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Abstract 

Thc paper deals ilith the nature of thc apcclrurn aisocialcd with a type of accond-ordcr n all-ix dillkrcn- 
tial operator with certain boundary conditions. It is found illat under ceriain conditions satisfied 
by ihe co-efficients of the differential s)stem, the spectrum is discre:e. Some results arc thrn oblajncd 
giviilg di~t~ibuliuns of the eigcnvalues on the real axis. The method cniplcscd depends, among 
others, upon some of the ideas and rccl~niques of E. C.  Titchmarsh7. 

Key words : DiKerential operator, eipnvalue problcn~, Hilbert space, Dirichlet (Neurnnnn) pmblcnl 
S@ectrum-disrele, conlinuous, point continuous, Greeo's matrix, nlcrolnorphic funclicn, pssutlc- 
monolonil;, varhtioi! of the cigcnvaiues, distribution of thc eigenvalucs, convex downwards. 

1,. Introduction 

Let 1 : u c :  x-< h be a n  interval o n  the real line: u =. - w,  b = w o r  both being 
allo%,ed. Let C u ( I )  - C(1) be the set of all real-vdlued continuous Cunctions o n  I and  
CI. (I), k = 1: 2 , .  . ., denote the set of those f ' t  C (I) for  which f WI E C(1). 

Considcr the diflerential operator 

where p, 11, r e  C1(I); 11, 4, r a re  absolutely continuous over any compact sub-intelval 

of I for  a E I. 

Let the b a s ~ c  Hllherl space b e Z -  f?! (a, b) and  Le t3  rep:ese@t the set of al l / -  (2 
= [f,, &) E X  such that (i) f e C' (I); (ii) f' absolutely continuous o n  evcry compact 
subinterval of I: f ' ~  A.C and  (iii) Mfc 3% We say tha l  f c 8 ,  i f f  t Xsatisfies the 

conditions (i) and (ii). 
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Lel C be the set of conlplex nunlbers and i, 6 C ; then 

tihere cb - (:I) = :I(, v;, $;-3, with some prescribed boundary conditions, gives rise 

to an eigenvalue probleni both in the finite as  well as in the singular case considered 
by Chakravartyl. 2. 

Lel n .= < s < p : b and let the solution 4 = {u; v) of (1 2) satiafy at CL and p 
either 

11 (a )  = I. (a) = 0 

The eigenvdlue problems (1.2)-(1 3) and (1.2)-(1.4) will henceforth be designated as 
the Diiicl~Lt problmr and the N e ~ r i l ~ u i ~ n  problctiz respectively ovcr the interval (a. P). 
We can, without loss of generality, choose a = 0. 

The purpore of the present paper is to obtain certain conditions on p ,  q. r so thal the 
spectrum of the given differential system may be discrete over I and then to obuin 
certain estimates giving the distribution of the eigenvalues on I. 

The spectrum o (2) of the system (1 .?)-(I. 3) or  (1.2)-(1.4) may be defined as the bet 
of i. values contributing to the expansion formula. I t  has been established by Chakra- 
vartyz [p. 4031, that there exists a t  least a pair of linearly independent p%olutions of 
the system (1.2)-(1.3) or  (1.2)-(1.4) given by 

where 4i = 4i (O:'.Y, 2.); j = 1, '2 are the " boundary condition vectors " a t  x = 0 (for 
definition see Chakravartyl, p. 137) and 0, = 0, (Olx, 4 are determined from O,] = &, 
[Lf,, U,] = 0, a,, the Kronecker delta; b,, 0, entire functions of A. 

By closely foliowing the ,aoalysis given in Chaudhuri and Evcritt"pp. 95-1 IY), it can 
be shown that the spectrum of the given syslem may be characterised by the properties 
of the matrix 



11' j. = ,I + i ~ , .  then the spectrum is 

(i) ~lirrwic, if and only if (I.) are all meromorphic, iz., the matrix (iili,) i~ IIICIO. 

morphic : 

( i i )  ~.orr/ii!rioiu. irand ouly iT lit11 in1 mu (A) tends to a continuous, non-vanishing func- 
Y-fO 

tion. houndcd for all ,us ( p l ,  p J ;  and 

(iii) point-cotztbuoui., iC and only if lim mi, (A) tends to infinity, but lim im ni,,(jc) is 
Y - M  Y- t .  

a contionous, non-vanishing function it1 N'([r), the deleted neighbonrhood ol' /I. Fio;dly, 
j r  does 1-101 belong to thc spectrum, if and only if lim im nt ,  (i) :I- 0. 

Y - M  

In discus\ions involving the eigenvalue problems, Green's matt-ix plays a very promi- 
nent rolc. Thc discussion of the Grccn's matl-ix for the finite integral (a,  b)  occurs in 
Chnkravartyl (13. 148). For the singular case the Green's matrix is defined by 

c (s, J'. i"), y .: x 
G (.x, y, A) - 

g I(!', I, ?.), J. ::, .v 

wherc g (s, y, A) is the matrix with elements G,, (s. J', A) - (111; (s, A), A, 0.)). Ihc inner 
product of the vcctor y: (s, A) (thc transpose ofy,  (s, A))  and the ith colunun vcctov A, (J') 
of 

the boandai-y condition vector a t  y -= 0. See Chakrsvarty' (p. 403). Also Sen Guplae 

(P. 91). 

It rollows that cince 4,, are entire functions of I,, G (x, g, A) is meromorpl~ic, if and 
only if, the mxtria ( 1  .6) is meromorphic. This property of the Green's matrix will be 
utilised in oor discutsion. The present analysis depends upon the ideas and techniques 
as developed hy Titchmarshv for problems of second-order partial differential equations 
and employed by Chaudhuri and Everitla (pp. 185-209) in solving corresponding 
problem on a type or fourth-order differential equations. 

2. Notations 

In what follows we use the following notations 

The accent denotes dikrentiation with respect to x ;  

P stands for thc inatrix P = 

P, being U~at in which the elements p, y, I .  are replaced by p,, q*, r , ;  



When a = O :  we write D,(f, g )  - D, (.f, g, P)roi. D , ( f ,p ,P ) ;  D , ( f i = D , ( f . , f . ~ ) .  

When B = [d, m), \\e define D (Lgj - D ( j .  y, P) - 11m L), (f; g,  P ) a d  D (f ) -  Y (f.,f. 1'). 
a+w 

I f 8  =: (6. x'i, \\here s,, .r, are points on thc real axis, v.e write D,, , (f. gj = D,, , (f, ,?, pi 
for D, (1, 8. PI. 

C reprcsnth thc unit matrix (; 
We note that if y ; 0 and det P 2 0, D,(1) is always positive, (F, F, P) being positive 

definite. 

3. Properties of DL ( f ,  g) for the finite interval [O, b] 

Let i, - ;.% (6)  aqd y, (x) -7 yn (6. i) denote respectively the cigenvalue and the eigeo- 
vector fo: the Dirichlet (Neuman.11) pr~bleln enunciated in Art. I .  Then some of the 
propeilies of DL (I; g) are contained in the following lenunas. 

Laiii~za 3 .1  : For the Diiiclrlet (Neumann) problem, 

Lmsnu 3.2: I f p  > c and det (P - c E )  > 0, c, a positive rcai constant, then the eigco- 
values for the Dirichlet (Neumann) problem are greater than or equal to c. 

We have 
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The lemma follows, since the integral in the first expression on the right is positive 
definite and 

Lmrna 3 . 3 :  Let (i) f(x) = [ j ; ,  f,} €9, (ii) f ( 0 )  = f ( b )  = 0. Then if 

> 
em = J ( v m 3  f) dl 

be the Fourier co-efficient o r  f for the Dirichlet problem, 

D, (5  1 1 4  = A,, C,". 

IF further (iii) p > 0 and det P > 0, then 

Results (3.1) and (3.2) also hold for the Neumann problem, hut now the condition (ii) is 
not required. 

Since, on integration by parts 

(3.1) follows on utilizing My, = y/,. 

TO prove (3.2) we observe that by virtue of the condition (iii), D, ( F )  0 for every 
vector F s  B. Hence 

= D, (f) - nt i, c;, by lemma 3.1 (i) and the result (3.1). 

(3.2) therefore follows. 

L~~~~ 3 . 4  : ~f (i) f e  3, (ii) f (0) = f ( b ) - 0 and if c, k the Fourier co-efficient 
o f f ,  then 
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Let ;n be the Fourier co-efficient of 7 : Alf. 

Then by the Parseval throrem. 

h - m - co 
J (.f, j ' )  (It z r" c* = 2 7,. c,:. 

"=o ,,=a 

where < == d,c,,. by Chakravarty', Lemma 3 (p. 1501. 

By integration by parrr, 

(f, f) cli - - (J.f ')]i  -' D, (f, .f, P) = D, ( j  ,, by the condition (ii). The 

resi~lt therefore follor\s. 

K r l ,  be the Fourier co-efficient of ,q (r) - {gl. g2).  where g satisfies conditions similar 
to those of f i n  the above lemma, il follows simililrly that 

4. Extrusion to infinite interval (Spectrum assnmetl wholly discrctc) 

The Dirichlet and the Neumann problem for the infinite interval [O, w) lakes reipec- 
tively the form 

and 

s here 

The ci~envector I / / ,  [wI~.  v2.) corresponding lo the eigenvaluc A, is inteqtble square 
a t  infinity. 

It follows by integration by parts and using the relation 

'MY/" == 2," (!l" 

where necessary. that 
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Substituting for y/; from the differential system it follows, for both the Dirichlet and 
the Neumann problem, that 

Integrating first with respect to f aver (0, X) and then again integrating the result so 
obtained with respect to A' over (0, R), we obtain, after some easy reductions, that 

where 

By making R tend to infinity, it follows that D(y,)  = 4. 

Similarly 

Let B, be associated with the Hilbert space 3T, = f i2[0 ,  w) in the same way as 2 is 
associated with X = E 2  (a, b). 

Theu 

f eB,, [ f (0) = 0 for the Dirichlet problem]. 

It follows, on making R tend to infinity, that 

D (fw = r, c,, 

where c, is the Fourier co.efficient of f. 

If, moreover, p > 0, det P > 0, 

We say thatp,  q, r e  A, if p, q, r satisfy the conditions similar to those stated in 
Chakravartyz (Theorem 11, p. 404), oiz.. 



(iii) F ( x )  == j re(())-'1% dt tends to infinity as s tends to infinity. 

Or, 

if p ,  q, r satisfy (i) where Q (I) is continuous, monotone non-decreasing and 
m 
$ [Q ( 2 ~ ) j - " ~  dt divergent. 

If p, q, r G ,&. we have < = ?,,, r,. where & is the Fourier co-efficient of i= Nf 
1Chakravarty" p. 413). 

I t  follows by the Parseval theorem that 

f ( 0 ) - 0 .  

Therefore by making R tend to infinity, it follows that 

Hence 

If, in addition, g ~53,. g (0) = 0, it follows in a similar manner that 

where d* is the Fourier co-efficient of g. 
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j. Extension to the case when the spectrum is possibly conti~luulls 

M'e define the H-matrix by 

where 1. - 0 1 -  iv and C (x, l;, J.) is the Green's matrix in the singular case [O. ma!. 
Then closely following the analysis a$ given in Titchmal-SIP (pp. 41---551, it hllows that: 

Each element of I-I (s. y, ~ 1 )  e .e2 [O, oo), for fixed s 

m 
F ( I ,  P,  f )  = F ( ~ , J I )  -; [ F ,  (x,) i) ,  F2 (x, / i ):  - J HTO..  x./O f (?.) 4 ~*3'(0, m) 

U 

for every y, if j ' c * ? ?  [0, oo). 

If 

[For discussion of H-matrix in detail, see Tiwaris], 

Let f e 53, and choose b so that 0 < x .= b < X and 

fx ( ( I - )  1 . x ;  

0 , otherwise 

Then 

fx f  9" 

and 
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where i.,, (indzpendenL of 6 )  is the lower bound of the spectrlm and conditions of lernrna 
3 . 3  are catislied. (Compare Titchmarsh7, pp. 95-96.) 

By compuring D, if,) in a straight-forward manner, mnkirrg X'tend lo infin.ity firut and 
then h tend to infinity, we obrain 

D, (f,) tends to D (f), as X: h lcnd to infinity. 

Therefore from (5.3). for m y  po%itive A > l.,, we obtc~in 

;j.dJ(L;.)< D ( f )  
h i  

and since A is arbitrary, 

Let 

then by (1.3) and (5.2) with g - i; we have 

6. Variation of the eigenv3lues with p,  q, r. 

Dejnition : The matrix P = (: 'f) is said to be Pseudo-monoto~zic in I. if p :. 0, 

d e t P 2 O i n I a n d f o r f > k ,  j , k = O ,  1 , 2  ,..., I; > p x ,  del(P,-P*' ,)=det(P,-P,)  
% 0, where p2, 'I,. r, are the values of y, q, r a t  a point x , ~  I and P, is the matrix P 
with p, q, r replaced by p,. q,. r,.  

The matrix P may be called the matrix of the Dir~chlet (Nenmann) problem under 
:onsideration. 



Lei I.,,. 11,. c ,  and N f l ,  Pi) denote, ve\peciively, the eigcnvalue. the cigcnvcct:?, thc 
Fourier co-eff~cient and the number of eigcnvalues not exceeding i for the Di,-ich'el 
(Neunlann) problem with matrix Pi and JI,,. x,,. d,, and A! (I., P,) thorc Sox the 5:imc 
pl-oblcm with nialris P,:. 

7 h r n i ~ n i  6.1.  Let the matrix P he Pseudo-monotonic. Then 

&<&, and N(1.. Pk)>N(J.,P,l. j > k .  , j . I c = O ,  1 . 2  . . . ,  

Cnsc I .  I~zfcrvc~l liiliir : Since P is Pseudo-monotonic, [herefore for , j ; .  I,. j .  
k - 0, 1. 2 , .  . ., p, > p, ;- 0. det P,, det P,> 0 and det (P,  - P,) > 0. Then by 
lemma 3 .2  each eigcnvalue 2, is positive. 

Now 

Since I'T. F ,  P, - Pj) is positive definite, therefore D, (f, P,) > D,fL P,) (6.1) 

for any ft 9". 

Put 

f= xo = l ~ t w  ~ml.  
Then 

I /  zo I]", - 1 and we have 

by (3.2) aud (6. I). 

Thus 

2" < !I".  

Put 



Thus by lemma 3.1, 

6 d; / lo  - ;  q / I ,<  ks'i ;- ~ ~ ~ ~ 1 ,  

shov ins that 

LIC )Il. 

The general case i, < /I,, follows in the same way as TitchmarsM (pp 89-90). The second 
par t  of the problem is an immediate consequence of the lirsl. 

Cmp 11. 111irrvrd infhiic: When the interval 10, h] is replaced by 10, oo), the theorem 
follows by exactly similar arguments as before by using the results of Art. 4. 

Caw I l l .  Eocli rprctrinii possihl~~ roirtinciol~s hilt filch hns at its Itft liimd mil  point a 
(IjSm,i~' ci~i.n~,alrir 2, nrid { r ,  ri7slx,rtivp!v. 

We haw, if x,, is the eigenvector corresponding to p,, 

Hcnce as belbre the result can he exteltded lo other discrete eigcnvalues. The theorem 
is therefore coinpletely established. 

7. Variation of the eigenvalues with the interval: upper and lower bounds of  the nth 
cigenvalue 

In the following we assume p > 0 and det P 3 0. 

Let .?',(I) denote the mmber of eigenvalucs not exceeding /Z of the Dirichlet 
(Neumann) problem of the interval [O, XI.  The following theorem holds. 

TI~~owrn  7 1. Let j,, P, denote, mpectwely, the nlh eige~.valne for Ihe Dmdllet 
(Neumam) prableln of the interval [O, b] sud [O, B], where B > b. Then 

J, a u, and N8 (2) < NB (4. 



Let IF,,, i.. be the 12th eigenvector and the Fourier co-eficient for the problem oT the 
interval [O,  b] and z,, [I,, those ror the problem of the interval [O. B ] .  

Put 

m 
Then by (3 .1 ) ,  it follows that D, (ji > 2' p, dl and thcreforc 

n=" 

showing that the result Imlds when 11 := 0. The cirx i ,  ;;,u,, li)r all integral value, of 
rr follows as before. The second part oT the theolcm is a n  obvious consequence ol' 
the first. 

To oblain the bounda oS the 11th eigenvaluc of thc problem under discussioi~. u c  hub- 
divide the Fundamental intcrval [O, XI into a finite n u i ~ ~ b c r  oS mutually disjoint sub-inter- 
valb I, : [s ,-,, x,], s - 1, 3,. . ., 111, X" :- 0, x, - X, aud wmidcr the Dirichlci and the 
Ncumann problem for each hub-intel-val 16. 

For our problcm of thc interval 10, X j ,  let i.,,, I ~ I ~ ,  c ,  dcnok, mpectively, the cigenvalue, 
t'le eigcnvc:tor and the Fwricr co-efficient, the corrcsponding entities for thc Neumrmn 
problem or  the interval I, being /I,,,, x,,, ., d,,, , reipcctivcly. For the Dirichlct PI-oblem 
of L!IC inteivnl I,, let i.,,, , bc the eigcnvalue ;~od  yII the corrcsponding eigenvector. 

Put 

Finally, supposc that 

hf8 (A) denote the nuinber or  eigenvalues not exceeding 1, of the Neonlam proble~n 
of the interval I n ;  

h4;(1,), tho number of numbars /I,; not cxcecding 1. in the Cundamcntal ir~tcrva~ 
[O, XI. 

N, (A), the number of eigenv;~luea not exceeding 1 ol' the Uirichlet problem of the 
interval I,; 

and N;.(d), the number of numbers 1,; not exceeding i. in [0, X ]  

The following theolein is now cstabliahed 
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i r l i~ 'ur~,~n 7.2. With l ~ o t a i i o ~ ~ a  explained as above, 

The general case i, 2 / I ;  now follows as in theorem 6.1. The first part of the 
inequality is thus proved. 

To prove the second part of the inequality (i), put 
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and 

1.; = 1.,, , for fixed k ,  k = 1, 2,. . . , nl. 

Then 

= 1.0 11 Yo, , II", x = " 0 .  

Put 

A;=? .i,,, j = 0 .  1 ;  k. fixed. 

If j =1 ,  we put 

If j = 0, we take 

The analysis now l~roceeds as in thcorem 6.1  and Chaudhuri and Everitti, (pp. 196-197), 
so as to obtain i: Z- and for any positive integlnl 11, A:, 2 1,. The second part of 
the inequality (i) is thus proved. Hence the theorem follows. 

Let (p,, ql, rl). (p s ,  qL, I.%) be the values of(p, q,  r )  at  the points x - I,_, and H = s,, 
respectively, of the sub-interval I,: [&-I, x,]. Also, let P reduce to PI,  at  x = x,-, and 
to P, at  x = x,. 

Let 

N,,(i.)=N,(A, y,, PJ, i = 1 ,  2 ;  

N2 (A, s), the number of eigenvalues not exceeding l. of the Dirichlet problem of the 
interval le with matrix P,; 

aud 

MI (A, s), the number of eigenvalues not exceeding 2. of the Neumanu problem of the 
interval I, with matrix P,. 

We establish the following theorem. 

Tlreovem 7.3. Let the matrix P be Pseudo-monotonic. The11 with notations explained 
above 

where X> Y, Y being a root of det (P - % E) = 0, for fixed 1.. 
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Since P  ic p.eudo-monotonic. therefore for 0 < p l<  P  < Pz, 

det ( P  - P1) > 0 ,  det (P ,  - P d  > 0. 

Now, fur two positivc quadratic forins c,, x, x,, cl,, x ,  x,, the inequality 

1 P , ~  ilela - 1 < I s B  p l &  1 c,,* + ~ 1 , ~  I l l n  (7.1) 

holds, where 1 c,, 1 are determinants of the co-efficient% n positive integer (Hardy 

Littlewood, ~ o l & ,  p. 35, Formula 2.13.8). 

Since 

P C - j . E = ( P - i . E ) - b ( P 2 - P ) ,  P I - ? . E = P 1 - P , f P , - i . E ,  

it folloivs from ( 7 .  I), sincc P  is p+eudo-monotonic, that 

dct ( P ,  - 1.E). dct (PI  - i.E) a 0, ir det (P - i.E) 2 0. (7.2) 

By theorem 6.1 it follows that 

s" N2 (i., s) < Or), 2 hf, (i., s) 2 N,, (i.) 
151 @=I 

From (7.3) and (7 .4) ,  

2 N~ (A, s )  < N~ (i) G 2 (L, s) .  
a-I 1=1 

(7 .5 )  

Let us choose i so that p, > i., det ( P I  - LE) 2 0 ,  which, by (7 .2 )  holds if p > 1, 
det ( P  - 1.E) > 0. Then by lemma 3.2,  there are no eigenvalues less-than i. with this 
choice of L and therefore 

whenever p  ; I., det ( P  - E.E) 2 0. 

Let Y be determined as the root of det (P'(Y) - L E )  = 0, where 1 is a given real 
nuntber. Since p is increasing, it is possible to choose x > Y  so that p > l holds. 
For all such x, s i x e  P is Pseudo-monotonic, det ( P ( x )  - P ( Y ) )  > 0 and therefore 
P ( 4  - j.E= P ( Y ) -  2.E f P ( x )  - P ( Y ) ,  by (7.1) leads tc 

Let the interval [O, XI, X > Y ,  be chosen large enough so that for a point of sub- 
division &, say, for some n < In, x, = Y  holds. Then (7.6)  holds for all s > ~z, and 
the theorem follows. 



Since ;. is given, Y is fixed and therefore IZ is lixed. It Uollow Lhereiot-e from Lhe 
above tl~corem that Nx(') is bounded iudependently of X. Since by theore111 7.1, 
1% (I) increases with X, therefore 

Jim N, (2) := iV (>,I, 
x-f m 

where, as wil l  be evident from diwtssion in Ai-t. 8 next, N 0") .)< w), represents th 
nulllber of eiyenvalues not less than A in the singular case. 

8. A criterion for the discreteness of the spcctrum 

The fc>llowing thcorem providcs a criterion for lhc discrctcness of thc spectrum or the 
boulldary valuc proble~n under coasideration. 

T I J ~ ~ , . ~ , , ?  8.1. Let (i) p, q, r satisfy the conditions laid down in Art. 1 ,  the matrix p 
being pseudo-monotonic. If (ii) p > a > 0, <let (f - a E ) 3  0, then the spectrum is 
discrete over the range (a, LO. 

~~t &, I,,,, denote the eigenvalues for the problems of the intervals [O, X ]  atld 
[o, r] respectively. Thcn by theorem 7.1, for X $ X', A,,, > 1 .,,, ,, rhowing that [l.,,] is 
steadily decreasing. Now by condition (ii) ?,, 8 a.  Thus :/'..x] tends to a limit An, 
say, as x tends to infinity. Hence the sequeltce {E.,,). J = 0, I , .  . ., h, of eigenvalues 
lying in (a, p j  tend to ',Aj), j - 0,. . . , h, (not necessarily all direrent), as X lends to 
infinity. 

Let A, < At. Since thc Green's matrix C ( X ,  x, f ,  A), 1. = /c I il,, is regular exccpt 
for simple poles at A,,, therefore G (X, r, f ,  ?.) is regular il A, -1- 6 i ,LL < il - 5, whcrc 
6 = 114 (i, - 7.) and X large enough. (Compare Titchmarsh', p. 149). 

We inlroduce the matrix N (x, y )  which is not a Grecn's matrix but has the same 
discontinuity property as thc Green's matrix for the 'x-Case ', substitute 

r < $ ( x ,  .x, c, a )==ciJ (x ,x ,c ,  :"~-H<,(.Y,o,  

G,{, Hi, elements or  G and H respectively, 

and argue as in C h a k r a v a r t ~ V ~ p  401-402), so as lo obtain 
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Then by arguments similar to those in Titchmarsh; (p. 1491, it follows chat the Green's 
matrix (; (x, f, I.) in the singular case [O, co) is regular except a t  thepoints 2, and that 
2, ib at nmst a simple pole of G (s; 5, 2.). Hencc the spcctrum is discrete aver ( a ,  1)). 

Again, f ~ o m  above it follows ilia1 G (x, t ,  i l  is a meromorphic iunction of I and there- 
roore the matrix ( m ,  (2) is also merolnorphic (vide, Art. I). Hencealso the spectrum is 
discrete over (u, B). 

Finally, defining f (i) by 

f ( s )  ' V", x, 0 : .x < x 
:- 0, othernise, 

and folloning Titchmarhh? (p. 1501, by using ( 5 . 3 ) ,  it can be shown that I, is 
actually an eigenvalue. In the general case, A,, is an eigenvalue for the boundary value 
problem in the singular case [O, w). 

i i  thus the number of eigcnvalues no1 less than i. in the singular case [O, m). 

In particular, it' p, q,  r. satisfy the conditions or Art. 1 and the matrix P is Pseudo. 
~nonolonic, the spectrum is discrete over (0: p). 

where a, p, ,i ale real nunlbers and I is a real number, 7. 2 1/2 max (/i, ?) 

We seek for solutions of the equation 

11" (.XI - Dw (.Y) -4- (1. - a) u (.r) = 0 

v" (..) - pu (x) + ( A  - 7) 21 (x) = 0 (9.1) 

where jli, v) satisfy the Dirichlet-form of boundary conditions, viz., 

I1 (0) = 0 - v (0) , u ( X )  = 0 = v (X). (9.2) 

Solving (9.1) for u, v and making {u, V} satisly the boundary conditions (9.2), we 
derive after some easy steps 

sin <X sin fX = 0 (9.3) 
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Therefore, d Nx (1, a, /?, 11) be the nnmher of eigenvalne; not exceeding 1 in the intcrval 
(0, X), we have 

Similarly. if M,(A, a,  /?, g) be the number of eigenvalues not exceeding ,I in the interval 
(0, 2') of (9.1) with boundary conditions in Neumann's form, viz., 

2,' (0) = 0 - v' (0) : 21' (X) = 0 = 7,' (X) (9.5) 

we have 

L~nttnn 9.1. Let (i) p  > r, (ii) p, q monotone increasing and 

(iii) (p  - r )  r' - Zqq' 2 0. 

Then 

A ( x )  = p 4- r -+ { ( p  - r)? -1- 4qs]ll? 

and 

7 (x) - p f I .  - ( ( p  - 4- 4ij')ll' 

are both monotone increasing. 

Since 

( P  - r)' 1 49% > 4q2, 

it follows Lhal [ ( p  - r)Z + 4q2}'I3 is ~nonotoife increasing. Therefore 

and 

so that 7 (x) i s  monotone increasing. Again, since { ( p  - I.)"- 49"12 2 p - r ,  it 
follows that ,A (x)  2 2p. Therefore a (x) is monotone increasing. 
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~h~ lemma remains true if p - r. is assumed monotone increasing instead of q. 

We establish the following theorems on the distribution of the eigenvalues of the 
boundary value problem under consideration. 

Tl~eorpm 9.1. Let the matrix P be Pseudo-monotonic and p, q, r satisfy the condi. 
tions of lemma 9.1. Then N(%),  the number of eigenvalues not exceeding A in the 
singular case of the problem under consideration, is given by 

+ 0 (XI? 1?13, A+ 00, 

where X is determined by det (<(X) - AE) = 0. 

It follows from theorem 7 3, with notations explained there, that 

For the interval I,: (&I, xs), let Ap (XI, 7,. (x), j = I ,  2, stand for A ( x )  and 7 (x) 
respectively when the matrix P is replaced by P, at x = x,-~ and by P, a t  x = x,. 
Then it follows from (9.4), (9.6) and (9.7) that 

where 6, is the length of the interval I,. 

Noting that 

F (x) = {A  - (x)pa + {a - + 17 (~)).'ta 



by jeinina 9.1,  stcadily decreases fk-om F,, F(0)  to F, = F (X) as x increxes from 
0 to X, it i~ possible to choose the points of sub-division x, o r  the intenai (0. X) in  
such a manner that the oscillation of F ( x )  in each I, i s  equal to 

F" - Fx -. 
11 

(Colnpare Chsudluui and EveritL1, p. 206 and De Wet and Mandls, pp. 572-580) 

Thus in I,, 

This leads to 

whcre 

Similarly, 

Hence from (9 7'). ( 9 .8 )  and (9.9). 

X(Fo - F )  I?$(>)- J(A)l +2n. 
nn 

Choote so that the right hand side of (9.10) is minimum. This gives 
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The theorem Follows from (9.1 I), since IF, - Fa 1 < I F(0) / 9 K?), K, const. 

The rollowing theorem is next established. 

Tlreowm 9.2. If the conditions of theorem 9.1 are satisfied and if (i) either p or (ii) r 
or (iii) p - r or (iv) p - q -i r ,  ((1 (0) > O), be convex downwal'ds, then 

We give detnils of the proof when ( p  + r) is convex downwards with outlines in other 
coses. 

Since p (s) + r ( s )  is convex downwards, we have 

0 < u < x, p:(o), > 0, r (0) > 0, 

since p 5.0. det P a  0 for x in 1. 

This leads to 

1 1 1 - 7 (1) a 2 - 2 - { p  ( + } a - 2 - { ( )  + r (x33  2 - 
so that 

2 X I 2  (1 - q))"' , where Q (x)  = p (X) + r (x).  (9.12) 

Therefore from theorem 9.1 and the inequality (9.12), it follows that 

1 N (1") - I (A) 1 4 KX X-112 1-114 ( 1 - T )  (') -I1' ~ ( a )  = 6 I().), say, where 

e tends to zero as a tends to infinity, X being determined by 

det (P (X) - I E )  = 0. 
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Thus the theorem is proved when ( p  + r i  is convex downwards. 

Again, since 

( p  - r)" 4q2 < ( p  + r)" 49% ,< ( p  -1- r + 2qY, 

therefore 

since p + q + r, (q  (0) 3 0),  is convex downwards: 0 < u < X. 

Finally, 

since 

- Y ) ~  + 4qP)l13 5 p - r ,  I - p ,  

it follows that 

d - q 7 (u) 3 A - p  (u), A - r ( t ~ ) .  

Therefore 

if p is convex downwards, 

and 

if r is convex downwards. 

In any case the analysis therefore follows as  before. 
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