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Abstract

The paper deals with the nature of the spectrum associated with a type of second-order natrix differen-
tial operator with certain boundary conditions. It is found that under certain conditions satisfed
by the co-efficients of the differential system, the spectrum is discrete. Some results arc then obtaincd
giving distibutions of the eigenvalues on the rcal axis. The method cmpleyed depends, among
others, upon sonie of the idcas and techniques of E. C. Titchmarsh?,
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1. Introduction

Let /: @< x< b be an interval on the real line: ¢ == — co, b = co or both being
allowed. Let C* (/) = C (/) be the set of all real-valued continuous functions on / and
Ce(l), k=1, 2,..., denote the set of those f e C (1) for which f ™ ¢ C (/).

Consider the differential operator
(P q .
M—( . #D2+,),D=dx, (1.5

where p, ¢, re C*(I); p, g, r are absolutely continuous over any compact sub-interval
of I for xel

Let the basic Hilbert space be I = £* (a, b) and let D represent the set of all f = ({1)
={fy, fi} eF such that (i) fe Cl.(.I}; (i) [ absolutely conﬁnuous' on evcry‘comp;;ct
sub-interval of I: f'e A.C and (iii) Mfe . We say that[e D, if fe S satisfies the
conditions (i) and (ii).
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Let @ be the set of complex numbers and e @; then

Mp = i, (1.2

where ¢ = (l") ={u,v], ¢'=D, with some prescribed boundary conditions, gives rise
to an eigeavalue problem both in the finite as well as in the singular case considered
by Chakravarty® =
Leta< a< x < B <band let the sofution ¢ = {u, v} of (1 2) satisfy at o and g

either

o) =1v{a)=0

u(fy=vf)=10 (1.3)
or

1 (a) = v (a) 2.0

W () =¥ () =0. (1.4)
The eigenvalue problems (1.2)-(1.3) and (1.2)-(1.4) will henceforth be designated as

the Dirichlet problem and the Neumann problem respectively over the interval («. f)-
We can, without loss of generality, choose o = 0.

The purpose of the present paper is to obtain certain conditions on p, g, r so that the
spectrum of the given differential system may be discrete over 7 and then 1o obiein
certain estimates giving the distribution of the eigenvalues on 7.

The spectrum o (4) of the system (1.2)-(1.3) or (1.2)~(1.4) may be defined as the set
of A values coutributing to the expansion formula. It has been established by Chakra-
varty® (p. 403), that there exists at least a pair of linearly independent 2 solutions of
the system {1.2)-(1.3) or (1.2)-(1.4) given by

W (X0 ) = U b1+ iy (Dl + Oy, i, = g, (1.3

where ¢; = ¢; (0/x, ), j=1,2 are the “ boundary condition vectors ” at x = 0 (for
definition see Chakravarty’, p. 137) and 0; = 0, (0/x, A) are determined from [:, 0] = 84
¢y, 0. =0, §,,, the Kronecker delta; ¢,, ¢; entire functions of .

By closely foliowing the analysis given in Chaudhuri and Everitt3 (pp. 95-119), it can
be shown that the spectrum of the given system may be characterised by the properties
of the matrix ’ '

() = ('qu mm) (1.6

o1 Migg
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I ;o= iv, then the spectrum is

(i) discrete, if and only if m; (2} are all meromorphic, ie., the matrix () is mero-
morphic:

(i) continuous, il and only if lim im m; (1) tends to a continuous, non-vanishing func-
P30
tion. bounded for all ge (i, My); and
(iii) point-continuous, if and only if hm my; (A) tends to infinity, but llm imome, (p) s

a continuous, non-vanishing function m N (40), the deleted nclghbourhood of . Finally,
1 does not belong to the spectrum, if and only if lim im m, () = 0.
»-30
In discussions involving the eigenvalue problems, Green's matrix plays a very promi-

nent vole. The discussion of the Green's matrix for the finite integral (v, ) occurs in
Chakravarty! (p. 148). For the singular case the Green's matrix is defined by

TR S AR

DR A s
where @ (x, », 1) is the matrix with elements G, (x, ¥, 4} = (¢f (x, 1), 4; (1)), the inner
product of the vector 7 (x, A) (the trausposc of y, (x, 2)) and the /th column veetor A, ()
of

Xy ¥

a0 = (77 bl =6, =6, 00 4,
the boundary condition vector at y = 0. See Chakravarty® (p. 403). Also Sen Gupla®
(p. 91).

1t follows that since ¢,, ¢, are entire functions of J, G (x, », A) is meromorphic, if and

oaly if, the matrix (1.6) is meromorphic. This property of the Green’s matrix will be
utilised in our discussion. The present analysis depends upon the ideas and techniques
as developed by Titchmarsh? for problems of second-order partial differential equations
and employed by Chaudhuri and Everitt! (pp. 185-209) in solving corresponding
problems on a type of fourth-order differential equations.

2. Notations
In what follows we use the following notations.

The accent denotes differentiation with respect to x;

P stands for the matrix P = ;) l){) ;

P, being that in which the elements p, ¢, r are replaced by p;, ¢, r,;
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1)
)

= I

(f, &) = figy = fuge, the inmer product of the two vectors £={fi, fa}, & = (g1 &};

b n
0y D= D dn [l =0 Ve

(F.G.PY= [, «+ /& ~ phas = thg + ¢i& + 4/,

where

F = Y j—') = (j) L =10 ], with a similar notation for G.
LA Y ’

DeCfi )= DU fg P = [ (B G, PYdt, &= {u. b);
When a=0, we write D,(f, &) = D, (f, g P)for Dy (f,& P): D,(f) = D, (£ f, P).
When & = [, oo}, wedefine D (f,g) = D(f. g, P) = un Dy (f,g, PYard D (f)= D(f.f, P).

I & = (x,, %), where x,, x, are points on the real axis, we write D, ,(f.8) = D, , (2. P)
for Dy (f, g, P).

E represents the unit matyiy ((I) ?) .

We note that if p > 0 and det P2 0, D, (f) is always positive, (F, F, P) being positive
definite.

3. Properties of D (f, g) for the finite interval [0, 5)

Let 7, = 2, (8) and y, (x) ==y, (b, x) denote respectively the cigenvalue and the eigen-
vector for the Dirichlet (Neumann) problem enunciated in. Art. 1. Then some of the
propeities of D (f, g} are contained in the folfowing lemmas.

Lemma 3.1: For the Dirichlet (Neumann) problem,
() Dy (¥, W, = 4, 9,,,, Where 3, is the Kronecker delta.

A, mtn

D, («
(i D (o + fiya) l(h]»[f)) L M==gq

;oa, ff constants,

Lemma 3.2: I p > cand det (P — cE)> 0, ¢, a positive real constant, then the eigen-
values for the Dirichlet (Neumann) problem are greater than or equal to c.

We have

Dyly,) = Dy (Was ¥ PY=Dy (Y Vau P
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The lemma follows, since the integral in the first expression on the right is positive
definite and

2dr=1.

i1,

0

Lemma 3.3: Let () f(x) =1/ fa}eD, (i) f(O) =f(5) =0. Then if

1]
o = of W ) dt
be the Fourier co-efficient of f for the Dirichiet problem,
Dy (fottm) = Ay €y (3.1
If farther (iii) p > 0 and det P 0, then
® v
D ()= 2 Ak (3.2)

Results (3.1) and (3.2) also hold for the Neumann problem, but now the coudition (ii) is
not required.

Since, on integration by parts
13
Dy (f, v = | My, 1) dt +[(vn. fIB:
o

(3.1) follows on utilizing My, = L, ¥p-

To prove (3.2) we observe that by virtue of the condition (iii), D, (F)> 0 for every
vector Fe . Hence

0 < i~ F ewl=Dlf~ 2 ot f 2 €0V P
=D,(f)=25 ¢, D, (fw)+ 3 D, (v,)+2 6o Dy (W )
=0 nmg + 55m

=D, (f)— f €2, by lemma 3.1 (i) and the result (3.1).
=9

(3.2) therefore fcllows.

Lemma 3.4: If () fed, () S (0)=/(b)=0 and if ¢, is the Fourier co-efficient
of f, then

D)= ¥ het
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Let ¢, be the Fourier co-efficient of f.r Mf.

Then by the Parseval theorem,

tag
o
I
by
N
o2

Fohfrie=

n=g

=
[l
3

where ¢, = i, ¢,. by Chakravarty!, Lemma 3 (p. 150).
By integration by parts,

1] - N .o .

[ Fydi=—(f0--Dy(f. f,PY=D,(f), by the condition (ii). The
result therefore follows.

if d, be the Fourier co-efficient of g (x) = {g:, g}, where g satisfies conditions similar
to those of f in the above lemma, it follows similarly that

- ® -
Dy(fe)= 3 2cnd,.
n==)

4. Extension to mfinite interval (Spectrum assumed wholly diserete)

The Dirichlet and the Newmaun problem for the infinite interval [0, oo) takes respec-
tively the form

M <= ¢ }

(=@ =0 “.1)
and

My = i

W (0) = u’(O):O} 4.2)
where

I: 0< x < oo,

The eigenvector w, = [y, w,

- lge 2.} corresponding to the eigenvalue A, is integrable square
at infinity. ;

1t follows by integration by parts and using the relation
My, =2, v,

where necessary, that

4

¢
{! Woo ¥) dt=[lws WP — [ |wg 241,
o
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Substituting for y;’ from the differential system it follows, for both the Dirichlet and
the Neumann problem, that

2dr.

DyWy vy BY= (0 O, WL E) +7y [ v
[

Integrating first with respect to & over (0, X) and then again integrating the result so
obtained with respect to X over (0, R), we obtain, after some easy reductions, that

fH G e (1= 2) I =10 f Ly, [2dr + 2, fn(1~l_g)2]m2 a,
o 1 o

where

=)
By making R tend to infinity, it follows that D (y,) = 4.
Similarly

D(w,. W) =0, il m+# n.

Let @, be associated with the Hilbert space & = .£%]0, oo) in the same way as 2 is
agsociated with H = £2(a, b).

Then

» B

R
S (1—%) (rpya= (1—31.3)(1?,,;”, Py~ % [ G

o
fe@y, [F(0) =0 for the Dirichlet problem].
It follows, on making R tend to infinity, that
D(fy) =2, co
where ¢, is the Fourier co-efficient of f.
If, moreover, p >0, det P » 0,
o0
D(f)yz X X, ¢
P

We say that p, g, re M, if p, ¢, r satisfy the conditions similar to those stated in
Chakravarty? (Theorem II, p. 404), viz.,
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(i either [p =7 | +je] <0 o |pl el [r]<0W
where Q(x)e C'{/), 1: 0 x< oo and Q(x}) 24 >0;

(i) Hm | @' (x)/Q°(x)] < co, < 3/2:
F=p00
(i) F(x) = f {Q()12 dr tends to infinity as x tends to infinity.

Or,

it p, ¢, r satisfy () where Q(x) is continwous, monotone non-decreasing and

QT (@202 dr divergent.

If p,q,re M. we have c',, =J,c, Wwhere ¢, is the Fourier co-efficient of 7= Mf

{Chakravarty?, p. 413). "

It follows by the Parseval theorem that

T fa=3 2 e
@ gy

Now, as before,

f(l*l%)(f,f)dt:fn(1—%)(F,F.P)dt~]ﬁ f(ﬁf’)dr,

F(0Y=10.
Therefore by making R tend to infinity, it follows that

p(= [ () @3
Hence

D(f) =,._§‘j 2,2 if fedy, p, g, re b and £(0)=0.
If, in addition, g e @,. g (0) = 0, it follows in a similar manner that

D(fig) = §° Jeyd,,

where d, is the Fourier co-efficient of g.
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5. Extension to the case when the spectrum is possibly continuous

We define the H-matrix by

3
lim | im G(x, y, i)do, p>0:
V0 0

Hx = — lim J"Lim G (x,y, A do, 1t < 0;

30 0

0, w=0;

where 2=—=a - fv and G{x, y, 4) is the Green's matrix in the singular case [0, ool
Then closely following the analysis as given in Titchmarsh? (pp. 41--55), it follows that:

Each element of H(x, y, 1) e £2[0, o), for fixed x.
(=]
Flx, 1, f) = F(x, ) = {Fy(x, ), Fo(x,p)}= [ HTOnx 0 fOYdy ¢.£2(0, o)
o
for every p, if fe.£? [0, co).
If
. [ . 1 .
S g iy = (F s £ g0, 00 T8 20 = A{F (b)) 800,
where

g €.L2[0, o0) and J{fd=J({f J.p)

then J(f,7) is non-decreasing:

[T e.By—d(f g < [ flo, ol &l o G.1)
Also, if feDy, p, q, re M, g€ D,, then
(Flehe = f b dI(f.g 1), A real. (5.2)

[For discussion of H-matrix in detail, see Tiwari®],

Let fe®, and choose b so that 0 < x < b < X and

fx»{(l.—%—’)ﬁ x< X;

0 , otherwise.
Then
fee Do

and

§ 21, (e, < D, (), G rea, E.3
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where 4, (independent of b} is the [ower bound of the spectrum and conditions of lemma
3.3 are satisfied. (Compare Titchmarsh?, pp. 95-96.)

Singe
I = T D] <TG~ Fo D) 1T G S = fe D]
SESR o = Said o F Sl L 1~ Sl

by (5.1) with « =0, §= 21, it follows that J(f, 2) tends to J(f, A) uniformly with
respect to 2 as X tends to infinity.

By computing D, {f,,) in a straight-forward manuer, making X tend fo infinity first and
then b tend to infinity, we obtain

D, (fy) tends to D(f), as X, b tend to infinity.

Theeefore from (5.3), for any positive A4 > 2, we obtuin
faarg s oo
and sillL;c A is arbitrary,
;f“,:dj(f, H< D .49
holds, where fe 9.
Let

JO =0, fed, p.g.r e M,
then by (4.3) and (5.2) with g = f, we have

pify= [ 2. (.5)

6. Variation of the eigenvalues with p, g, r.

Definition: The matrix P == (f; ('1_) is said to be Pseudo-monotonic in 1, if p> 0,

det P> 0 inTand forj>k, jk=0,1,2,..., p; > p det (P, — P,) = det (P, — P,)
> 0, where p,, q,, r, are the values of p, g, r at a point x,e7 and P, is the matrix P
with p, ¢, r teplaced by p.. q,, r,.

The matrix P may be called the marrix of the Dirichlet (Neumann) problem under
consideration.,
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Let A,. w,. ¢, and N (1, P) denote, respectively, the eigenvalue, the cigenvector, the
Fourjer co-efficient and the number of eigenvalues not exceeding A for the Dirichlet
(Neumann) problem with matrix P; and z,. x,. d, and N (J, P,) those for the same
problem with matrix P,

We establish the [ollowing theorem.

Theorerm 6.1. Let the matrix P be Pseudo-monotonic. Then

Ao, and N@, PY)=N@A, P, j=k j, k=01 2....

Case I. Inferval finite : Since P is Pseudo-monotonic, therefore for j> k. j,
k=0, 1,2,..., p,2py>0, det P, det P, >0 and det (P,~ P,)> 0. Then by

lertma 3.2 each eigeavalue J, is positive.

Now
s fody_ (1
D,(f.P :f FF. P d1, F—:( L )z()
b(f k) . ( v 71 fz 7
b 3
= [ (F, F\ P) di+ [ (F, F,P,—P) d.
o P !
Since (F, F,P,— P;) is positive definite, therefore D, (f, P> D, (/. P,) 6.0
for any fe@,.
Put
F= 40 = {xt0 Hao}-
Then

” P Iﬂ’ , =1 and we have

w0
2 A i & Dy (fiP) < Dy(f Pl
=0

. ®
Ay = s H Ko ”o, p = Ao 2 h <
() n=

by (3.2) and (6.1).

Thus

20K Hge
Put

F=08 X, x) +dun (9\'),
where

8y» Oy dre constants:

Go= B{A® 4 B, 6y = — A (4 + BYR,
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where

A= (o Wado, o B (00 Wody e O3 T 0 = 1, ¢ == A, -+ B§;y == 0.
Then

=0 t a0

Zoeg=1bux0 +0utalle, o= 05+ =1

=)
Therefore

a3 a< ¥ b e DA PYS Dy P =8k e T

n=3 i)

Thus by lemma 3.1,
IS 8 pa b O S AR 83 s
showing that
VIR R
The general case 7, < g, follows in the same way as Titchmarsh? (pp. 89-90). The secong
part of the problem is an immediate consequence of the first,

Case Ji. Interval infinite: When the interval [0, 4] is replaced by [0, oo), the theorem
follows by exactly similar arguments as before by using the results of Art. 4,

Case I, Fach spectrim possibly continuous but each has at its left hand end point a

discrete cigenvalue 2, and p1, respeciively.

We have, if y, is the eigenvector corresponding to g,
" 4 , *° *
fo= dol oy =20 [ AT Cr Pr DS 2T (1 Py )
o X

< Dz PI< D1y Pp)= tte.

Hence as before the result can be extended to other discrete eigenvalues. The theorem
is therefore completely established.

7. Variation of the eigenvalues with the interval: upper and lower bounds of the nth
cigenvalue

In the following we assume p >0 and det P> 0.

Let Ng(4) denote the number of eigenvalues not exceeding 1 of the Dirichlet
(Neumann) problem of the interval [0, X¥]. The following theorem holds.

Theorem 7.1. Let Z,, p, denote, respectively, the nth eigenvalue for the Dirichlet
(Neumarn) problem of the interval [0, b] and [0, B], where B> b. Then

L2 and Ny(2) < Ny(D.
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Let w,, ¢, Do the nth eigenvector and the Fourier co-efficient for the problem of the
interval [0, ] and y,. d, those for the problem of the interval [0. £].

Put

b x

=l fex =l

Then by (3.2), it follows that Dg(f) = 3,0" iy d3 and therefore
=0

o ==
o= Dy(wy) = Dg(f) 2 X pdi 2 0t X d3 = p,s
n=0 6

showing that the result holds when 5 = 0. The case 7, 2= p, for all integral values of
n follows as before. The second part of the theorem is an obvicus consequence ol

the tirst.
To obtain the bounds of the nth eigenvalue of the problem under discussion, we sub-

divide the fundamental interval {0, X7 into a finite number of mutually disjoint sub-inter-
vals I, ¢ [x, 1, XL s =1,2,..,m, x,= 0, x, == X, and consider the Dirichlet and the

Newmann problem for each sub-interval 1,

For our problem of the inte:val [0, X1, let 2,,w,, ¢, denote, respectively, the cigenvalue,
the eigenvector and the Fourier co-efficient, the corresponding entities for the Neumann
problem of the interval [, being w, . X, .. d,, , respectively.  For the Dirichlet problem
of the interval I, let 4, , be the eigenvalue and y, , the corresponding cigenvector,
Put

o=, s= 1 Lo my n=0,1,2, 0, i< s,

s=1, 2., my n==0, 1, 2,000 S AL L,

G0 8
Finally, supposc that

M, (1) denote the number of eigenvalues not exceeding 4 of the Neumaun problem
of the interval [ ;

M (A), the number of numbers g, not cxceeding A in the fundamental intervay
[0, X].

N, (1), the number of eigenvalues not exceeding 1 of the Dirichlet problem of the
interval 1, ;

and N7 (1), the number of numbers 2, not exceeding 4 in [0, X1

The following theorem is now established.
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Theorem 7.2, With notations explained as above,
) S S A
. .. " . o b n s
) Ny = X N < Ny s Myl = Z; M, (7).
- g1 s
We prove (i), Then (i) is an immediate consequence of (i).

Put
Flxy=y (), 0 v XL

Thea by (3.2,

o©
Dy, (w) 2 X, di s
=0

Hence
- m E3 D?'
Ly = DX“/u) =X D:—l,t (Wc) z 2 Hy, 5 d&,s
871 a=1 n=0
" oo . mn
2, 5 X diy=t 2 |Wills, o (by the Parseval theotem)
g1 e a¥F ]
Thus

Ly T M n o HUJX = Uy
Put
FIX) = gty (3) + @@ (), of +af =1L
Then
Ly @ + Aaef = Dy (ay ¥, + erry)

Fyo=e Ay ad
m . m kel "
= Dg—l,s(ao Yo aﬂ!/]_) z 22X Ha, vd;ih’
=t sm1 nw1

where we have chosen y, , = 0, by suitably choosing the constants a,, a, as in theorem
6.1
Thus

Pz 4G || ey Wy e x = 45+

The general case 2, 2 g, now follows as in theorem 6.1. The first part of the
inequality is thus proved.

To prove the second part of the inequality (i), put
FO =y, X, <xcr;
=0, otherwise;
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and
Mo=24 , for fixed k, k=1,2,..., m
Then
“ ® .
Ay =2y & Dk—l, k(%, W =Dx(f) 2 Z’o ‘et by (3.2)
=2 [ ¥k o, 2 = Ao
Put

Xm0y 0 =0, 1; k, fixed.
If j==1, we put

SO = a5 () + @y (), M < x< -\'k} at bt = |
=0 otherwise v t :

If j=0, we take
f)=ate, s, Ga< X< X .
= bWy ms A< X Xy D=1
=0 , otherwise
The analysis now proceeds as in theorem 6.1 and Chaudhuri and Everitt!, (pp. 196-197),
so as to obtain A, > 4; and for any positive integral », A, > 4,. The second part of
the inequality (i) is thus proved. Hence the theorem follows.

Let (p1, g1, 1)» (Pos 9o, 12) be the values of (p, ¢, r) at the points x = x,_; and x = x,,
respectively, of the sub-interval [,: [¥,_1, x,]. Also, let P reduce to P, atx = x,_; and

to Py at x=x,
Let

Nx (W)= Ng(h, pyy P, i=1,2;
N, (4, ), the number of eigenvalues mot exceeding A of the Dirichlet problem of the
interval J, with matrix P,;
and
M;, (4, ), the number of eigenvalues not exceeding A of the Neumann problem of the
interval /, with matrix Py.
We establish the following theorem.
Theorem 7.3, Let the matrix P be Pseudo-monotonic. Then with notations explained
above
P NG 9 S Nx(h) €2 My (L, 9), for fixed n,

3=1

=3

where X > Y, ¥ being a root of det (P -1 E)=0, for fixed 4.
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Since P is Pieudo-monotonic, therefore for 0 < p1< p < py,

det (P — Py) = 0, det (P, — Py) > 0.
Now, for two positive quadratic forms X ¢, X, X, X dy X, X, the inequality

Pew [ g < ea ot di .1
holds, where | ¢, | are determinants of e co-efficients, n positive integer (Hardy
Littlewood, Pol)'/aﬁ, p- 35, Formula 2.13.8).
Since

Py AE=(P— JiE)+(Py— P), Pr—AE=Py—Py+ Py — L
it follows from (7.1), since P is Pseudo-monotonic, that

det (P, — 2E), det (P, — 2E)2 0, if det (P — A£) 2 0. (1.2)
By theorem 6.1 it follows that

Nag (A) € Ny () € Ny (). (7.3)

Also by theorem 7.2,

Z NaCu ) S Ny (@ 5 My 5) 3 Nyx () (.4

§&1

From (7.3) and (7.4),

5 N0 ) < Ng() €5 My (). (7.5
ot =1

Let us choose J so that p; > 4, det (P; — 2E) » 0, which, by (7.2) holds il p >/,
det (P — AE) > 0. Then by lemma 3.2, there are no cigenvalues less than 4 with this
choice of 4 and therefore

My(4 5)=0 and N,(4, s)=0, (7.6)
whenever p = 4, det (P — AE) = 0.

Let ¥ be determined as the root of det (P(Y)— AE) =0, where 1 is-a given real
number. Since p is increasing, it is possible to choose x > ¥ so that p > 4 holds.
For ali such x, siace P is Pscudo-monotonic, det (P(x) — P(¥))> 0 and therefore
P(x)~2E = P(¥Y)~ AE + P (x} — P (¥), by (7.1) leads to

det (P(x)— 2E)> 0.

L~e§ Fhe interval [0, XJ, X > ¥, be chosen large enough so that for a point of sub-
division x,, say, for some n < m, x,= ¥ holds. Then (7.6) holds for all s > n, and
the theorem follows.
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Since 4 is given, Y is fixed and therefore p is fixed. 1t follows therefore from the
above theorem that Ny (1) is bounded independently of X. Since by theorem 7.1,
Ny (A) increases with X, therefore

lim Ny (3) = N (D),
X>x

where, as will be evident from discussion in Art. 8 next, N (1) (< o), represents th
number of eigenvalues not less than A in the singular case.

8. A criterion for the discreteness of the spectrum

The following theorem provides a criterion for the discreteness of the spectrum of the
boundary value problem under consideration.

Theorem 8.1. Let (i) p, g, r satisfy the conditions laid down in Art. I, the matrix P
being Pseudo-monotonic. If (i) p> a2z 0, det (P — aE)> 0, then the spectrum is
discrete over the range {a, f).

Let dny, Jnp denote the eigenvalues for the problemss of the intervals [0, X7] and
[0, X'] respectively. Then by theorem 7.1, for X' < X7, 4, > 7, showing that {7, .} is
steadily decreasing. Now by condition (i) 2,,> a. Thus {1} tends to a limit 1,
say, as X tends to infinity. Hence the sequence {4} j=0, 1,..., &, of eigenvalues
lying in («, B) tend to {4}, j=0,..., /1, (not necessarily all different), as X tends to

infinity.

Let A, < 4. Since the Green's matrix G (X, x, £ 4), =g - iv, Is regular except
for simple poles at 4, therefore G (X, x, £, 2) is regular if 1, -- 8 < p < /1 — &, where
5= 1/4 (44 — 2) and X large cnough. (Compare Titchmarsh?, p. 149).

We introduce the matrix H (x, ) which is not a Green’s matrix but has the same
discontinuity property as the Green’s matrix for the “x-Case’, substitute

Fy x, & =Gy (X, x5, & 5 — Hy(x8),
Gy»
and argue as in Chakravarty? (pp. 401-402), so as to obtain

[Fo (X, %, & D] < 2+ 1M K(x, & 6, |A),

where K is a constant depending on the arguments shown.

H,, elements of G and H respectively,

Thus

|Gy (X, » & HlsMv|?
for given

X, b xAt b B AOSpS =5, —8<y<h
LSe35
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Then by arguments similar to those in Titchmarsh? (p. 149), it follows that the Green's
matrix G {x, £, 1) in the singular case [0, oo) is regular e¢xcept at !he Points 2, and that
i, is at most 2 simple pole of G (x, ¢, 2). Hence the spectrum is discrete over (q, f).

Again, from above it follows that G (x, §, Z) s a meromorphic {unction of 1 and there-
fore the matrix (m,, (2)) Is also meromorphic (vide, Art. 1). Hence also the spectrum is

discrete over (u, f).
Finally, defining f{(x) by
f) =y, 0<y<X
== 0, otherwise,

and following Titchmarsh? (p. 150), by wusing (5.3), it can be shown that 4, is
actually an eigenvalue. In the general case, 4, is an eigenvalue for the boundary value
problem in the singular case [0, o).

N{i) = lm Ng(2)
X2
is thus the number of eigenvalues not less than 4 in the singular case [0, co).

In particalar, il p, ¢, r satisly the conditions of Art. 1 and the matrix P is Pseudo-
monotonic, the spectrum is discrete over (0, ).

9. Distribution of the cigenvalues
Put
Co=a4 {(;r — a)* +4ﬁ2}1n

and

vy = (y — @) 4B
where a, f, 7 ate real numbers and 1 is a real number, A > /2 max (A, »).
We seek for solutions of the equation

W)~ o) (- u(x) =0 }

2" () = fu(x) + (A~ Do (x)=0 @D
where [u, v} satisfy the Dirichlet-form of boundary conditions, viz.,
#(@=0=200); u(X)=0=0p(X) (9.2

SoIYing 9.1y for u, » and making {r, »} satisfy the boundary conditions (9.2), we
derive after some easy steps

sin £X sin EX =0 9.3)
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where
=A%y &=2-%A

Therefore, if Ny (4, «, £, 7) be the number of eigenvalues not exceeding J in the inferval
0, X), we have

Ny G o By 9) > ;Z":[(} — '12‘ /_\)“2 + (/1 — %n)m J ~2 ©:4)

Similarly, if My (4, a, f, y) be the number of eigenvalues not exceeding A in the interval
(0, X) of (9.1) with boundary conditions in Neumann's form, viz.,

W (0) = 0 = (O): o (X)=0 =1’ (X) ©.5)
we have
X 1 e 1 N2
My (s B )< ;[(A—EA) T(A—ivz) ]+2 ©.6)

Lemma 9.1. Let (i) p>r, (i) p, ¢ monotone increasing and
) (p—rr' —~29¢ =0
Then
A@=p+r-+{p—n - dg7)e
and
() =p +r—{p—rP+dg7pe
are both monotone increasing.
Since
@ — P 14 > 4%,
it follows that {(p — r)? 4 44%}"® is monotorde increasing. Therefore
(p—r (' —r)+499 20
and

() .
& 20

so that 7 (x) is monotone increasing. Again, since {(p —r)* +4¢* P12 2 p —r, it
follows that A (x)z 2p. Therefore A (x) is monotone increasing.
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The lemma remains true if p - r is assumed monotone increasing instead of ¢.

We establish the following theorems on the distribution of the eigenvalues of the
boundary value problem under consideration.

Theorem 9.1. Let the matrix P be Pseudo-monotonic and p, ¢, r satisfy the condi.
tions of lemma 9.1. Then N (1), the number of eigenvalues not exceeding 1 in the
singular case of the problem under consideration, is given by

Nw:% j [{J —% L\(x)}”2 + {J.— %n (x)}l’g]dx

+ O (Xu M), J - oo,
where X is determined by det (Ii (X) — AE)=0.

It follows from theorem 7.3, with notations explained there, that
I N )< Ng D) <3 M, 9,
F=1 8221

where X > X and X is given by det (P(X)— 2E)=0.

Making X" tend to infinity through certain sequence, we then obtain

2N NS S M, 9.

=1

4.7

For the interval 1,: (xp1. %), let Ay (x), m.(x), j=1, 2, stand for A (x) and 4 (x)
respectively when the matrix P is replaced by P, at x = x,;, and by P, at x =1x,.
Then it follows from (9.4), (9.6) and (9.7) that

i [{P=30a0) + {im g} ]2 -m< v

s=1

<z [2=3 00} + {2~ 500 @} ]% ~2n ©.7)

=1
where §, is the length of the interval J,.
Noting that

Fy={A—~3A M + {2 —3n ()
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by lemma 9.1, steadily decreases from F, = F(0) to Fy = F(X) as x increases from
0 to X, it is possible to choose the points of sub-division x, of the interval (0, X) in
such a manner that the oscillation of F(x) in each I is equal to

Fy — Iy
n

(Compare Chaudhuri and Everitt', p. 206 and De Wet and Mandl®, pp. 572-580.)

Thus in 1,

(=4} ]

R P R e e R

This leads to

n

7T

- ©.8)
where

=1 f [{2- 28 (x)}1,2 =S} ax

X

Similarly, ~

> 1 142 1 n2g g , X(F, —F,)

Z [{sz/,\_.g,(x)} +{)«‘§"12.(x)} ];310)—%;’?_{

= i . - ©.9
Hence from (9.7, (9.8) and (9.9),

[N(),)«I(l)[s_}_(_(ﬂ’g;_@+2n. : ©.10)

Choose p so that the right hand side of (9.10) is minimum. This gives
I

o X (I_:!’;Q :
T :
Therefore from (9.10),

N@ =TI+ oX (F— Fg¥} (©.11)
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The theorem foliows from (9.11), since | F, — F,|< | F(O)| < K24, K, const.
The following theorem is next established.

Theorem 9.2. If the conditions of theorem 9.1 are satisfied and if (i) either p or (i) »
or (il) p +~r or (iv)p+q-+r, (¢0) = 0), be convex downwards, then

X
1 .1 w0 n
N ~; f [{, -3 (.\-)} 4 {/, - jv)(x)} ] dx, a5 4 tends to infinity,

]

We give details of the proof when (p & r) is convex downwards with outlines in other
cases.

Since p (x) + r(x) is convex downwards, we have

P +r X —p©0) ~r (O
X

P +rw<pO 4+ (0 + U,

O<cucX, p(0), >0, r(0) >0,
since p >0. det P> 0 for x in L

This leads to
e dn@) > A=k (@) +r @) A—) P +r @} S

so that

L]

0= =30 0) b
X
X

s [ [ 3] e

[
I 11n X 142
ZEX’}'*(I —%T)) » where Q (X) = p(X) -7 (X). ©.12)
Therefore from theorem 9.1 and the inequality (9.12), it follows that
~1]2
| W@~ 1)) < Knxone s (3 Q-gfl " 50) = €7 (), say, whero

¢ tends to zero as A tends to infinity, X being determined by

det (P(X)— AE) =0,



DISTRIBUTION OF THE EIGENVALUES ¢

Thus the theorem is proved when (p + r) is convex downwards.
Again, since

=P +4e2<(p+rP +4°< (P +r+ 290
therefore

1 u

Py b@2 A= 4N 2 A=W F @) 0} 5

since p -+ ¢+, (g(0) > 0), is convex downwards: 0« u< X.

Finally,

since
{(p—r2+aap2 zp—r r—p,

it follows that
A=in@@2A—p), A—r(.
Therefore
A—in@ri-p 0%, 0cuck,
2 X
if p is convex downwards,
and
Z—-%n(u)z A—rY  ocuck,
X
if r is convex downwards.

In any case the analysis therefore follows as before.
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