tf this is obtained for #, then call p = a,,4, the
pivot (marked with a plus). Go to Step 3. Otherwise (L.e., if there exists no d,, which
is positive) the present tablean is final and it either indicates no solution of By = g or
gives a solution.

Step 3 (next-tableau computation): Replacing x,4;, by x;, obtain the next tableau
as follows:

X Xy, o X Xpr1  CC Xntig T Xngm b
Xut1 O0=ay, —p- ayu/p e
Xy @afp 1 Glp O 1p 0 bifp( (6
|
Xm 0=y, — P - G /P = i [0
o —d,jp )

The blank positions are filled in as follows:
g e By = Qi B3l
d, « dy — dyalp Ty
by b~ a,b,/p.

All the entries on the right hand side of (7) are the elements of the previous tableau.
Both (6) and (7) may be precisely written as (p = Qigio)

Ppivot row «- pivot row[p

(any other) i-th Tow « ith IOW -~ gy, X pivot row

8y
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Note : Pivot row is the row confaining the pivot. Pivet column is the column
containing the pivot.

Step 4 (termination condition): If the bottom row, ie., dyrow excluding the
last element is nonpositive, and if none of Xy, -+, Xprm Occurs in the basis with a
nonzero value then the solution is reached. Otherwise go to Step 2.

(ifa) Artificial basis technique in ‘ restricted tableau’

Step 1a: Set up the restricted Simplex tablean for (4), and write the coefficients
(in parentheses) which x, have in the objective function and the last row, ie., d,-row
using the Checking rule as below.

(0 © ©

oo w b
(1) Xy i1 ay,, [T by
(1) Xptiy Qg1 Diyiy Qi gy by, Ga)
(1) Xptm G A, mn b

dy d; dy s

Note: Here d,., corresponds to i, of the exterded Simplex tableau (2).

Srep 2 a (pivet selection): It is the same as Step 2 with replacement of tableau (5)
by tableau (5 a).

Step 3a (next-tableau computation): Having interchanged X5, and x,,, obtain
the next tableau as follows: ”

X - Xutio T n b
Xut1 - ”1;0/P
EYN @i /P jp AenlP by fp (6 a)
Xubm = el P
— difp

L.IScy—6



46 5. K. SEN
The blank positions are filled in as follows:

G @y — Gigis /D

dy +d; — a‘i.,jdio/P - (7a)
Note @

® The foregoing two  replacements ® are actually identical when we consider the
last row (i.e., drow) as just another row like the rows of (a;).

@ The right hand side elements are the elements of the foregoing tableau through-
out the computation.

Step 4a (termination condition): It is the same as Step 4.

6. Proof of the method

The method is a particular case of the M-method®*. So, all the properties and infe-
rences regarding the M-method hold good here also. However, all the tableaux in
sclving the problem are equivalent in the sense that the solution or solutions of the
original equations remain invariant througbout. If there exists a ncnnegative solution
then the final tableau will give if. On the contrary, if there is none then cre or more
artificial variables will be in the basis (in the final tableau) with a nonzero value.

7. Examples

{1} Nondegenerate case (l.e., rank of coefficient matrix = number of equations == 2):
Obtain a nonnegative soluticn of

X1
[ 1 211 0] ;‘.’ »[l]
—4 =2 3| =
301 X 2
X5

The equivalent /p problem is: Compute x = (xy Xy X3 X, X5 X X7 so that Min f=
Xy Xy = 0 subject to Ax == b, x>0 where

1 211010 1
‘4“[—4 -23010 1]’ b=[2]

We now write ~b\)th extended and restricted tableaux to obtain the solution and to show
how the restricted tableau differs from the extended one.
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Extended tableau 0

©

X3
(1) x4 1
Mx;, —4
—3

Xa

—2

0 4

Extended tableau 1

X3

Extended tableau 2
Xy X3
0
1

0

1
0
0

Xy

o m

X3

0

3

© O
Xg

2 1

L

Xy

Restricted tableau 0

© © @O @ (U]
Xy Xg Xy X; b X1 Xy Xy
0 1 01 (Dx 1 2
6 1 0 t 2 (MWx, —4 —2 3+
11 0 0 3 -3 0 4
Restricted tableay 1
Xs Xg Xg b X; Xg Xy X4
-+ 1 -3 3% x 3 3 —% 1
30 33 x -4 -3 30
-+ 0 —% 3 £ 5 -5 1
Restricted tableau 2
X X5 X7 b Xo Xy, Xg Xy
Pos-% b om b f-% 3
L T T A S B
0 —1 —-1 0 ~1 0 -1 O

Hence a nonnegative solution is

(i) Degenerate case (redundant

—1 2
2 5
—_5 -8 —

3
6
9

3
3
—3

|

x=[30800F.

equations):

X1
Xy

X3 z[
X

o O O O

X5

47

b

Obtain a nonnegative solution of

7
16
— 25

Setting up the equivalent jp problem the restricted tableaux are

Restricted tableau 0

© © O
X1 Xq X3
Mx—1 2 3+
Wx 2 5 6
Wx 5 8 9

6 15

Restricted tablean 1

X Xy x;  xg b

X —% % 3 1%
X 4 1+ ~2 ~3 2
Xq 8 2 —3 —6 4
6

03 —6i-9
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Note: The last equation has been multiplied by — 1 to make b, positive (refer
Restricted tableau 0).

Restricted rableau 2

X X x; X, b
X3 —3 —% 3 31
Xy 4 I =2 =32
Xy 0 —2 1

00
—-12 =3 0 00

The artificial variable x, remains in the basis with a zero value. A nonnegative olu-
tion is x==[0 2 1 OF.

(ili) Inconsistent equations: Obtain a nonnegative solution (if any) of

503 27 Iy 10
212 x| = 3
4 2 4 Xg 1

Setting up the equivalent /p problem we write the restricted tableaux as below :

Restricted tableau O Restricted tableau 1

o ©® (O

Xy X» xp b Xy, X, X3 b
(yx, 5 3 2 10 v, —1 —g —4 ix
My, 2 1 2 3 ¥ 0 1 0
hx, 4 2 4 1 Xy 2 1 2 1

t 6 8 16 -1 —3 —4 13

The last Tow except the last element (viz., 13) is nonpositive and two artificial variables,
viz., x; and x; are still in the basis with nonzero values. Hence the equations have no
nonnegative solution. In fact, the equations have no solution at all,

(iv) Solution with one negative element: Obtain a nonnegative solution (if any) of

213 Xq 2
I 11 Xg — 1
L2 1 Lxa g 12
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Restricted tableau O Restricted tableau 1
@ ® O
Xy Xo X b X3 Xy Xy b
Mx, 2 1 o2 RETEEE T ¥ #
1), 1 3 I 1 X, 3 -1 3
Mx, | 2 1 2 X 3 & —3% 4
4 4 5 s L
Restricted tableau 2 Restricted 1ableau 3
X5 Xy x, b Ny Xy X, b
X -2 -3 1 0  o—% % 3 3
X1 3 28 =1 1 Xy 3 3 ~2 3
xy —1 1 0 1 X —% —3 3 EY
-2 1 =1 I

The last row except the last element (viz., 1/2) is nonpositive and one artificial variable,
viz., %, is still in the basis with nonzero value 1/2. Hence the equations have no non-
negative solution. However, the sclution is x=[—1 1 IJ.
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Nomenclature

Symbol Meaning

fe is replaced by

B=(byp m X nmatrix

y=0 - n-vector

g=(g) m-vector

T unit matrix of order m

4 = (ay) m X (n -+ m) matrix, A = (8, I,)

¥ transpose



x = (%)
z=(z)
b= (b)
c=(c;)
d,

ip
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