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Exact solution for the unsteady motion of a viscous fluid in a porous
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Abstract

In this note, the problem of unsteady motion in a porous annulus has been studied. Using finite Hankel
transform, closed form solution is obtained for the axial velocity component under the restriction that
the ratio of suction and injection at the walls are same.
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Introduction

The geometry of porous layers is of great importance in the problems of pulmenary
physiology, where there is a need for measuring the blocd volume in the lungs.

The purpose of this note is to present the exact solution for the time dependent
motion of a viscous fluid in an anpulus with porous walls. It is assumed that the rate
of suction at one wall is equal to the rate of injection at the other. Finite Hankel
transform is applied and closed form solution for the axial velocity is obtained. The
average axial velocity profiles are depicted graphically.

Basic equations
We consider the flow to take place in a porous annulus bounded by two infinite
cylinders with radii @ and b (b> @). A cylindrical polar coordinate system (r, 8, x)
is chosen with axis of annulus as x axis, and v, u the radial and axial velocity
components respectively. The governing equations are
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Continuity equation :
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The boundary conditions are:

At t =0, u=0 for a<r<b
Atr=u, b u= for alls

Atr=a y=V,and r=5 v="V

The condition that suction and injection rates are equal implies

a¥, = bV,
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This restriction makes the axial velocity indcpendent of x.

Integrating (3) and (1}, we get
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where A is independent of r.

Introducing the following non-dimensional variables
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where L is the characteristic length, and (p, — p.) is the pressure difference, we obtain

from (3) the equation for ¢ as
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where a = pV, afu = Cross Reynold’s mumber of suction parameter. The boundary
conditions (4) become

At7=0,¢ =0 for 1 <A< bla=
At A=1,¢ =0 for all r. (10)

In obtaining this cquation, we have tacitly assumed a non-zero axial pressure gradient
which is necessary for sstting up an unsteady flow. This in turn implies that 4 is
4 linear function of x. We can write the solution (9) as the sum of a steady part, and
an uasteady part in the form .

¢ D= —d (N T (11
From (9), by taking the steady part only; we gzt the equation foré , as
3 gy (1 —a\ M .
()30 (1)

with boundary conditions
b =0at2=1,0
The solution of (12) is
@ =A + B2 —CR for a2

where
¢ —g% 1 —g° _ 1
T —al =y’ TIR=y{ —q"')’ T4§=7a

and

Gy = Ayp(L—2) — x k’i‘ for a =2 U4
-where
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- The equation for ¢, is
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with boundary conditions

At 7=0, ¢ =¢.

Aid=1,0,90,=0

As 100, ¢, 0.
Ry substituting ¢, =A@ , (15)is simplified to

Now, we define (Sneddon?) the Hankel transform as
Js, V= [ PO, D Tets) Yelsh) =i (1) Ya ()] dA

where k& = «/2, 5 is a 100t of the equation (Abromowitz and Stegun®)
By () Yi(s0) — Ji(50) Y (s) =0 (17)

where J; and Y, are Bessel functions of first and second kind respectively. The inverse
transform is

7 2 (J3(s) &
s0.9=7 > I B ne —none a9
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where summation is taken over the positive roots of (17).  Applying the above transform
iu (16) and its inveise, we obtain the solution tor axial velocity in dimewsior less form as
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where &, is given by (13) and (J4), and §is the transform of Y. The s ries on the
right side is convetgent. It can be seen that as 7 — oo, we obtain sclution fcr steady case
s given by Berman®. It should be remarked that Verma and Gaur’ have obtained a
similar solution using Laplace transform, but it was commented that further analysis
was not possible. However, in this note, the solution is more elegant and graphical
representation is provided.

Figure 1 gives the average axial velocity profiles for various suction parameters. It
can be seen that the suction parameter increases, the point of maximum veleeity shifts
towards the other boundary. Fig. 2 depicts the axial velocity and shows how the
ursteady part dies out with passage of time. In Fig. 3, the average axial velocity is
represented as a function of o,
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FIG. 1. Average axial velocity profiles for different Qucﬁon parameters at 7= 7.
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Fia. 2. Axial velocity field at different times when a =4, 0 =5.
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F1G. 3. Average axial velocity field for different values of ¢ when 7 =7 and o = 4,
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