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Abstract 

In this note, the problem of unsteady motion in a porous annulus has been studied. Using finite Hankel 
transform, closed form solution is obtained for the axial velocity component- under the restriction that 
the ratio of suction and injection at the walls are same. 
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Introduction 

The geometry of porous layers is of great importance in the problems of pulmonary 
physiology, Where there is a need for measuring the blocd volume in the ltmgs. 

The purpose of this note is to present the exact solution for the time &padent 
motion of a VISCOUS f l~ud in an annulus with porous walls. I t  is assumed that the rate 
of suction a t  one wall is equal to the rate of injection a t  the other. Finite Hankel 
transform is applied and closed form solution for the axial velocity is obtained. Tlic 
average axial velocity profiles are depicted graphically. 

Basic equations 

We consider the flow to take place in a porous annulus bounded by two infinite 
cylinders with radii a and b (b> a). A cylindrical polar coordinate system (r, 6 ,  x )  
is chosen with axis of  annulus as  x axis, and v ,  u the radial and axial velocity 
components respectively. The governing equations are 
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Continuity equation : 

The boundary condition5 arc: 

At t =-0, a =0 for a<r<b 
At r -n ,  b u -= 0 for all t 
A i r = a  v=Vo~ndr :b ,v :VB I 

Tic condition t!mt suction and i~~jeclion raics are equal implies 

nV, = bVe 

This restriction makes the axial velocity ind~pcndent of x.  

Integrating (3) a i d  (I), we gei 

where A is indewdent of r. 

introducing the following non-dimensional variables 

where L is the characteristic length, nnd (p,, -p,) ia the pressure differelice, wc obtain 
from (3) the equation ford, as 
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wh,c a = pV, aju = C ~ o s b  Reynold's nuinbcr of suction paranletel. The boundary 
conditions (4) become 

In obtainins this equation, we have tacitly assumed a non-zero axial pressure g d i c n t  
which is necessary for sztting u p  an  unsteady flow. This in turn implies that A is 
a linear function of  x. We can write the solution (9) as the sum of a steady part, and 
an un~teady part in the form 

+ 0, 7) =y' ,(A) - 4, (A, 2) (1 1) 

From (9),bv taking the ~ t e a d y  par1 only, we gsl the equation for+, as 

with boundary conditions 

$, = O  a t  h = 1, a. 

The solution of  112) is 

?, = A  + B P  -CP for a+2  

where 

and 

Ag 1nA 
p, = ~ ~ ( 1  - A ' ) - - - -  for a 3 2  2 

where 

The equation for 4, ic 
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with boundary conditions 

At 2 = 0, $5 =+ * 
AL h = 1, o,q, = O  

As z + m ,  4 , i O .  

By substituting 4, = $, (15) ir simplified to 

Now, we define (Snrddon') the Hankel transform as 

$ (s, T) == f (A, 7) [ J ,  (s) Yk (sX) - Jk (sX) Yx (s)] dh 

where k = aj2, s is a root of the equation (Abromowitz and Stcgu~') 

wh:rc J, and Y, are Bessrl functions of first and second kind respectively. The inverse 
trmsform is 

where summation is taken ovtr the positive roots of 117). Applying the above transfo~m 
iri (1 6) ans its invase, we obtain the solr'tim tor axial velocity in dimrnsior less form as 

where 4, is given by (13) and (Id), and q i s  the transform of i,k. The s. ries on the 
right side is conveigenf. It cap be seen that as r -+ m, we obtain sclution fcr steady case 
IS given by Berman4. It should be remarked that Vermn and Gaur5 have obtained a 
similar soil-tion using Laplace transform, but i t  was conlmented that further analysis 
was not possible. However, in this note, the solution is more elegant and graphical 
representation is provided. 

Figure 1 gives the average axial velocity profiles for various suction parametem. It 
can be seen that the suction parameter increases, the point of maximum velccity shifts 
towards the other boundary. Fig. 2 dcpicts the axial velocity and shows how the 
wsteady part dies out with passage of time. In Fig, 3, the averag axial velocity is 
represtnted as a function of a, 
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----- STEADY FLOW 

X- 
R4. 2.. wboity field at different times when a 4, 0 5.  



FIG. 3. Average axial velocity field for d i i r c n t  values of a when z = n and a = 4. 
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