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Abstract 

We give a lucthod lo obtaia a nomegativc solution of any system of linear equations, if such a solution 
exists. The mntithod writes linear equarlons as u lincar programming problem a d  then solves this 
problem usills a Simplex method. 
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1. Introduction 

In many physical problems, the negative OF quentities like path, matter, time, etc., 
does not  arise. Any such problem giving 'ise to linear equations involving such un- 
known quantities necds nonnegative solution. 

The method described here investigates equations By = g, consisrent or  not, undcr- 
d:termined or  overdete~mined, as a linear progt-amming (Ip) problem and gives a non- 
negative s o l u l i o ~ ~  J. when it exists. Tu solve tile Ill problem the method involves a 
particular form of the artificial basis lechniquc's '. 

2. Definitions 

Exteniled (Simplex) tableau 

Consider thc @ problem 

Minimize J = c tx  subject to  Ax = 6, x > 0. 

The initial exlended tableau (i.c., Extended Lableau 0) for this lp problem. 

wheve 

dj = cnclu,, + c,teo,j i- ' . t c,+,a,, - c, i = 1 ( I )  n 

- - c,+, x 1 - c.+, = 0 j = n + I (I) n 4- m 

d,,i,tl = cn& i c,,+& + . . + c,i,h,. 



The function J = f (s) =- c ' s ,  or equivalently, f (x) = c,x, 1 -  . . - I c ,.,, x,,,, which is 
to he oplirni~cd (rninimiied or maximized) is callcd the objective function. 

The foregoing relationship between d, and c,, oi, holds in ail tableaux. This relation- 
ship is referred LO as the CIieckin~ rule for a tableau. Satisfaction of this 1u1c is neces- 
s a y  for a tableau to be correct but it is not suficient (ie., the rule may be satisfied 
even if a computational mistake cccurs). 

Note : The rolc of c,, . ., c,., is over a i  soon as 4, . ., d,<~, are computed. The 
suiwqilent extended tabieaux !i,iz., Extended tahleniix 1, 2, . .) are computed from 
thc Extccdc?. z k l a a l  0 s;ing Sls,?leu rxles. The d,-TOW 1:rs to bcconpositive (Cor tlic 
minimization problem conridered here) in the optili~al (final) Extended tableau. 

Conrider the I;? problem (1). The initial restricted tahlew (i.e., Kestriclcd tableau 0) 
f,?r this I:, Frobienl is ihe Ex:cnded tab!ea,u 0 with co iums containing unit veclo~s 
de:eti-d. The subsequent res:ric:ed c~blcaux are computcd froin theRestricted i a h l e ~ ~ l  0 

Simples rules'. The d,-row has to benonposiiive (for the minimization problem 
considered here) in the optimal (find) Restricted iablcnu. 

3. The problem 

Obtain a nonnegative solution 01" By = g (if it exist?) 
where B = (b,;) is a given m x n matrix, g = (E,) is a giver. 
nonnegative m-vector, and y = (y,) is an n-vector. 
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Note: There is no los? of generality in considering g > 0. If this is not so, then 
multiply the equations with negxtive g, by - 1. 

4. Existence of a no~egat ive  solution 

By = g has a nonnegative solution y if and only if d'z > 0, g k  l( O has no solution z. 
Equivalently, By = g has no nonne~ative solution y if and only if B tz>  0, g k  < 0 Ohas 
a solution z. 

For proof scc Farkas3 and Vajda'. 

This result is nct of immediate use. Howcver, the method tells if a nol~negative 
soiution of By = g dces not cxist. In fact, the necessary and snfiicient condition for 
By = g to have a nonnegative solution is the method producing one. 

5. The method 

Write (3) a? an problem and solve this problenl usiag an artificial busis technique, 
as bclow : 

(i) Equivralcnf Ip problem 

Zct y and B b:: now extended to ( r ~  f in)-vector x aud m x (n + in) matrix A, respectively. 
Further, let the last nz columns of A form an  nz X m unit matrix I,. The I p  probiem 
equivalent to (3) is 

Obtain x so that 
Min f =- .Y,, --;- .. -1- so,, = 0: Objective hnction 
subjcct to 
Ax - b : Constraints 

) (41 

x 0 : Nonnegativity conditions 

(ii) Avr&ial basis technique in ' Extended tablean ' 

Step 1 : Set up the extended Simplex tableau for (4), and write thc cocllicients (in 
parentheses) which x, have in the objective fn~lction and the last row, ie., d,-row using 
the Checkiug rule as below : 
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Step 2 (pivot selection): Lct djo be positive. Consider then, for all positive a,,, 
the ratios b,!a,, and take the smallest. Tf this is obtained for is then call p = n,,,, the 
pivot (marked with a plus). Go to Step 3. Otherwise (i.e., if there exists no cl,, which 
is positive) the present tableau is final and it either indicates no solution of By = g or 
sives a solution. 

Step 3 (next-tableau computation): Replacing xnii, by x], obtain Ihe next tableau 
as follows : 

The blank positions are filled in as follows: 

All the entriec on the right hand s ~ d e  of (7) are ihe elen?cnt\ of the previous tableau. 

Both (6) and (7) may be precisely written as (p -= a,,,) 

pivot row + pivot rowlp 

(any other) i-th row c i-th row - adla x pivot row 
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Note : Pivot row is the row containing the pivot. Pivot column is the colunln 
containing the pivot. 

Step 4 (termination condition): If the bottom row, i.r., d,-row excluding the 
last elenlent is nonpositive, and if none of x.+,, . . . , x"++, occurs in the basis with a 
nonzero value then the solution is reached. Otherwise go to Step 2. 

(iia) Artificial basis technique in ' restricted tableau ' 

Step 1 a :  Set up  the restricted Simplex tableau for (9, and write the coefficients 
(in parentheses) which x, have in the objective function and the last row, i.e., d,-row 
using the Checking rule as below. 

(0) (0) (0) 

x1 ' .  3. .. s,, b 

(1) , ,  1 a11 ali, al. bl 

(1) xfiirn amio flm bm 

4 4" 42 &H 

Note: Here corresponds to (I,,,,, of the exterded Simplex tableau (2). 

Srrp 2 a (pivot selection): It is the same as Step 2 with replacement of tableau ( 5 )  
by tableau ( 5  a). 

Step 3 a (next-tableau computation): Having interchanged x,, and s,, ,o obtain 
the next tableau as follows: 
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The blank positions are filled in as follows: 

Notr : 

The foregoing two 'replacements' are actually identical when we consider the 
last row (ie., dj-row) as just another row like the rows of (a,,). 

The right hand side elements are the elemellts of the foregoing tableau through- 
oul the computation. 

Szep 4 a (termination condition): It is the same as Step 4. 

6. Prwf of the method 

The method is a particular case of the M-method', ?. So, all the properties and infe- 
rences regarding the M-method hold good here also. However, all the tableaux in 
sclving the problem are equivalent in the sense that the solution or solutions of the 
original equations remain invariant throughout. If there exists a ncnnegative solution 
then the final tableau will give it. On the contrary, if thcre is none then m e  or more 
artificial variables hill be in the basis (in the final tableau) with a nonzero value. 

7. Examples 

( i )  Noiz:le~cnerate case (i.e., rank of coefficieut matrix = number of equations =: 2): 
Obtain a nonnegative soluticn of 

The equivalent Ip problent is: Computc r = (xl x2 x, r, x, xo x 7 ) h o  that Min f = 
% i- X7 = 0 subject to Ax = b, x> 0 where 

We now write both extended and restricted tdbleatrx to obtain the solution and to show 
how the restricted tableau dlffers from the extended one. 

a .  
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Extended tableart 1 Restricted tableau 1 

xl x , x , x ,  x , x , x , b  x2 )~b x7 xd X I  b 

xg 8 0 1 -; 1 - 8  + so ;+ g -+  1 - +  4 

x > - S  -4 1 0 ; 0  5 g s - 4  -+  ; 0  t 9 

4 8 0 1 - 8 0 - ; +  g - +  1 - +  8  

Hence a nonnegative solution is x = & 0 q 0 O]l. 

(ii) Degenerate cuse (redundant equations): Obtain a nonnegative solution of 

Setting up the equivalent Ip problem the restricted tableaux are 

Restricted tableau 0 Reslricted tableau 1 
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Note: The last equation has been multiplied by 
Restricted tabicriir 0). 

Restricter1 toblmi 2 

.rl s, x, x,  b 
xx - 3  - 9  4 3 1  

s, 4 1 - 2  - 3  2 

x, 0 - 2  I 0 0  

-12  - 3  0 0 0 

1 to make h, povitive (l-erel- 

The artificial variohle x, ]remains in the basis wilh a zero value. A nonne@ive d u -  
tion i\ s - [0 2 1 0lt. 

(iii) I i lco~~~ister t  eqi~ntions: Obtain a nonnegative solution (if any) ol 

Setting up the equivalent Ip problem we write the restricted tuhleaux as below : 

The last row except the lest element (viz., 13) is nonpositive and two artificial variables, 
rt., x, and x, me still in the basis with nonzero values. Hence the equations have no  
nonnegative solution. In fact, the equations have no ~olution a t  all. 

(iv) Sol~rtion wit11 o m  negative clemmort: Obtain a nonnegative s o l u t i o ~ ~  (if any) of 
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The last row except the last elenlent (viz., 112) is nonposilivc and one artificial variable, 
viz., x, is still in the basis with nonzero value 112. Hence the equations have no non- 
negative solution. However, the sclution is r = [- l 1 17'. 
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Nomenclature 

Meairiizg 

is replaced by 

m x n nlatrlx 

n-vector 

m-vector 

unit matrix of order m 

nz X (n 1 nz) matrix, A -= (R, I,) 

transpose 
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x- ( q j  

5 = (5,) 

h = (b,) 

r = (c,) 

d, 
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