Nomegative solution of linear equations

S. K. SEN
Computer Centre, Indian Institute of Science, Bangalore 560012 , India

Received on August 25, 1978; Revised on January 6, 1979

Abstract

We give a method to obtain a nonuegative solution of any system of linear equations, if such a solution exists. The method writes linear equations as a linear programming problem and then solves this problem using a Simplex method.

Key words: Artificial basis technique, linear programming, nonnegative solution, Simplex method.

1. Introdacion

In many physical problems, the negative of quantities like path, matter, time, etc., does not arise. Any such problem giving rise to linear equations involving such unknown quantities needs nonnegative solution.

The method described here investigates equations $B j^{\prime}=g$, consistent or not, underdetermined or overdetermined, as a linear programming (Ip) problem and gives a nonnegative solution y when it exists. To solve the $l p$ problen the method involves a particular form of the attificial basis technique ${ }^{1,2}$.

2. Definitions

Extended (Simplex) tableaut
Consider the $l p$ problem

$$
\begin{equation*}
\text { Minimize } f=c^{t} x \text { subject to } A x=b, \quad x>0 \text {. } \tag{1}
\end{equation*}
$$

The initial extended tableau (i.e., Extended tableau 0) for this $1 p$ problem, where

$$
\begin{aligned}
& d_{j}=c_{n+1} a_{1 j}+c_{n+2} a_{2 j}+\cdots+c_{n+m} a_{m j}-c_{j} j=1 \text { (1) } n \\
& \quad=c_{n+j} \times 1-c_{n+j}=0 \quad j=n+1 \text { (1) } n+m \\
& d_{n+m+1}=c_{n+1} b_{1}+c_{n+2} b_{2}+\cdots+c_{n+m} b_{m} .
\end{aligned}
$$

is

$$
\begin{aligned}
& \begin{array}{lllllllllll}
& \left(c_{1}\right) & \left(c_{j_{0}}\right) & & \left(c_{n}\right) & \left(c_{n+1}\right) & & \left(c_{\left.n+i_{0}\right)}\right) & \left(c_{n+n}\right) & \\
\left(c_{\mu+1}\right) & x_{n+1} & a_{11} & & a_{1 j_{0}} & & a_{1 n} & 1 & & 0 & 0
\end{array} \quad b_{1} \\
& \begin{array}{cccccccc}
\left(c_{n+i_{0}}\right) x_{n+i_{0}} & a_{f_{0} 1} & a_{i_{0} j_{0}} & a_{i_{0 n}} & 0 & 1 & 0 & b_{i_{0}}(2)
\end{array} \\
& \begin{array}{rlllllll}
\left(c_{n+m}\right) x_{n+m} & a_{n i 1} & a_{m j_{0}} & a_{m n} & 0 & 0 & 1 & b_{m} \\
& d_{1} & d_{j_{0}} & d_{n} & d_{n+1} & d_{n+i_{0}} & d_{n+m} & d_{n+m+1}
\end{array}
\end{aligned}
$$

Objective function

The function $f=f(x)=c^{2} x$, or equivalently, $f(x)=c_{1} x_{1}+\cdots+c_{n+m n} x_{n+n}$ which is to be optimized (minimized or maximized) is called the objective function.

The Checking rule for a Simplex tableau

The foregoing relationship between d_{j} and c_{j}, a_{i}, holds in all tableaux. This relationship is referred to as the Checking rule for a tableau. Satisfaction of this rule is necessary for a tableau to be correct but it is not sufficient (i.e, the rule may be satisfied even if a computational mistake occurs).

Note: The role of c_{7}, \ldots, c_{n+m} is over as soon as $d_{1}, \ldots, d_{n ; n}$ are computed. The subsequent extended tableaux (vi, Extended tableaux 1,2,..) are computed from the Exterded ableau 0 wing Simplex rules. The d_{i}-row has to be nompositive (for the minimization problem considered here) in the optimal (final) Extended tableau.

Restricted (Simplex) tableau
Consider the $I p$ problem (1). The initial restricted tablean (i.e., Restricted tableau 0) for this $l p$ problem is the Extended ablean 0 with columns containing unit vectors deleted. The subsequant restricted tablicaux are computed from the Restricted tableau 0 using Simplex rules'. The d, row has to be nonpositive (for the minimization problem considered here) in the optimal (final) Restricted tableau.

3. The problem

Obtain a nonnegative solution of $B y=g$ (if it exists)
where $B=\left(b_{i j}\right)$ is a given $m \times n$ matrix, $g=\left(g_{2}\right)$ is a given nonnegative m-vector, and $y=\left(y_{i}\right)$ is an n-vector.

Note: There is no loss of generality in considering $g \geqslant 0$. If this is not so, then multiply the equations with negative g_{i} by -1 .

4. Existence of a nomegative solution

$B y=g$ has a nonnegative solution y if and only if $B^{t} z \geqslant 0, g^{t} z<0$ has no solution z. Equivalently, $B y=g$ has no nonnegative solution y if and only if $B^{t} z \geqslant 0, g^{t} z<0$ has a solution z.

For proof see Farkas ${ }^{3}$ and Vajda ${ }^{4}$.
This result is act of immediate use. However, the method tells if a nonnegative solution of $B y=g$ dces not exist. In fact, the necessary and sufficient condition for $B y=g$ to have a nonnegative solution is the method producing one.

5. The method

Write (3) as an $l p$ problem and solve this problem using an artificial basis technique, as below:

(i) Equivadent ip problem

Lot y and B be now extended to $(n+m)$-vector x and $m \times(n+m)$ matrix A, respectively. Further, let the last m columns of A form an $n \times m$ unit matrix J_{m}. The $l p$ problem equivalent to (3) is
$\left.\begin{array}{l}\text { Obtain } x \text { so that } \\ \operatorname{Min} f=x_{n}+1+\cdots+x_{n+m}=0: \text { Objective function } \\ \text { subject to } \\ A x=b: \text { Constraints } \\ x \geqslant 0: \text { Nonnegativity conditions }\end{array}\right\}$

(ii) Aptificial basis technique in 'Extended tablcts'

Step 1: Set up the extended Simplex tablean for (4), and write the coefficients (in parentheses) which x_{j} have in the objective function and the last row, i.e., d_{j}-row using the Checking rule as below:
(0)
(0)
(0)
(1)
(1)
(1)
$\begin{array}{llllllllllll} & x_{1} & \cdots & x_{f_{0}} & \cdots & x_{n} & x_{n+1} & \cdots & x_{n 1_{0}} & \cdots & x_{n+m} & b \\ \text { (1) } x_{n+1} & a_{11} & & a_{1 f_{0}} & & a_{1 n} & 1 & 0 & 0 & & b_{1}\end{array}$

$$
\begin{array}{llllllll}
\text { (1) } x_{\mathrm{x}+\mathrm{in}} & a_{i, 1} & a_{i, i_{0}} & a_{601} & 0 & 1 & 0 & b_{i_{n}} \\
& \vdots & & & & & & \\
\text { (1) } x_{n+m} & a_{m 1} & a_{n j_{0}} & a_{m+n} & 0 & 0 & 1 & b_{m} \\
& d_{1} & d_{f_{0}} & d_{n} & 0 & 0 & 0 & d_{n+m+1}
\end{array}
$$

Step 2 (pivot selection): Let $d_{j \rho}$ be positive. Consider then, for all positive $a_{i j_{0}}$. the ratios $b_{4} / a_{i_{0}}$ and take the smallest. If this is obtained for i_{0} then call $p=a_{10,5 s}$ the pivot (marked with a plus). Go to Step 3. Otherwisc (i.e., if there exists no d_{9}, which is positive) the present tableau is final and it either indicates no solution of $B y=g$ or gives a solution.

Step 3 (next-tableau computation): Replacing $x_{n+i_{0}}$ by $x_{f_{9}}$ obtain the next tableau as follows:

The blank positions are flled in as follows:

$$
\begin{align*}
& a_{i j} \leftarrow a_{2 j}-a_{i j_{0}} a_{i j j} / p \\
& d_{i} \leftarrow d_{j}-d_{30} a_{i j} / p \tag{7}\\
& b_{i} \leftarrow b_{i}-a_{i j_{0}} b_{i 0} / p .
\end{align*}
$$

All the entries on the right hand side of (7) are the elements of the previous tableau.

Both (6) and (7) may be precisely written as ($p=a_{\text {ifoio }}$)

pivot row \leftarrow pivot row $/ p$
(any other) i-th row $\leftarrow i$-fh row $-a_{6,} \times$ pivot row

Note: Pivot row is the row containing the pivot. Pivot columu is the column containing the pivot.

Step 4 (termination condition): If the botton row, i.e., d_{j}-row excluding the last element is nonpositive, and if none of x_{n+1}, \cdots, x_{n+m} occurs in the basis with a nonzero value then the solution is reached. Otherwise go to Step 2.
(iia) Artificial basis technique in 'restricted tableau'
Step $1 a$: Set up the restricted Simplex tableau for (4), and write the coefficients (in parentheses) which x, have in the objective function and the last row, i.e., d_{3} row using the Checking rule as below.

	(0)		(0)		(0)	
	x_{1}	.	x_{j} 。	\cdots	x_{*}	b
(1) x_{n+1}	a_{11}		$a_{1,}$,		$a_{2 n}$	b_{1}
	-					
(I) x_{n+10}	a_{601}		$a_{i s, s_{0}}$		$a_{i, *}$	b_{4}
	-					
(1) x_{n+m}	$a_{m 1}$		$a_{\text {el }]_{0}}$		$a_{m n}$	b_{m}
	d_{1}		$d_{j_{0}}$		d_{n}	d_{n+1}

Note: Here d_{n+1} corresponds to d_{n+m+1} of the exterded Simplex tableau (2).
Step $2 a$ (pivet selection): It is the same as Step 2 with replacement of tableau (5) by tableau (5a).

Step $3 a$ (next-tableau computation): Having interchanged. $x_{i_{0}}$ and $x_{n: i_{0}}$ obtain the next tableau as follows:

$$
\begin{array}{cccccc}
& x_{1} & \cdots & x_{n+i o} & \cdots & x_{n}
\end{array} \quad b
$$

I.T.Sc $\mathrm{Sc}_{\mathrm{w}}-6$

The blank positions are filled in as follows:

$$
\begin{align*}
& a_{i j} \leftarrow a_{i j}-a_{i 6} a_{i j 0} / p \\
& d_{j} \leftarrow d_{j}-\dot{a}_{i_{0} j} d_{j_{6}} / p \tag{7a}
\end{align*}
$$

Note:

- The foregoing two 'replacements' are actually identical when we consider the last row (i.e., d_{j}-row) as just another row like the rows of $\left(a_{i j}\right)$.
- The right hand side elements are the elements of the foregoing tableau throughout the computation.

Step $4 a$ (termination condition): It is the same as Step 4.

6. Proof of the method

The method is a particular case of the M-method ${ }^{1,}{ }^{2}$. So, all the properties and inferences regarding the M-method hold good here also. However, all the tableaux in solving the problem are equivalent in the sense that the solution or solutions of the original equations remain invariant throughout. If there exists a nconegative solution then the final tableau will give it. On the contrary, if there is none then one or more artificial variables will be in the basis (in the final tableau) with a nonzero value.

7. Examples

(i) Nondegenerate case (i.e., rank of coefficient matrix $=$ number of equations $=2$): Obtain a nonnegative soluticn of

$$
\left[\begin{array}{rrrrr}
1 & 2 & 1 & 1 & 0 \\
-4 & -2 & 3 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{3} \\
x_{1} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The cquivalent ip problem is: Compute $x=\left(x_{1} x_{2} x_{5} x_{1} x_{5} x_{0} x_{7}\right)^{t}$ so that Min $f=$ $x_{8}+x_{7}=0$ subject to $A x=b, x \geq 0$ where

$$
A=\left[\begin{array}{rrrrrrr}
1 & 2 & 1 & 1 & 0 & 1 & 0 \\
-4 & -2 & 3 & 0 & 1 & 0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

We now write both extended and restricted tubleakx to obtain the solution and to show how the restricted tableau differs from the extended one.

Extended tableau 0
Restricted tableau 0

	(0)	(0)	(0)	(0)	(0)	(1)	(1)			(0)	(0)	(0)	(0)	(0)	
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	b		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	b
(1) x_{8}	1	2	1	1	0	1	0	1	(1)	x_{6}	1	2	1	1	0
1															
(1) x_{7}	-4	-2	3^{+}	0	1	0	1	2	(1)	x_{7}	-4	-2	3^{+}	0	1
	-3	0	4	1	1	0	0	3		-3	0	4	1	1	3

Extended tableau 1
Restricted tableau 1

$$
\begin{aligned}
& \begin{array}{rccccccrcllllllll}
& x_{1} & x_{2} & x_{3} & x_{1} & x_{5} & x_{6} & x_{7} & b & & & x_{2} & x_{2} & x_{7} & x_{4} & x_{5} & b \\
x_{5} & \frac{7}{8}^{+} & \frac{8}{8} & 0 & 1 & -\frac{1}{3} & 1 & -\frac{1}{8} & \frac{1}{3} & x_{6} & \frac{7}{8} \cdot+ & \frac{5}{8} & -\frac{1}{3} & 1 & -\frac{1}{3} & \frac{7}{3}
\end{array} \\
& \begin{array}{lllllllllllllll}
x_{3}-\frac{4}{3} & -\frac{9}{3} & 1 & 0 & \frac{3}{3} & 0 & \frac{1}{8} & \frac{3}{3} & x_{3} & -\frac{4}{3} & -\frac{2}{3} & \frac{2}{3} & 0 & \frac{1}{3} & \frac{2}{3}
\end{array} \\
& \begin{array}{llllllllllllll}
\frac{7}{3} & \frac{8}{3} & 0 & 1 & -\frac{1}{3} & 0 & -\frac{4}{3} & \frac{1}{3} & \frac{7}{3} & \frac{8}{3} & -\frac{4}{3} & 1 & -\frac{1}{3} & \frac{1}{8}
\end{array}
\end{aligned}
$$

Extended tableau 2

Restricted tableau 2

$$
\begin{array}{rccccccccccccccc}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{\overline{5}} & x_{5} & x_{7} & b & & x_{6} & x_{2} & x_{7} & x_{4} & x_{5} & b \\
x_{1} & 1 & \frac{5}{7} & 0 & \frac{3}{7} & -\frac{1}{7} & \frac{3}{7} & -\frac{1}{7} & \frac{1}{7} & x_{1} & \frac{9}{7} & \frac{8}{7} & -\frac{1}{7} & \frac{2}{7} & -\frac{1}{7} & \frac{1}{7} \\
x_{3} & 0 & \frac{8}{7} & 1 & \frac{4}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{8}{7} & x_{3} & \frac{4}{7} & \frac{8}{7} & \frac{1}{7} & \frac{4}{7} & \frac{1}{7} & \frac{n}{7} \\
& 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & & -1 & 0 & -1 & 0 & 0 & 0
\end{array}
$$

Hence a nonnegative solution is $x=\left[\frac{1}{8} 0 \div 000\right]^{k}$.
(ii) Degenerate case (redundant equations): Obtain a nonnegative solution of

$$
\left[\begin{array}{rrrr}
-1 & 2 & 3 & 3 \\
2 & 5 & 6 & -3 \\
-5 & -8 & -9 & -3
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
7 \\
16 \\
-25
\end{array}\right]
$$

Setting up the equivalent $l p$ problem the restricted tableaux are

Restricted tableau 0

(0) (0) (0) (0)
$\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & b\end{array}$
(1) $x_{5}-1 \quad 2 \quad 3^{+} 3 \quad 7$
(1) $\begin{array}{llllll}x_{8} & 2 & 5 & 6 & 3 & 16\end{array}$
(1) $\begin{array}{llllll}x_{7} & 5 & 8 & 9 & 3 & 25\end{array}$
$\begin{array}{lllll}6 & 15 & 18 & 9 & 48\end{array}$

Restricted tableau 1

Note: The last equation has been multiplied by - 1 to make b_{3} positive (refer Restricted tablenu 0).

Restricted tableau 2

$$
\begin{array}{rrrrrr}
& x_{1} & x_{6} & x_{3} & x_{4} & b \\
x_{3} & -3 & -\frac{2}{3} & \frac{3}{3} & 3 & 1 \\
x_{2} & 4 & 1 & -2 & -3 & 2 \\
x_{7} & 0 & -2 & 1 & 0 & 0 \\
& -12 & -3 & 0 & 0 & 0
\end{array}
$$

The artificial variable x_{7} remains in the basis with a zero value. A nonnegative solution is $x=\left[\begin{array}{llll}0 & 2 & 1 & 0\end{array}\right]^{t}$.
(iii) Inconsistent equations: Obtain a nonnegative solution (if any) of

$$
\left[\begin{array}{lll}
5 & 3 & 2 \\
2 & 1 & 2 \\
4 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
10 \\
5 \\
1
\end{array}\right]
$$

Setting up the equivalent $l p$ problem we write the restricted tableaux as below:

Restricted tableau 0
(0) (0) (0)
$\begin{array}{rcccc} & & x_{1} & x_{2} & x_{3} \\ \text { (1) } x_{1} & 5 & 3 & 2 & 10 \\ \text { (1) } x_{5} & 2 & 1 & 2 & 5 \\ \text { (1) } x_{5} & 4 & 2 & 4 & 1 \\ & 11 & 6 & 8 & 16\end{array}$
The last row except the last element (viz., 13) is nonpositive and two artificial valiables, niz., x_{1} and x_{3} are still in the basis with nonzero values. Hence the equations have no nonnegative solution. In fact, the equations have no solution at all.
(iv) Solution with one negative element: Obtain a nonnegative solution (if any) of

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 1 & 1 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{9} \\
x_{9}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

Restricted tablecu 0

	(0)	(0)	(0)	
	x_{2}	x_{2}	x_{3}	6
(1) x_{4}	2	1	3^{+}	2
(1) x_{5}	1	1	1	1
(1) x_{6}	1	2	1	2
	4	4	5	5

Restricted tableau 2

$$
\begin{array}{rrrrr}
& x_{5} & x_{2} & x_{4} & b \\
x_{3} & -2 & -\frac{1}{3} & 1 & 0 \\
x_{1} & 3 & 2 & -1 & 1 \\
x_{4} & -1 & 1 & 0 & 1 \\
& -2 & 1 & -1 & 1
\end{array}
$$

	x_{3}	x_{2}	x_{4}	b
x_{3}	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
x_{5}	$\frac{1}{8}{ }^{4}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{8}$
x_{4}	$\frac{1}{3}$	$\frac{5}{4}$	$-\frac{1}{3}$	$\frac{4}{3}$
	$\frac{2}{3}$	$\frac{7}{3}$	$-\frac{5}{3}$	$\frac{5}{3}$

Restricted tablean 3

The last row except the last element (viz., $1 / 2$) is nonpositive and one artificial variable, viz., x_{6} is still in the basis with nonzero value $1 / 2$. Hence the equations have no nonnegative solution. However, the selution is $x=\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{\boldsymbol{x}}$.

8. Acknowledgement

The author wishes to thank Dr. A. A. Shamim, Chairman, Computer Centre, Indian Institute of Science, for constint encouragement.

Nomenclature

Symbol	Meaning
$\ddots \leftarrow$,	is replaced by
$B=\left(b_{i j}\right)$	$m \times n$ matrix
$y=\left(y_{j}\right)$	n-vector
$g=\left(g_{i}\right)$	m-vector
$I_{\mathbf{m}}$	unit matrix of order m
$A=\left(a_{6 j}\right)$	$m \times(n+m)$ matrix, $A=\left(B, I_{m}\right)$
t	transpose

$x=\left(x_{j}\right)$	$(n+m)$-vector, $x=\left[y_{1} \cdots y_{n} x_{n+1} \cdots x_{n+m}\right]^{t}$
$z=\left(z_{j}\right)$	m-vector
$b=\left(b_{i}\right)$	m-vector, $b=g$
$c=\left(c_{i}\right)$	$(n+m)$-vector
d_{j}	j-th element of the d_{j}-row,
	$d_{1}=c_{n+1} a_{1 s}+c_{n+2} a_{2 g}+\cdots+c_{n+m} a_{m j}-c_{j}$
$l p$	hinear programming

References

1. Chung, An-mnn Linear Programning, Charles, E. Merrill Books, Jnc., Columbus, Ohio, 1966.
2. STRUM, J. E
3. Farkas, J. Uber die Theorie der einfachen Ungleichungen., J.r. und angew.
4. YAJDA, S.
5. VABDA, S.

Introduction to Linear Programming, Holden-day, San Francisco, 1972 Math., 1901-2, 124, 1-24.

Theory of Linear and Nonlinear Programming, Longman, London, 1974.

Problems in Linear and Nonlinear Programming, Charles Griffin, London, 1975.

