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Abstract 

An analysis of th9 l a r p  amplitude vibrations of rac tan~dar  plates of ~arabolicaliy varying thickness 
is premtcd. The m3thod is b a s d  o n  Emget's assum?tion of neg1ecting th: second invariant o r  the 
middle surface strain in the expmssion corresponding t o  the total potential energy of the systm, in 
conjunction with a Galcrkin procedure. 
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1. Introduction 

Investigations relating to nonlinear vibration are few in ccmparison with those for 
Smear cases. Tllis is, probably, due to the difficulties involvcd in solving the nonlinear 
differential equations. B:rgerl, however, has prcpostd an approximate mekrd to 
solve such problems wlkich is simple acd accurate for all practical purposes. Nash 
and Modeer2 extended this technique offered by Berger to a dynamic case wlich was 
subsequently followed by different authorss6. 

The work presented in this papcr is to study the larse amplitude vihraticns of 
rectangular plates with parabolically varyi~g tiickness by means of Berger's methcd 
in combination with a Galerkin procedure. 

2. Basic equation$ and their so:utious 

Let a &t rectangillar plate with parabclically varyirg tkickrt?s ar.d cf Iagth '2 a 
and of breadth ' 2 b  ' be subjected to a normal load '9 ' .  The origin of the cartesian 
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coordinate system is located at the centre of the plate. The governing differential 
equations for the deflection function ' rv ' of the plate exhibiting large deflection may be 
put in the following forms: 

where D = Eh3/12 (1 - v') is the flexural rigidity of the plate, f3 is the Young's moduluq 
e is the f i rs  invariant, u, v are the inplane displacements along x- and y-directions, 
respectively; h = h (x ,y)  is the thickness of the plate at a point (x,y)  from the origin, 
and v =Poisson's ratio and pis the density of the plate material and ' C' is a constant 
of integration f ( t )  being an unknown function of time to be determined. 

Let the law of thickness variation be h = h, (1 + p  xa/a2). 

If the problem be restricted to the finding of the fundamentalmode of frequencyoq 
one can set the expression for w compatible with the boundary anditions for a plate 
with hinged immovable edges as 

where F(t)  is an unknown function of time and X = x/a, Y = yjb and W = w/h, 
have been introduced in their nondimensional forms. The actual analysis for obtaining 
the time differential equation as well as the evaluation of the coupling constant ' e  
may be omitted for brevity (actual analysis is given in Ref. 6). time d a m t i a l  
equation may, thus, be put straight forward in the following form 

3. Deductions 

Free linear vibration 

The frequency parameter Ja appears to be 

where w is the circular frequency of the plate. The values of the frequency parametel 
have been computed and, arc displayed in Table 1 for different values af &e tager 
wnstant p .  
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Table I 

Values of the frequency Parameter for different values of and aspect ratio (alb) 
Rectangular plate with hinged immovable edges 

RIP -0 .5  -0.4 -0 .3  -0 .1  0 .0  

312 27.5367 34.2895 41,2170 56.2259 64,3053 

1 4.841 3 8.5765 12,3727 20.2552 24.3532 

Nonlinear static case 

If the inertia term in eqn. (4) is rejected the sratic behaviour of the plate can 
be obtained from the following equation 

AF+BFS =Q. (6) 

The nonlinear static behaviour has been shownin Fig. 1. 

Nonlinear p e e  and rorced vibrations 

To avoid. repetition one may be referred to Ref. 6 for the analysis of free and 
forced vibrations, The relative time pericds of fm linear and nonlinear vibrations 
(UP) have been presented graphically (Fig. 2) against relative amphtude (A&). 

4. Numerical results and discussion 

The values of the frequency parameter have been computed for different values of tape1 
canstant @ and aspect ran0 nib. Table I l o w s  that the frequency increases wth the 
lndrease of ,8 whik for the same value of ,8 the frequency decreases wlth the mcreasing 
d e  @@I. 
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RG. I. static behaviour of square plate with parabolically varying rhicknass. 

Figure 2 depicts the relative period of vibrations in terms of the relative amplitude 
Llo/h0) for a[b = 3. In all calculations v has been taken to be 0.3  and the values of 
j3 ranges from -0.5 to JrO.5. It is evident from Fig. 2 that the general trend 
is to decrease the period of nonlinear vibration with the increase of amplitude. Further, 
this decreasing tendency of T* is faster when j3 decreases through negative values than 
when i t  does so through positive values. I t  has been further obmved that the decreasing 
value of (alb) further accelerates this trend. 

In mnclusion, it appoars that the nonlinear effects are stronger when j3 1 0  than 
the case when B > 0. This can be explained in the light of the fact that in the first 
case p < O  the mass concentration near the supports decreases and the overall plate 
s t i h  is decreased whereas,in the latter case, as j3 increases thtougb positivevalue, 
the overall plate thickness is increased because of  tbe increased thickness< near the 



Fie. 2. Relatw time period w. relative amplitude for a rectangular plate with aspect 
ratio 112. 

boundary. In the first case the effect is to increase the frequency and the opposite 
holds when fl  > 0. 
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