On the distribution of the eigenvalues of a matrix differential operator

N. K. CHAKRAVARTY and PRABIR KUMAR SEN GUPTA
Departnent of Pure Mathematics, University of Calcutta, Calcutta 700019

Received on July 5, 1978; Revised on January 19, 1979

Abstract

The paper deals with the nature of the spectrum associated with a type of second-order matrix differcntial operator with certain boundary condifions. It is found that under certain conditions satisfied by the co-efficients of the differential system, the spectrum is discrete. Some results are then obtained giving distributions of the eigenvalues on the real axis. The method empleyed depends, among others, upon sone of the idcas and technigues of E. C. Titchmarsh?

Key words: Differential operator, eigenvalue problern, Hilbert space, Dirichlet (Neumamn) problem Speatrum-discrete, continuous, point continuous, Greer's matrix, meromorphic furchion, pseudcmonotonic, variation of the eigenvalues, distribution of the eigenvalues, convex downwards.

1. Introduction

Let $J: a<x<b$ be an interval on the real line: $a=-\infty, b=\infty$ or both being allowed. Let $C^{\circ}(I)=C(I)$ be the set of all real-valued continuous functions on I and $C^{s}(I), k=1,2, \ldots$, denote the set of those $f \in C(I)$ for which $f^{(h)} \in C(I)$.

Consider the differential operator

$$
M=\left(\begin{array}{cc}
-D^{2}+p & q \tag{1.1}\\
q & -D^{2}+r
\end{array}\right), D \equiv \frac{d}{d x}
$$

where $p, q, r \in C^{1}(I) ; p, q, r$ are absolutely continuous over any compact sub-interval of I for $x \in I$.

Let the basic Hilbert space be $\mathscr{X}=\mathcal{E}^{2}(a, b)$ and let \mathscr{D} represent the set of all $f=\binom{f_{l}}{f_{2}}$ $=\left\{f_{1}, f_{2}\right\} \in \mathscr{H}$ such that (i) $f \in C^{1}(I)$; (ii) f^{\prime} absolutcly continuous on every compact sub-interval of $I: f^{\prime} \in A . C$ and (iii) $M f \equiv \mathscr{F}$. We say that $f \in \mathcal{D}_{0}$ if $f \in \mathscr{F}$ satisfies the conditions (i) and (ii).

Let \mathcal{C} be the set of complex numbers and $\lambda \in \mathcal{C}$; then

$$
\begin{equation*}
M \phi=i \phi \tag{1,2}
\end{equation*}
$$

where $\phi=\binom{u}{v}=\{u, r\}, \phi=\mathscr{D}$, with some prescribed boundary conditions, gives rise to an eigenvalue problem both in the finite as well as in the singular case considered by Chakravarty1, 2 .

Let $a<a<x<\beta<b$ and let the solution $\phi=\{u, v\}$ of (12) satisfy at a and β either

$$
\begin{align*}
& u(a)=v(a)=0 \\
& u(\beta)=v(\beta)=0 \tag{1.3}
\end{align*}
$$

or

$$
\begin{align*}
& u^{\prime}(a)=r^{\prime}(\alpha)=0 \\
& u^{\prime}(\beta)=v^{\prime}(\beta)=0 . \tag{1.4}
\end{align*}
$$

The eigenvalue problems (1.2)-(1.3) and (1.2)-(1.4) will henceforth be designated as the Dirichlet problon and the Neumam problom respectively over the interval (α, β). We can, without loss of generality, choose $a=0$.

The purpose of the present paper is to obtain certain conditions on p, q, r so that the spectrum of the given differential system may be discrete over I and then 10 obtain certiin estimates giving the distribution of the eigenvalues on I.

The spectrum $\sigma(\lambda)$ of the system (1.2)-(1.3) or (1.2)-(1.4) may be defined as the set of λ values contributing to the expansion formula. It has been established by Chakravarty (p .403), that there exists at least a pair of linearly independent \mathfrak{L}^{2} solutions of the system (1.2)-(1.3) or (1.2)-(1.4) given by

$$
\begin{equation*}
\psi_{L}(x, \lambda)=m_{k 1}(\lambda) \phi_{1}+m_{k: 2}(\lambda) \phi_{2}+0_{k}, m_{k j}=m_{j k} \tag{1.5}
\end{equation*}
$$

where $\phi_{j}=\phi_{i}(0, x, \lambda), j=1,2$ are the "boundary condition vectors" at $x=0$ (for definition see Chakravarty $\left.{ }^{1}, \mathrm{p} .137\right)$ and $\theta_{j} \equiv \theta_{,}(0 / \lambda, \lambda)$ are determitred from $\left[\phi_{i}, \theta_{3}\right]=\delta_{i n}$, $\left[\theta_{1}, \theta_{2}\right]=0, \delta_{i}$, the Kronecker delta; ϕ_{i}, θ_{j} entire functions of λ.

By closely following the antalysis given in Chaudhuri and Everitt ${ }^{3}$ (pp. 95-119), it can be shown that the spectrum of the given system may be characterised by the properties of the matrix

$$
\left(m_{1 j}\right) \equiv\left(\begin{array}{ll}
m_{11} & m_{12} \tag{1.6}\\
m_{21} & m_{22}
\end{array}\right)
$$

If $\dot{j}=\|+i v$, then the spectrum is
(i) iscrete, if and only if $m_{i j}(\lambda)$ are all meromorphic, i.e., the matrix ($m_{i j}$) is meromorphic:
(ii) continuous, if and only if $\lim _{y_{i \rightarrow 0}}$ im $m_{i j}(\lambda)$ tends to a continuous, non-vanishing function. bounded for all $\mu \in\left(\mu_{1}, \mu_{2}\right)$; and
(iii) point-continuous, il and only if $\lim _{\nu \rightarrow 0} m_{i j}(\lambda)$ tends to infinity, but $\lim _{\nu \rightarrow 0}$ im $m_{0,}(\mu)$ is a continuous, non-vanishing function in $N^{\prime}(\mu)$, the deleted neighbourhood of μ. Finally, μ does not belong to the spectrum, if and only if $\lim _{\nu \rightarrow 0} \operatorname{im} m_{i,}(\lambda)=0$.

In discussions involving the eigenvalue problems, Green's matrix plays a very prominent role. The discussion of the Green's matrix for the finite integral (a, b) occurs in Chakravarty ${ }^{1}$ (p. 148). For the singulat case the Green's matrix is defined by

$$
G(x, y, \lambda)=\left\{\begin{array}{lll}
\mathcal{G} & (x, y, \lambda), & y<x \\
\mathcal{G} & T(y, x, \lambda), & y>x
\end{array}\right.
$$

whete $\mathcal{G}(x, y, \lambda)$ is the matrix with elements $G_{t y}(x, y, \lambda)=\left(y_{j}^{T}(x, \lambda), A_{1}(y)\right)$, the inner product of the vector $\psi_{j}^{r}(x, \lambda)$ (the tratspose of $\psi_{,}(x, \lambda)$ and the l th colunn vector $A_{2}(y)$ of

$$
A(y)=\left(\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right),\left[x_{,}, y_{i}\right]=\phi_{2}=\phi_{3}(0 / y, \lambda),
$$

the boundary condition vector at $y=0$. See Chakravarty (p. 403). Also Sen Guptab (p. 91).

It follows that since ϕ_{j}, θ_{j} are entire functions of $\lambda, G(x, y, \lambda)$ is meromorphic, if and only if, the matrix (1.6) is meromorphic. This property of the Green's matrix will be utilised in our discussion. The present analysis depends upon the ideas and techniques as developed by Titchmarsh ${ }^{7}$ for problems of second-order partial differential equations and employed by Chaudhuri and Everitt ${ }^{1}$ (pp. 185-209) in solving corresponding problems on a type of fourth-order differential equations.

2. Notations

In what follows we use the following notations.
The accent denotes differentiation with respect to x;
P stands for the matrix $P=\left(\begin{array}{ll}p & q \\ q & r\end{array}\right)$;
P_{j} being that in which the elements p, q, r are replaced by p_{j}, q_{s}, r_{j};
$(f, g\}=f_{1} g_{1}+f_{2} g_{2}$, the inner product of the two vectors $f=\left\{f_{1}, f_{2}\right\}, g=\left\{g_{1}, g_{2}\right\}$; $\langle\nu, \Rightarrow\rangle_{a, b}=\int_{i}^{b}(r, z) d t,\|\mu\|_{a, b}=\left\langle v, y_{\theta, b} ;\right.$
$(F, G, P)=f_{2}^{\prime} g_{1}^{\prime}-f_{2}^{\prime} g_{2}^{\prime} \div p f_{1} g_{1} \div v f_{2} g_{a}+q f_{1} g_{2}+q f_{z} g_{1}$,
where
$F=\left(\begin{array}{ll}f_{2} & f_{1}^{\prime} \\ f_{1}^{\prime} & f_{2}^{\prime}\end{array}\right)=\binom{f}{f^{\prime}}, f^{\prime}-\left\{f_{1}^{\prime}, f_{2}^{\prime}\right\}$, with a similar notation for G.
$D_{c}(f, g)=D_{\varepsilon}(f, g, P)=\int_{a}^{b}(f, G, P) d t, \mathscr{E}==(a, b) ;$
When $a=0$, we write $D_{z}(f, g)-D_{b}(f, g, P)$ for $D_{\varepsilon}(f, g, P) ; D_{u}(f)=D_{b}(f, f, P)$,
When $\mathscr{o}=[0, \infty)$, we define $D(f, g)=D(f, g, P)=\lim _{b \rightarrow \infty} D D_{\mathbf{t}}(f, g, P)$ and $D(f)=D(f . f, P)$.
If $\dot{\varepsilon}=\left(r_{s}, x_{t}\right)$, where x_{s}, x_{t} are points on the real axis, we write $D_{s, t}(f, g)=D_{a, t}(f, g, p)$ for $D_{\varepsilon}(f, g, P)$.
E represents the unit matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
We note that if $\rho>0$ and det $P \geqslant 0, D_{2}(f)$ is always positive, (F, F, P) being positive definite.

3. Properties of $D_{c}(f, g)$ for the finite interval $[0, b]$

Let $i_{n}=i_{n}(b)$ and $\psi_{n}(x)=\psi_{n}(b, x)$ denote respectively the eigenvalue and the eigenvector for the Dirichlet (Neumann) problem enunciated in Art. I. Then some of the properties of $D_{6}(f, g)$ are contained in the folfowing lenmas.

Lernma 3.1: For the Dirichlet (Neumann) problem,
(i) $D_{b}\left(\psi_{m}, \psi_{n}\right)=\lambda_{n} \delta_{n n 2}$, where $\delta_{m n}$ is the Kronecker delta.
(ii) $D_{b}\left(x \psi_{m}+\beta \psi_{n}\right)=-\left\{\begin{array}{ll}a^{2} \lambda_{n}+\beta^{2} \lambda_{n}, & m \neq n \\ (\alpha+\beta)^{2} \lambda_{s}, & m=n\end{array} ; \quad\right.$, β constants.

Lemma 3.2: If $p>c$ and $\operatorname{det}(P-c E) \geqslant 0, c$, a positive real constant, then the eigenvalues for the Dirichlet (Neumann) problem are greater than or equal to c.
We have

$$
D_{k}\left(\psi_{n}\right)=D_{i k}\left(\psi_{n}, \quad \psi_{\mathrm{x}}, \quad P\right)=D_{v}\left(\psi_{n}, \psi_{n}, \quad P-c E\right)+c \int_{n}^{b}\left|\psi_{n}\right|^{2} d t
$$

The lemma follows, since the integral in the first expression on the right is positive definite and

$$
\int_{0}^{0}\left|\psi_{a}\right|^{2} d t=1
$$

Lemma 3.3: Let (i) $f(x)=\left\{f_{1}, f_{2}\right\} \in \mathscr{D}_{0}$ (ii) $f(0)=f(b)=0$. Then if

$$
c_{m}=\int_{0}^{b}\left(\psi_{n}, f\right) d t
$$

be the Fourier co-efficient of f for the Dirichlet problem,

$$
\begin{equation*}
D_{b}\left(f, \not / \psi_{m}\right)=\lambda_{m} c_{m n} \tag{3.1}
\end{equation*}
$$

If further (iii) $p>0$ and $\operatorname{det} P \geqslant 0$. then

$$
\begin{equation*}
D_{b}(f) \geqslant \sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2} . \tag{3.2}
\end{equation*}
$$

Results (3.1) and (3.2) also hold for the Neumann problem, but now the condition (ii) is not required.
Since, on integration by parts

$$
D_{b}\left(f, \psi_{m}\right)=\int_{0}^{b}\left(M \psi_{m}, f\right) d t+\left[\left(\psi_{m}^{\prime}, f\right)\right]_{0}^{\tau}
$$

(3.1) follows on utilizing $M \psi_{m}=\lambda_{m} \psi_{m}$.

To prove (3.2) we observe that by virtue of the condition (iii), $D_{0}(F) \geqslant 0$ for every vector $F \subseteq \mathscr{D}$. Hence

$$
\begin{aligned}
0 & \leqslant D_{n}\left[f-\sum_{n=0}^{m} c_{n} \psi_{n}\right]=D_{b}\left[f-\sum_{n=0}^{m} c_{n} \psi_{n}, f-\sum_{n=0}^{m} c_{n} \psi_{n}, P\right] \\
& =D_{b}(f)-2 \sum_{n=0}^{m} c_{n} D_{b}\left(f, \psi_{n}\right)+\sum_{n=0}^{m} c_{n}^{2} D_{b}\left(\psi_{n}\right)+2 \sum_{i \neq m} c_{n} c_{n} D_{v}\left(\psi_{m}, \psi_{n}\right) \\
& =D_{b}(f)-\sum_{n=0}^{m} i_{n} c_{n}^{2}, \text { by lemma } 3.1 \text { (i) and the result }
\end{aligned}
$$

(3.2) therefore follows.

Lemma 3.4: If (i) $f \in \mathscr{D}_{0}$ (ii) $f(0)=f(b)=0$ and if c_{n} is the Fourier co-efficient of f, then

$$
D_{n}(f)=\sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2} .
$$

Let \vec{c}_{n} be the Fourier co-efficient of $\vec{f}=M f$.
Then by the Parseval theorem,

$$
\int_{0}^{\infty}(f, \bar{f}) d t=\sum_{n=0}^{\infty} c_{\mathrm{n}} \tilde{c}_{n}=\sum_{n=0}^{\infty} \lambda_{\mathrm{x}} c_{n}^{2}
$$

where $\tilde{\epsilon_{n}}=\hat{\lambda}_{n} \epsilon_{n}$. by Chakravarty ${ }^{1}$, Lemma 3 (p. 150).
By integration by parts,

$$
\left.\int_{i}^{t}(f, \tilde{f}) d t=-\left(f, f^{\prime}\right)\right]_{0}^{b}+D_{t}(f, f, p)=D_{v}(f) \text {, by the comdition (ii). The }
$$ result therefore follows.

If d_{10} be the Fourier co-efficient of $g(x) \equiv\left\{g_{1}, g_{2}\right\}$, where g satisfies conditions similar to those of f in the above lemma, it follows similarly that

$$
D_{b}(f, g)=\sum_{n=0}^{\infty} \hat{\lambda}_{\mathrm{n}} c_{\mathrm{n}} d_{n} .
$$

4. Extension to infinite interval (Spectrum assumed wholly discrete)

The Dirichlet and the Neumam problem for the infinite interval $[0, \infty)$ takes respectively the form
and
where

$$
I: 0 \leqslant x<\infty
$$

The eigenvector $\psi_{n} \equiv\left\{\psi_{L_{n}}, \psi_{2_{n}}\right\}$ corresponding to the eigenvalue λ_{n} is integrable square at infinity.

It follows by integration by parts and using the relation

$$
M \psi_{n}=\lambda_{n} \psi_{n}
$$

where necessary, that

$$
\int_{0}^{5}\left(\psi_{n}, \psi_{n}^{\prime \prime}\right) d t=\left[\left(\psi_{n}, \psi_{n}^{\prime}\right)\right]_{n}^{\prime}-\int_{0}^{\xi}\left|\psi_{n}^{\prime}\right|^{2} d t .
$$

Substituting for $\psi_{n}^{\prime \prime}$ from the differential system it follows, for both the Dirichlet and the Neumann problem, that

$$
D_{\xi}\left(\psi_{n}, \psi_{n}, P\right)=\left(\psi_{n}(\xi), \psi_{n}^{\prime}(\xi)\right)+\lambda_{n} \int_{0}^{\frac{5}{5}}\left|\psi_{n}\right|^{2} d t
$$

Integrating first with respect to ξ over ($0, X$) and then again integrating the result so obtained with respect to X over $(0, R)$, we obtain, after some easy reductions, that

$$
\int_{0}^{R}\left(\psi_{n}, \hat{\psi}_{n}, P\right)\left(1-\frac{t}{R}\right)^{2} d t=\frac{1}{R^{2}} \int_{0}^{R}\left|\psi_{n}\right|^{2} d t+\lambda_{n} \int_{0}^{R}\left(1-\frac{t}{R}\right)^{2}\left|\psi_{\|}\right|^{2} d t
$$

where

$$
\hat{\psi}_{n}=\binom{U_{n}^{\prime}}{\psi_{n}^{\prime}}
$$

By making R tend to infinity, it follows that $D\left(\psi_{n}\right)=\lambda_{n}$.
Similarly

$$
D\left(\psi_{m}, \psi_{n}\right)=0, \text { ir } m \neq n
$$

Let \mathscr{D}_{1} be associated with the Hilbert space $\mathscr{H}_{1}=\mathcal{L}^{2}[0, \infty)$ in the same way as \mathscr{D} is associated with $\mathscr{H}=\mathscr{E}^{2}(a, b)$.

Then

$$
\int_{0}^{R}\left(1-\frac{t}{R}\right)\left(f, M \psi_{n}\right) d t=\int_{0}^{R}\left(1-\frac{t}{R}\right)\left(F, \hat{\psi}_{n}, P\right) d t-\frac{1}{R} \int_{0}^{R}\left(f, \psi_{n}^{\prime}\right) d t_{y}
$$

$f \in \mathscr{D}_{\mathrm{I}},[f(0)=0$ for the Dirichlet problem $]$.
It follows, on making R tend to infinity, that

$$
D\left(f, \psi_{n}\right)=\lambda_{n} c_{n},
$$

where c_{n} is the Fourier co-efficient of f.
If, moreover, $p \geqslant 0$, det $P \geqslant 0$,

$$
D(f) \geqslant \sum_{n=0}^{\infty} \lambda_{n} c_{n}
$$

We say that $p, q, r \in M$, if p, q, r satisfy the conditions similar to those stated in Chakravarty ${ }^{2}$ (Theorem II, p. 404), viz..
(i) either $|p+r|+|q| \leqslant Q(x)$ or $|p|,|q|,|r| \leqslant Q(x)$
where $Q(x) \in C^{1}(I), I: 0 \leqslant x<\infty$ and $Q(x) \geqslant \delta>0$;
(ii) $\lim _{x \rightarrow \infty}\left|Q^{\prime}(x) / Q^{c}(x)\right|<\infty, \quad c \leqslant 3 / 2$;
(iii) $F(x)=\int^{x}\{Q(t)\}^{-\left.1\right|^{2}} d t$ tends to infinity as x tends to infinity.

Or,
if p, G, r satisfy (i) where $Q(x)$ is continuous, monotone non-decreasing and $\int_{\int}^{\infty}\{Q(2 t)\}^{-132} d t$ divergent.

If $p, q, r \in \mu$, we have $\hat{c}_{n}=\lambda_{n} c_{n}$, where \tilde{c}_{n} is the Fourier co-efficient of $\hat{f}=M f$ (Chakravarty", p. 413).

It follows by the Parseval theorem that

$$
\int_{0}^{\infty}(f, \tilde{f}) d x=\sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2} .
$$

Now, as before.

$$
\begin{aligned}
& \int_{0}^{R}\left(1-\frac{t}{R}\right)(f, \tilde{f}) d t=\int_{0}^{R}\left(1-\frac{t}{R}\right)(F, F, P) d t-\frac{\pi}{R} \int_{0}^{R}\left(f, f^{\prime}\right) d t \\
& f(0)=0
\end{aligned}
$$

Therefore by making R tend to infinity, it follows that

$$
\begin{equation*}
D(f)=\int_{0}^{\infty}(f, \tilde{f}) d t \tag{4.3}
\end{equation*}
$$

Hence

$$
D(f)=\sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2}, \text { if } f \in \mathscr{D}_{1}, p, q, r \in \mathcal{M} \text { and } f(0)=0
$$

If, in addition, $g \in \mathfrak{D}_{0}, g(0)=0$, it follows in a similar manner that

$$
D(f, g)=\sum_{n=9}^{\infty} \lambda_{n} c_{n} d_{n},
$$

where d_{n} is the Fourier co-efficient of g.

5. Extension to the case when the spectrum is possibly contimuous

We define the H-matrix by

$$
H(x, y \mu)=\left\{\begin{array}{l}
\lim _{y \rightarrow 0} \int_{0}^{\mu} \operatorname{im} G(x, y, \lambda) d \sigma, \mu>0 \\
-\lim _{\nu \rightarrow 0} \int_{0}^{\mu} \operatorname{im} G(x, y, \lambda) d \sigma, \mu<0 \\
0, \\
\mu=0
\end{array}\right.
$$

where $\lambda=\sigma+i$ and $G(x, y, \lambda)$ is the Green's matrix in the singular case $[0, \infty)$. Then closely following the analysis as given in Titchmarsh ${ }^{7}$ (pp. 41-.55), it follows that:

Each element of $H(x, y, \mu) \in \mathcal{L}^{2}[0, \infty)$, for fixed x.

$$
F(x, \mu, f)=F(x, \mu)=\left\{F_{1}(x, \mu), \quad F_{2}(x, \mu)\right\}=\int_{0}^{\infty} H^{T}(y, x, \mu) f(y) d y \subset \mathscr{L}^{2}(0, \infty)
$$

for every μ, if $f \in \mathcal{L}^{2}[0, \infty)$.
If

$$
J_{v}(f, g, \mu)=\frac{1}{\pi}\left\langle F(y, \mu, f), g\left(y^{\prime}\right)\right\rangle_{0, u}, \quad f(f, g, \mu)=\frac{1}{\pi}\langle F(y, \mu, f), g(y)\rangle_{0, \infty}
$$

where

$$
g \in \mathcal{L}^{2}[0, \infty) \text { and } J(f, \mu)=J(f, f, \mu)
$$

then $J(f, \lambda)$ is non-decreasing:

$$
\begin{equation*}
|J(f, g, \beta)-J(f, g, a)|^{2} \leqslant\|f\|_{0, \infty}\|g\|_{0, \infty} \tag{5.1}
\end{equation*}
$$

Also, if $f \in \mathscr{D}_{1}, p, q, r \in \mathcal{M}, g \in \mathscr{D}_{0}$, then

$$
\begin{equation*}
\langle\tilde{f}, g\rangle_{, \infty}=\int_{-\infty}^{\infty} \lambda d J(f, g, \lambda), \lambda \text { real. } \tag{5.2}
\end{equation*}
$$

[For discussion of H-matrix in detail, see Tiwaris ${ }^{8}$],
Let $f \in \mathscr{D}_{1}$ and choose b so that $0<x<b<x$ and

$$
f_{X}=\left\{\begin{array}{cl}
\left(1-\frac{x}{X}\right) f, & x<X \\
0, & \text { otherwise }
\end{array}\right.
$$

Then

$$
f_{x x} \in \mathscr{D}_{0}
$$

and

$$
\begin{equation*}
\int_{\lambda_{\theta}}^{\infty} \lambda d J_{b}\left(f_{X}, \lambda\right) \leqslant D_{b}\left(f_{X}\right),(\lambda, \text { real }) \tag{5.3}
\end{equation*}
$$

where $\dot{i}_{\text {, }}$ (independent of b) is the lower bound of the spectrum and conditions of lemma 3.3 are sntistied. (Compare Titchmarsh7, pp. 95-96.)

Since

$$
\begin{aligned}
& \left|J(f, \lambda)-J\left(f_{X}, \lambda\right)\right| \leqslant\left|J\left(f, f-f_{X}, \lambda\right)\right|+\left|J\left(f_{X}, f-f_{X,}, \lambda\right)\right| \\
& \leqslant\left\|f_{0, \infty}^{1}, f f-f_{X}\right\|_{0, \infty}^{\frac{1}{2}}+\left\|f_{X}\right\|_{0, \infty}^{3}\left\|f-f_{X}\right\|_{0, \infty}^{\frac{2}{2}},
\end{aligned}
$$

[by (5.1) with $a=0, \beta=\lambda]$, it follows that $J\left(f_{X}, \lambda\right)$ tends to $I(f, \lambda)$ uniformly with respect to λ as λ tends to infinity.

By computing $D_{3}\left(f_{X}\right)$ in a straight-forward manner, making X tend to infinity first and then b tend to infinity, we obtain

$$
D_{b}\left(f_{X}\right) \text { tends to } D(f) \text {, as } X, b \text { tend to infinity. }
$$

Therefore from (5.3), for any positive $A>\lambda_{\mathrm{id}}$, we obtain

$$
\int_{\lambda_{B}}^{A} \lambda d J(f, \lambda) \leqslant D(f)
$$

and since A is arbitrary,

$$
\begin{equation*}
\int_{\lambda_{0}}^{\infty} i d J(f, \lambda) \leqslant D(f) \tag{5.4}
\end{equation*}
$$

holds, where $f \in \mathscr{D}_{1}$.
Let

$$
f(0)=0, j \in S_{1}, \quad p, q, t \in \mu
$$

then by (4.3) and (5.2) with $g=f$, we have

$$
\begin{equation*}
D(f)=\int_{-\infty}^{\infty} \lambda d J(f, \lambda) . \tag{5.5}
\end{equation*}
$$

6. Variation of the eigenvalues with n, q, r.

Definition: The matrix $P=\left(\begin{array}{ll}p & q \\ q & r\end{array}\right)$ is said to be $P_{\text {seuda-monotonic }}$ in 1, if $p>0$, $\operatorname{det} P \geqslant 0$ int I atud for $j>k, j_{2} k=0,1,2, \ldots, p_{j} \geqslant p_{k}$, det $\left(P_{j}-P_{k}\right)=\operatorname{det}\left(P_{z}-P_{j}\right)$ $\Rightarrow 0$, where p_{s}, q_{s}, r_{s} are the values of p, g, r at a point $x_{s} \in I$ and P_{s} is the matrix P with p, q, r replaced by p_{s}, q_{r}, r_{r}.

The matrix P may be called the matrix of the Dirichlet (Neumann) problem under vonsideration.

Let $\lambda_{n}, \psi_{n}, c_{n}$ and $N\left(\lambda, P_{j}\right)$ denote, respectively, the eigenvalue, the cigenvector, the Fourier co-efficient and the number of eigenvalues not exceeding λ for the Dirchtet (Neumann) problem with matrix P_{j} and μ_{n}, X_{n}, d_{n} and $N\left(\lambda, P_{k}\right)$ those for the same problem with matrix P_{R}.

We establish the following theorem.
Theorem 6.1. Let the matrix P be Pseudo-monotonic. Then

$$
i_{n} \leqslant \mu_{n} \text { and } N\left(\lambda, P_{t}\right) \geqslant N\left(\lambda, p_{f}\right), j>k . j, k=0,1,2 \ldots
$$

Case I. Interval finite: Since P is Pseudo-monotonic, therefore for $j>k, j$, $k=0,1,2, \ldots, \quad p_{s} \geqslant p_{k}>0$, det P_{i}, det $P_{k} \geqslant 0$ and det $\left(P_{,}-P_{k}\right) \geqslant 0$. Then by lemma 3.2 each eigenvalue i_{n} is positive.
Now

$$
\begin{align*}
D_{0}\left(f, P_{k}\right) & =\int_{0}^{b}\left(F, F, P_{k}\right) d t_{s} \quad F=\left(\begin{array}{cc}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right)=\binom{f}{f^{\prime}} \\
& =\int_{0}^{0}\left(F, F, P_{j}\right) d t+\int_{0}^{b}\left(F, F, P_{k}-P_{j}\right) d t \tag{6.1}
\end{align*}
$$

Since $\left(F, F, P_{\hat{k}}-P_{j}\right)$ is positive definite, therefore $D_{b}\left(f, P_{k}\right) \geqslant D_{b}\left(f, P_{y}\right)$
for any $f \in \boldsymbol{D}_{0}$.
Puit

$$
f=\chi_{n}(x)=\left\{\chi_{1_{0}}, \quad \chi_{z_{0}}\right\}
$$

Then

$$
\begin{aligned}
& \left\|x_{0}\right\|_{0, b}=1 \text { and we have } \\
& \lambda_{0}=\lambda_{0}\left\|\chi_{0}\right\|_{0, b}=\lambda_{0} \sum_{n=0}^{\infty} c_{n}^{2} \leqslant \sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2} \leqslant D_{z}\left(f, P_{j}\right) \leqslant D_{b}\left(f, P_{k}\right),
\end{aligned}
$$

by (3.2) and (6.1).
Thus

$$
\lambda_{n} \leqslant \mu_{n} .
$$

Put

$$
f=\delta_{0} \chi_{0}(x)+\delta_{1} \chi_{1}(x)
$$

where
δ_{0}, δ_{1} are constants:

$$
\delta_{0}=B\left(A^{2}+B^{2}\right)^{-1,2}, \quad \delta_{1}=-A\left(A^{2}+B^{2}\right)^{-11^{2}}
$$

where

$$
A=\left\langle\chi_{0}, \psi_{0}\right\rangle_{v_{s}, \varepsilon}, B=\left\langle\chi_{1}, \psi_{1}\right\rangle_{0, b}, \delta_{11}^{2}+\delta_{1}^{2}=1, c_{0}=A \delta_{0}+B \delta_{1}=0 .
$$

Then

$$
\sum_{n=2}^{\infty} c_{n}^{2}=\left\|\delta_{1} \chi_{0}+\delta_{1} \chi_{1}\right\|_{n, b}=\delta_{n}^{u}+\delta_{1}^{2}=1 .
$$

Therefore

$$
\lambda_{1}=\lambda_{1} \sum_{n=1}^{\infty} c_{n}^{2} \leqslant \sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2} \leqslant D_{b}\left(f, P_{j}\right) \leqslant D_{b}\left(f, P_{k}\right), f=\delta_{11} \chi_{n}+\delta_{1} \chi_{i}^{\prime}
$$

Thus by lemma 3.1,

$$
\lambda_{2} \leqslant \delta_{1}^{2} \mu_{\mathrm{a}}+\delta_{1}^{2} \mu_{1} \leqslant\left(\delta_{\mathrm{a}}^{2}+\delta_{1}^{*}\right) \mu_{1}
$$

showing that

$$
\hat{\lambda}_{1} \leqslant \mu_{1} .
$$

The general case $\lambda_{n} \leqslant \mu_{n}$ follows in the same way as Titchmarsh ${ }^{7}$ (pp. 89-90). The second part of the problem is an immediate consequence of the first.

Case II. Inverval infintte: When the interval $[0, b]$ is replaced by $[0, \infty$), the theorem follows by exactly similar arguments as before by using the results of Art. 4.

Case III. Each spectrum possibly contimuous but cach has at its left hand end point a discrete sigenvalue λ_{a} and μ_{0} respectively.

We have, if χ_{0} is the eigenvector corresponding to μ_{10},

$$
\begin{aligned}
\lambda_{0} & =\lambda_{0}\left\|\chi_{i}\right\|_{0, \infty}=\lambda_{0} \int_{\lambda_{0}}^{\infty} d I\left(\chi_{0}, P_{j}, \lambda\right) \leqslant \int_{\lambda_{n}}^{\infty} \lambda d I\left(\chi_{0}, P, \lambda\right) \\
& \leqslant D\left(\chi_{0}, P_{i}\right) \leqslant D\left(\chi_{0}, P_{k}\right)=\mu_{0} .
\end{aligned}
$$

Hence as before the result can be extended to other discrete eigenvalues. The theorem is therefore completely established.

7. Variation of the eigenvalues with the interval: upper and lower bounds of the nth cigenvalue

In the following we assume $p>0$ and $\operatorname{det} P \geqslant 0$.
Let $N_{X}(\lambda)$ denote the number of eigenvalues not exceeding λ of the Dirichlet (Neumann) problem of the interval $[0, X]$. The following theorem holds.

Theorem 7.1. Let λ_{n}, μ_{n} denote, respectively, the nth eigenvalue for the Dirichlet (Neumam) problem of the interval $[0, b]$ and $[0, B]$, where $B>b$. Then

$$
\lambda_{\eta} \geqslant \mu_{n} \quad \text { and } \quad N_{\xi}(\lambda) \leqslant N_{B}(\lambda) .
$$

Let ψ_{n}, c_{n} be the nth eigenvector and the Fourier co-efficient for the problem of the interval $[0, b]$ and χ_{n}, d_{n} those for the problem of the interval $[0, B]$.

Put

$$
f(x)=\left\{\begin{array}{cl}
\psi_{0}(x), & 0 \leqslant x<b \\
0, & b \leqslant x \leqslant B
\end{array}\right.
$$

Then by (3.2), it follows that $D_{B}(f) \geqslant \sum_{n=0}^{\infty} \mu_{n} d_{n}$ and therefore

$$
\lambda_{0}=D_{0}\left(\psi_{0}\right)=D_{B}(f) \geqslant \sum_{n=0}^{\infty} \mu_{n} d_{n}^{2} \geqslant \mu_{0} \sum_{n=0}^{\infty} d_{n}^{v}=\mu_{\mathrm{v}}
$$

showing that the result holds when $n=0$. The case $\lambda_{n} \geqslant p_{n}$ for all integral values of n follows as before. The second part of the theorm is an obvious consequence of the first.

To obtain the bounds of the ath eigenvaluc of the problem under discassion, we subdivide the fundamental interval $[0, X]$ into a finite number of mutually disjoint sub-intervals $I_{s}:\left[x_{s-1}, x_{g}\right], s=1,2, \ldots, n, x_{0}=0, x_{m}=X$, and consider the Dirichied and the Ncuman problem for each sub-interval I_{s}.

For our problem of the interval $[0, X]$, let $\lambda_{n}, \psi_{n}, c_{n}$ denote, respectively, the eigenvalue, the eigenvector and the Fourier co-efficient, the corresponding entities for the Neumann problem of the interval I_{s} being $\mu_{n, s}, \chi_{n, s}, d_{n, s}$ respectively. For the Dirichlet problem of the interval I_{s}, let $\lambda_{n, s}$ be the eigenvalue and $\psi_{n, s}$ the corresponding cigenvector.
Put

$$
\begin{aligned}
& \mu_{n}^{\prime}=\left\{\mu_{n, s} ; s=1,2, \ldots, m ; n=0,1,2, \ldots\right\}, \mu_{0}^{\prime} \leqslant \mu_{1}^{\prime} \leqslant \mu_{2}^{\prime} \leqslant \ldots, \\
& \lambda_{n}^{\prime}=\left\{\lambda_{u, s} ; s=1,2, \ldots, m ; n=0,1,2, \ldots\right\}, \lambda_{0}^{\prime} \leqslant \lambda_{1}^{\prime} \leqslant \lambda_{2}^{\prime} \leqslant \ldots,
\end{aligned}
$$

Finally, suppose that
$M_{s}(\lambda)$ denote the number of eigenvalues not exceeding λ of the Nemam problem of the interval f_{s};
$M_{x}^{\prime}(\lambda)$, the number of numbers μ_{n}^{\prime} not exceeding λ in the fundamental interval $[0, X]$.
N_{s} (λ), the number of eigenvalues not exceeding λ of the Dirichlet problem of the interval I_{4};
and $N_{X}^{\prime}(\lambda)$, the number of numbers λ_{n}^{\prime} not exceeding λ in $[0, X]$.
The following theorem is now established.

Theorem 7.2. With notations explained as above,
(1) $\mu_{n}^{r} \leqslant \lambda_{n} \leqslant \lambda_{n}^{\prime} ;$
(ii) $N_{X}(i) \equiv \sum_{s=1}^{m} N_{s}(\lambda) \leqslant N_{X X}(\lambda) \leqslant M_{X}^{\prime}(\lambda) \equiv \sum_{s=1}^{m} M_{s}(\lambda)$.

We prove (i). Then (ii) is an immediate consequence of (i).
Put

$$
f(x)=y_{0}(x), 0 \leqslant x \leqslant X .
$$

Then by (3,2),

$$
D_{\mathrm{s}-1,1}\left(\Psi_{v}\right) \geqslant \sum_{n=0}^{\infty} \mu_{n, 8} d_{n, v}^{u}
$$

Hence

$$
\begin{aligned}
\lambda_{v} & =D_{X}\left(\psi_{0}\right)=\sum_{s=1}^{m} D_{\theta-1, s}\left(\psi_{\mathrm{c}}\right) \geqslant \sum_{x=1}^{m} \sum_{n=0}^{\infty} \mu_{n, t} d_{n, s}^{2} \\
& \geqslant \mu_{j}^{\prime} \sum_{s=1}^{m} \sum_{n=0}^{\infty} d_{n, s}^{*}=\mu_{0}^{\prime} \sum_{v=1}^{m}\left\|\psi_{0}\right\|_{v_{s-1}, x_{s}}, \text { (by the Parseval theorem) }
\end{aligned}
$$

Thus

$$
\dot{\lambda}_{41} \geqslant \mu_{0}^{\prime} \tilde{H} \psi_{0} \|_{u_{3} x}=\mu_{u}^{\prime}
$$

Put

$$
f(x)=a_{0} \psi_{u}(x)+a_{1} \psi_{1}(x), \quad a_{v}^{2}+a_{1}^{2}=1
$$

Then

$$
\begin{aligned}
& \lambda_{1}=\lambda_{1}\left(\alpha_{0}^{3}+u_{1}^{2}\right) \geqslant \lambda_{0} a_{0}^{2}+\lambda_{1} \alpha_{1}^{2}=D_{x}\left(a_{0} \psi_{0}+a_{1} \psi_{1}\right) \\
& =\sum_{s=1}^{m} D_{s-1, s}\left(a_{0} \psi_{0}+a_{1} \psi_{1}\right) \geqslant \sum_{s=1}^{m} \sum_{n=1}^{\infty} \mu_{n, r} d_{n, z}^{0},
\end{aligned}
$$

where we have chosen $\mu_{0,8}=0$, by suitably choosiug the constanis a_{4}, a_{1} as in theorem 6.1.

Thus

$$
\lambda_{1} \geqslant \mu_{1}^{\prime}\left\|\alpha_{4} \psi_{4}+\alpha_{1} \psi_{1}\right\|_{o_{s} x}=\mu_{1}^{\prime}
$$

The general case $\lambda_{n} \geqslant \mu_{n}^{\prime}$ now follows as in theorem 6.1. The first part of the inequality is thus proved.
To prove the second part of the inequality (i), put

$$
\begin{aligned}
f(x) & =\psi_{s, k}, \quad \text { in } x_{k-1}<x<x_{k} \\
& =0, \quad \text { otherwise }
\end{aligned}
$$

and

$$
\lambda_{0}^{\prime}=\lambda_{0, k} \text { for fixed } k, k=1,2, \ldots, m
$$

Then

$$
\begin{aligned}
\dot{\lambda}_{0}^{\prime} & =\lambda_{0, k} D_{i-1, k}\left(\psi_{0, k}\right)=D_{x}(f) \geqslant \sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2}, \text { by (3.2) } \\
& =\lambda_{0}\left\|\psi_{0, k}\right\|_{0, x}=\lambda_{0} .
\end{aligned}
$$

Put

$$
\lambda_{\mathrm{I}}=\lambda_{i, k}, j=0,1 ; k, \text { fixed. }
$$

If $j=1$, we put

$$
\left.\begin{array}{rlrl}
f(x) & =a_{0} \psi_{0, k}(x)+a_{1} \psi_{1, k}(x), & & x_{k-1}<x<x_{k} \\
& =0, & & \text { otherwise }
\end{array}\right\} a_{10}^{4}+a_{1}^{a}=1 .
$$

If $j=0$, we take

$$
\left.\begin{array}{rlrl}
f(x) & =a \psi_{0, k}, & & x_{k-1}<x<x_{2} \\
& =b \psi_{0, m}, & & x_{m-1}<x<x_{m} \\
& =0 \quad, & & \text { otherwise }
\end{array}\right\} a^{2}+b^{2}=1 .
$$

The analysis now proceeds as in theorem 6.1 and Chaudhuri and Everitt', (pp. 196-197), so as to obtain $\lambda_{1}^{\prime} \geqslant \lambda_{1}$ and for any positive integral n, $\lambda_{n}^{\prime} \geqslant \lambda_{n}$. The second part of the inequality (i) is thus proved. Hence the theorem follows.

Let $\left(p_{1}, q_{1}, r_{1}\right),\left(p_{2}, q_{2}, r_{2}\right)$ be the values of (p, q, r) at the points $x=x_{s-1}$ and $x=x_{s}$, respectively, of the sub-interval $J_{s}:\left[x_{3}-1, x_{1}\right]$. Also, let P reduce to P_{1}, at $x=x_{1-1}$ and to P_{2} at $x=x_{8}$.
Let

$$
N_{2 \mathrm{X}}(\lambda)=N_{X}\left(\lambda, p_{i}, \quad P_{i}\right), \quad i=1,2
$$

$N_{2}(\lambda, s)$, the mumber of eigenvalues not exceeding λ of the Dirichlet problem of the interval I_{8} with matrix P_{2};
and
$M_{1}(\lambda, s)$, the number of eigenvalues not exceeding λ of the Neumann problem of the interval I_{s} with matrix P_{1}.
We establish the following theorem.
Theorem 7.3, Let the matrix P be Pseudomonotonic. Then with notations explained above

$$
\sum_{s=1}^{n} N_{2}(\lambda, s) \leqslant N_{X}(\lambda) \leqslant \sum_{s=1}^{n} M_{1}(\lambda, s), \text { for fixed } n
$$

where $X>Y, Y$ being a root of $\operatorname{det}(P-\lambda E)=0$, for fixed λ.

Since P is Pieudo-monotonie, therefore for $0<p_{1} \leqslant p \leqslant p_{2}$,

$$
\operatorname{det}\left(P-P_{2}\right) \geqslant 0, \operatorname{det}\left(P_{2}-P_{1}\right) \geqslant 0
$$

Now, for two positive quadratic forms $\sum c_{1 k} x_{i} x_{k}, \sum d_{i k} x_{i} x_{k}$, the inequality

$$
\begin{equation*}
\left|r_{i k}\right|^{1 ; j}+\left|d_{i k}\right|^{1 ; j *} \leqslant\left|c_{i k}+d_{i k}\right|^{1 ; 2} \tag{7.1}
\end{equation*}
$$

holds, where $\left|c_{s}\right|$ are determinants of the co-efficients, n positive integer (Hardy Littlewood, Polyá, p. 35, Formula 2.13.8).

Siace

$$
P_{2}-\lambda E=(P-\lambda E)+\left(P_{2}-P\right), \quad P_{1}-\lambda E=P_{1}-P_{2}+P_{2}-\lambda E
$$

it follows from (7.1), since P is Peeudo-monotonic, that

$$
\begin{equation*}
\operatorname{det}\left(P_{2}-\lambda E\right), \operatorname{det}\left(P_{1}-\lambda E\right) \geqslant 0, \text { ir } \operatorname{det}(P-\lambda E) \geqslant 0 . \tag{7.2}
\end{equation*}
$$

By theorem 6.1 it follows that

$$
\begin{equation*}
N_{\mathrm{EX}}(\lambda) \leqslant N_{X}(\lambda) \leqslant N_{\mathrm{IX}}(\lambda) \tag{7.3}
\end{equation*}
$$

Also by theorem 7.2,

$$
\begin{equation*}
\sum_{s=1}^{m} N_{2}(\lambda, s) \leqslant N_{z X}(\lambda), \quad \sum_{s=1}^{m} M_{1}(\lambda, s) \geqslant N_{1 X}(\lambda) \tag{7.4}
\end{equation*}
$$

From (7.3) and (7.4),

$$
\begin{equation*}
\sum_{m=1}^{m} N_{2}(\lambda, s) \leqslant N_{x}(\lambda) \leqslant \sum_{s=1}^{m} M_{1}(\lambda, s) \tag{7.5}
\end{equation*}
$$

Let us choose 2 . so that $p_{1}>\lambda$, $\operatorname{det}\left(P_{1}-\lambda E\right) \geqslant 0$, which, by (7.2) holds if $p>1$, $\operatorname{det}(P-\lambda E) \geqslant 0$. Then by lemma 3.2 , there are no eigenvalues less than λ with this choice of i and therefore

$$
\begin{equation*}
M_{1}(\lambda, s)=0 \quad \text { and } \quad N_{2}(\lambda, s)=0 \tag{7.6}
\end{equation*}
$$

whenever $p>\lambda, \operatorname{det}(p-\lambda E) \geqslant 0$.
Let Y be determined as the root of det $(P(Y)-\lambda E)=0$, where λ is a given real number. Since p is increasing, it is possible to choose $x>Y$ so that $p>\lambda$ holds. For all such x, si.se P is Pseudo-monotonic, $\operatorname{det}(P(x)-P(Y)) \geqslant 0$ and therefore $P(x)-\lambda E=P(Y)-\lambda E+P(x)-P(Y)$, by (7.1) leads to

$$
\operatorname{det}(P(x)-2 E) \geqslant 0
$$

Let the interval $[0, X], X>Y$, be chosen large enough so that for a point of subdivision x_{n}, say, for some $n<m, x_{n}=Y$ holds. Then (7.6) holds for all $s>n$, and the theorem follows.

Since λ is given, Y is fixed and therefore n is fixed. It follows therefore from the above theorem that $N_{X}(\lambda)$ is bounded independently of X. Since by theorem 7.1, $N_{X}(\lambda)$ increases with X, therefore

$$
\lim _{x \rightarrow \infty} N_{x}(\lambda)=N(\lambda)
$$

where, as will be evident from discussion in Art. 8 next, $N(\lambda)(<\infty)$, represents th number of eigenvalues not less than λ in the singular case.

8. A criterion for the discreteness of the spectrum

The following theorem provides a criterion for the discreteness of the spectrum of the boundary value problem under consideration.

Theorem 8.1. Let (i) p, q, r satisfy the conditions faid down in Art. 1 , the matrix P being Pseudo-monotonic. If (ii) $p>a \geqslant 0$, $\operatorname{det}(P-a E) \geqslant 0$, then the spectrum is discrete over the range (α, β).

Let $\lambda_{n x}, \lambda_{n X}$, denote the eigenvalues for the problens of the intervals $[0, X]$ and $\left[0, X^{\prime}\right]$ respectively. Then by theorem 7.1, for $X \leqslant X^{\prime}, \lambda_{n X} \geqslant \lambda_{n X^{\prime}}$, showing that $\left\{\lambda_{n X}\right\}$ is steadily decreasing. Now by condition (ii) $\lambda_{n X} \geqslant a$. Thus $\left\{\lambda_{n X}\right\}$ tends to a limit λ_{n}, say, as X tends to infinity. Hence the sequence $\left\{\lambda_{j, X}\right\}, j=0,1, \ldots, h$, of eigenvalues lying in (a, β) tend to $\left\{\lambda_{j}\right\}, j=0, \ldots, h$, (not necessarily all different), as X tends to infinity.

Let $\lambda_{i}<\lambda_{1}$. Since the Green's matrix $G(X, x, \xi, \lambda), \lambda=\mu+i$, is regular exccpt for simple poles at $\lambda_{n \times x}$, therefore $G(X, x, \xi, \lambda)$ is regular if $\lambda_{v}+\delta \leqslant \mu \leqslant \lambda_{1}-\delta$, where $\delta=1 / 4\left(\hat{\lambda}_{1}-\lambda\right)$ and X large enough. (Compare Titchmarsh ${ }^{7}$, p. 149).
We introduce the matrix $H(x, y)$ which is not a Green's matrix but has the same discontinuity property as the Green's matrix for the ' X-Case', substitute

$$
\Gamma_{i j}(X, x, \xi, \lambda)=G_{i j}(X, x, \xi, \lambda)-H_{i j}(x, \xi)
$$

$G_{i j}, H_{i j}$ elements of G and H respectively,
and argue as in Chakravarty ${ }^{2}$ (pp. 401-402), so as to obtain

$$
\left|\Gamma_{i}(X, x, \xi, \lambda)\right| \leqslant\left(v^{-2}+1\right)^{x_{1}} \quad K(x, \xi, \delta,|\lambda|)
$$

where K is a constant depending on the arguments shown.
Thus

$$
\left|G_{i j}(\lambda, x, \xi, \lambda)\right| \leqslant M|v|^{-1}
$$

for given

$$
x, \xi, x \neq \xi, \quad \lambda_{a}+\delta \leqslant \mu \leqslant \lambda_{1}-\delta,-\delta \leqslant v \leqslant \delta .
$$

I.1.Sc.-5

Then by arguments similar to those in Titchmarsh ${ }^{7}$ (p. 149) , it follows that the Green's matrix $G(x, \xi, \lambda)$ in the singular case $[0, \infty)$ is regular except at the points λ_{n} and that λ_{n} is at most at simple pole of $G(x, \xi, \lambda)$. Hence the spectrum is discrete over (a, β).

Again, from above it follows that $G(x, \xi, \lambda)$ is a meromorphic function of λ and therefore the matrix $\left(m_{r i}(A)\right.$) is also meromorphic (vide, Art. 1). Hence also the spectrum is discrete over (α, β).

Finally, defining $f(x)$ by

$$
\begin{aligned}
& f(x)=Y_{0, x}, 0<x<X \\
& =0, \quad \text { otherwise }
\end{aligned}
$$

and following Titchmarsh ${ }^{7}$ (p. 150), by using (5.3), it can be shown that λ_{0} is actually an eigenvalue. In the general case, λ_{n} is an eigenvalue for the boundary value problem in the singular case $[0, \infty)$.

$$
N(i)=\lim _{x \rightarrow \infty} N_{x}(i)
$$

is thus the number of eigenvalues not less than i in the singular case $[0, \infty)$.
In particular, if p, q, r satisfy the conditions of Art. 1 and the matrix P is Pseudomonotonic, the spectrum is discrete over ($0, \beta$).

9. Distribution of the eigenvalues

Put

$$
\dot{-}=a+\gamma+\left[(\gamma-a)^{2}+4 \beta^{2}\right\}+2
$$

and

$$
\eta=a \div \gamma-\left\{(\gamma-a)^{2}+4 \beta^{2}\right\}^{12}
$$

where α, β, γ are real numbers and λ is a real number, $\lambda \geqslant 1 / 2 \max (\lambda, \eta)$.
We seek for solutions of the equation

$$
\left.\begin{array}{c}
u^{\prime \prime}(x)-\beta v(x)+(\lambda-\alpha) u(x)=0 \\
v^{\prime \prime}(x)-\beta u(x)+(\lambda-\gamma) v(x)=0 \tag{9.1}
\end{array}\right\}
$$

where $\{u, \nu\}$ satisfy the Dirichlet-form of boundary conditions, viz.,

$$
\begin{equation*}
u(0)=0=v(0) ; u(X)=0=v(X) . \tag{9.2}
\end{equation*}
$$

Solving (9.1) for u, v and making $\{u, v\}$ satisly the boundary conditions (9.2), we derive after some easy steps

$$
\begin{equation*}
\sin \xi X \sin \xi X=0 \tag{9.3}
\end{equation*}
$$

where

$$
\xi^{2}=\lambda-\frac{1}{2} \eta, \quad \xi^{4}=\lambda-\frac{1}{2} \Delta
$$

Thercfore, if $N_{\chi}(\lambda, \alpha, \beta, y)$ be the number of eigenvalues not exceeding λ in the interval ($0, X$) , we have

$$
\begin{equation*}
N_{X}(\lambda, a, \beta, \eta) \geqslant \frac{X}{\pi}\left[\left(\lambda-\frac{1}{2} \Delta\right)^{1 / 2}+\left(\lambda-\frac{1}{2} \eta\right)^{1 / 2}\right]-2 . \tag{9.4}
\end{equation*}
$$

Similarly, if $M_{x}(\lambda, a, \beta, \gamma)$ be the number of eigenvalues not exceeding λ in the interval ($0, X$) of (9.1) with boundary conditions in Neumann's form, wiz,

$$
\begin{equation*}
u^{\prime}(0)=0=v^{\prime}(0) ; \quad u^{\prime}(X)=0=v^{\prime}(X) \tag{9,5}
\end{equation*}
$$

we have

$$
\begin{equation*}
M_{X}(\lambda, \alpha, \beta, \gamma) \leqslant \frac{X}{\pi}\left[\left(\lambda-\frac{1}{2} \Delta\right)^{1,2}+\left(\lambda-\frac{1}{2} \eta\right)^{1,2}\right]+2 \tag{9.6}
\end{equation*}
$$

Lemma 9.1. Let (i) $p>r$, (ii) p, q monotone increasing and
(iii) $(p-r) r^{\prime}-2 q q^{\prime} \geqslant 0$.

Then

$$
\Delta(x)=p+r+\left\{(p-r)^{2}+4 q^{2}\right\}^{2} u^{2}
$$

and

$$
\eta_{1}(x)=p+r-\left\{(p-r)^{2}+4 q^{2}\right\}^{11^{2}}
$$

are both monotote increasing.
Since

$$
(p-r)^{2}+4 q^{2} \geq 4 q^{2}
$$

it follows that $\left\{(p-r)^{2}+4 q^{2\}^{1 / 2}}\right.$ is monotore increasing. Therefore

$$
(p-r)\left(p^{\prime}-r^{\prime}\right)+4 q q^{\prime} \geqslant 0
$$

and

$$
\frac{d \eta(x)}{d x} \geqslant 0
$$

so that $\eta(x)$ is monotone increasing. Again, since $\left\{(p-r)^{2}+4 q^{2211^{2}} \geqslant p-r\right.$, it follows that $\Delta(x) \geqslant 2 p$. Therefore $\Delta(x)$ is monotone increasing.

The lemma remains true if $p-r$ is assumed monotone increasing instead of q.
We establish the following theorems on the distribution of the eigenvalues of the boundary value problem under consideration.

Theorem 9.1. Let the matrix P be Pseudo-monotonic and p, q, r satisfy the conditions of lemma 9.1. Then $N(\lambda)$, the number of eigenvalues not exceeding λ in the singular case of the problem under consideration, is given by

$$
\begin{aligned}
N(\lambda)= & \frac{1}{\pi} \int_{0}^{x}\left[\left\{\lambda-\frac{1}{2} \Delta(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta(x)\right\}^{1,2}\right] d x \\
& +O\left(X^{1,2} \lambda^{1 / 4}\right), \lambda \rightarrow \infty,
\end{aligned}
$$

where X is determined by $\operatorname{det}\left(P_{m}(X)-\lambda E\right)=0$.
It follows from theorem 7.3, with notations explained there, that

$$
\sum_{s=1}^{n} N_{2}(\lambda, s) \leqslant N_{X^{\prime}}(\lambda) \leqslant \sum_{t=1}^{n} M_{1}(\lambda, s),
$$

where $X^{\prime} \geqslant X$ and X is given by $\operatorname{det}(P(X)-2 E)=0$.
Making X^{\prime} tend to infinity through certain sequence, we then obtain

$$
\begin{equation*}
\sum_{s=1}^{n} N_{2}(\lambda, s) \leqslant N(\lambda) \leqslant \sum_{s=1}^{n} M_{1}(\lambda, s) \tag{9.7}
\end{equation*}
$$

For the interval $Y_{g}:\left(x_{v-1}, x_{s}\right)$ let $\triangle_{g}(x), \eta_{s}(x), j=1,2$, stand for $\triangle(x)$ and $\eta(x)$ respectively when the matrix P is replaced by P_{1} at $x=x_{5-1}$ and by P_{2} at $x=x_{1}$. Then it follows from (9.4), (9.6) and (9.7) that

$$
\begin{align*}
& \sum_{n=2}^{n}\left[\left\{\lambda-\frac{1}{2} \Delta_{2 t}(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta_{2 t}(x)\right\}^{1 / 2}\right] \frac{\delta_{i}}{\pi}-2 n \leqslant N(\lambda) \\
& \leqslant \sum_{s=1}^{n}\left[\left\{\lambda-\frac{1}{2} \Delta_{x_{2}}(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \Delta_{1 s}(x)\right\}^{1 / 2}\right] \frac{\delta_{s}}{\pi}-2 n
\end{align*}
$$

where δ_{z} is the length of the interval I_{g}.
Noting that

$$
F(x)=\left\{\lambda-\frac{1}{2} \Delta(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta(x)\right\}^{1 / 2}
$$

by lemma 9.1 , steadily decreases from $F_{0} \equiv F(0)$ to $F_{X} \equiv F(X)$ as x increases from 0 to X, it is possible to choose the points of sub-division X, of the interval $(0, X)$ in such a manner that the oscillation of $F(x)$ in each I_{s} is equal to

$$
\frac{F_{0}-F_{x}}{n} .
$$

(Compare Chaudhuri and Everitt ${ }^{1}$, p. 206 and De Wet and Mandls ${ }^{\text {s }}$, pp. 572-580.)
Thus in I_{s},

$$
\begin{aligned}
& {\left[\left\{\lambda-\frac{1}{2} \Delta_{1}(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta_{1 *}(x)\right\}^{1 / 2}\right]} \\
& \quad-\left[\left\{\lambda-\frac{1}{2} \Delta_{x}(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta_{2 s}(x)\right\}^{1 / 2}\right]=\frac{F_{0}-F_{X}}{n} .
\end{aligned}
$$

This leads to

$$
\begin{equation*}
\sum_{x=1}^{n}\left[\left\{\lambda-\frac{1}{2} \Delta_{1}(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta_{1 s}(x)\right\}^{1,1}\right] \frac{\delta_{e}}{\pi} \leqslant J(\lambda)+\frac{X\left(F_{0}-F_{X}\right)}{n^{\pi}} \tag{9.8}
\end{equation*}
$$

where

$$
I(\lambda)=\frac{1}{\pi} \int_{X}^{0}\left[\left\{\lambda-\frac{1}{2} \Delta(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta(x)\right\}^{1 / 2}\right] d x
$$

Similarly,

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\left\{\lambda-\frac{1}{2} \Delta_{2}(x)\right\}^{11_{2}}+\left\{\lambda-\frac{1}{2} \eta_{2,}(x)\right\}^{1 i 2}\right] \frac{\delta_{s}}{\pi} \geqslant I(i)-\frac{X\left(F_{0}-F_{X}\right)}{n \pi} \tag{9.9}
\end{equation*}
$$

Hence from (9.7), (9.8) and (9.9).

$$
\begin{equation*}
|N(\lambda)-I(\lambda)| \leqslant \frac{X\left(F_{0}-F_{X}\right)}{n \pi}+2 n . \tag{9.10}
\end{equation*}
$$

Choose n so that the right hand side of (9.10) is minimum. This gives

$$
n^{2}=\frac{X\left(F_{0}-F_{\underline{X}}\right)}{2 \pi} .
$$

Therefore from (9.10),

$$
\begin{equation*}
N(\lambda)=I(\lambda)+O\left\{X^{1 \lambda^{2}}\left(F_{0}-F_{Z}\right)^{1_{1}^{2}}\right\} \tag{9.11}
\end{equation*}
$$

The theorem. follows from (9.11), since $\left|F_{0}-F_{s}\right| \leqslant|F(0)| \leqslant K \lambda^{\frac{1}{2}}, K$, const.
The following theorem is next established.
Theorem 9.2. If the conditions of theorem 9.1 are satisfied and if (i) either p or (ii) r or (iii) $p \div r$ or (iv) $p \div q \div r,(q(0) \geqslant 0)$, be convex downwards, then

$$
N(\lambda) \sim \frac{1}{\pi} \int_{0}^{x}\left[\left\{\lambda-\frac{1}{2} \Delta(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta(x)\right\}^{1 / 2}\right] d x, \text { as } \lambda \text { tends to infinity. }
$$

We give details of the proof wher $\left(p \frac{1}{1} r\right)$ is convex downwards with outlines in other cases.

Since $p(x)+r(x)$ is convex downwards, we have

$$
\begin{aligned}
& p(u)+r(u) \leqslant p(0)+r(0)+\frac{p(X)+r(X)-p(0)-r(0)}{X} u \\
& \quad 0<u<X, \quad p(0),>0, r(0) \geqslant 0,
\end{aligned}
$$

since $p>0$. det $P \geqslant 0$ for x in I.
This leads to

$$
i-\frac{1}{2} \eta(u) \geqslant \lambda-\frac{1}{2}\{p(n)+r(u)\} \geqslant \lambda-\frac{1}{2}\{p(X)+r(X)\} \frac{u}{\widetilde{X}},
$$

so that

$$
\begin{align*}
I(\lambda) & =\frac{1}{\pi} \int_{X}^{0}\left[\left\{\lambda-\frac{1}{2} \Delta(x)\right\}^{1 / 2}+\left\{\lambda-\frac{1}{2} \eta(x)\right\}^{1 / 2}\right] d x \\
& \geqslant \frac{1}{\pi} \int_{0}^{X}\left[\lambda-\frac{1}{2}\{p(X)+r(X)\} \frac{u}{X}\right]^{1 / 2} d x \\
& \geqslant \frac{1}{\pi} X_{\lambda^{1 / 2}}\left(1-\frac{Q(X)}{2 \lambda}\right)^{112}, \text { where } Q(X)=p(X)+r(X) \tag{9.12}
\end{align*}
$$

Therefore from theorem 9.1 and the inequality (9.12), it follows that

$$
|N(\lambda)-I(\lambda)| \leqslant K \pi X^{-1 / 2} \lambda^{-114}\left(1-\frac{Q(X)}{2 \lambda}\right)^{-1 / 2} I(\lambda)=\epsilon I(\lambda), \text { say, where }
$$

ϵ tends to zero as λ tends to infinity, X being determined by

$$
\operatorname{det}(P(X)-\lambda E)=0
$$

Thus the theorem is proved when $(p+r)$ is convex downwards.
Again, since

$$
(p-r)^{2}+4 q^{2} \leqslant(p+r)^{2}+4 q^{2} \leqslant(p+r+2 q)^{2}
$$

therefore

$$
\lambda-\frac{1}{2} \Delta(u) \geqslant \lambda-(p+q+r) \geqslant \lambda-\{p(X)+q(X)+r(X)\} \frac{u}{X},
$$

since $p+q+r,(q(0) \geqslant 0)$, is convex downwards: $0<u<X$.
Finally,
since

$$
\left\{(p-r)^{2}+4 q^{2}\right\}^{12} \geqslant p-r, r-p
$$

it follows that

$$
\lambda-\frac{1}{2} \eta(u) \geqslant \lambda-p(u), \quad \lambda-r(u)
$$

Therefore

$$
\lambda-\frac{1}{2} \eta(u) \geqslant \lambda-p(X) \frac{u}{X}, \quad 0<u<X
$$

if p is convex downwards,
and

$$
\lambda-\frac{1}{2} \eta(u) \geqslant \lambda-r(X) \frac{u}{X}, 0<u<X
$$

if r is convex downwards.
fin any case the analysis therefore follows as before.

10. Acknowledgements

The authors wish to thank Dr. (Mrs.) Jyoti Das (neé Chaudhuri) for some stinulatin discussions and the referee for certain helpful comments.

References

1. Caakravarty, N. K. Some problems in eigenfunction expansions (I). Quaft. J. Mat (Oxford), 1965, 16, 135-150.
2. Cearravarty, N. K. Some problems in eigenfunction expansions (III). Quart. . Math. (Oxford), 1968, 19, 397-415.
3. Chavinuri, J. and

Everitr, W. N.
4. Chaudhuri, J. and

Everitt, W. N.
5. Hardy, Littlewcod and pocia
6. Sen Gupta Prabir Kumar
7. Titcmarsh E. C.
8. Tiwari, s.
9. De Wet, J. S. And Mandl. F.

On the spectrum of ordinary second order differential operators. Proc. Roy. Soc. Edinb., A, 1969, 68 (1I) (7) 95-119.

The spectrum of a fourth order differential operator. Proc. Roy. Soc. Edinb., $A, 1969,68$ (III) (13), 185-210.
Incqualities, Cambridge, 1934, Ch. 12, pp. 34-36.

On the convergence of eigenfunction expansions associated with a vector-matrix differential equation. Jour. Ind. Inst. Sc., 1978, 60 (A$), 89-110$.

Eigenfunction Expansions Associated with Secord Order Differertial Equations Part II, Oxford University Press, 1958.
On Eigenfunction Expansions Associated with Differential Equatious, Calcutta University, Ph.D. Thesis, 1972.
On the asymptotic distribution of eigenvalues. Proc. Roy. Soc., A, 1950, 200, 572-580.

