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Steady flow of a thermo-viscous fluid through straight tubes
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Abstract

In this paper, the steady flow of a second order mcompressible thermo-viscous fluid through straight
tubes is studied. It is noticed that, as in the case of visco-elastic fluids, a purely rectilinear - flow of
thermo-viscous fluids in straight tubes, under the influence of a constant pressure gradient, is not sus-
wainable. There exists a secondary flow in the tube cross-sections perpendicular to its axis. The flow
through elliptic tube is illustrated as an example from which the flow through a circular pipe bas been

deduced as a special case.
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1. Introduction

Koh and Eringin! introduced the concept of thermo-viscous fluids which reflects the
interaction between thermal and mechanical responses in fluids in motion due to external
influences. For such a class of fluids, the stress-tensor ¢ and heat flux bivector & are
postulated to be polynomial functions of the kinematic tensors, viz.. the rate of deforma-
tion tensor o :

Ay o= (g, 5 -y, )2 1.1
Z] 1

and thermal gradient bivector 5 :
by = eghs ' 1.2

where u; is the ith component of velocity and 8 is the temperature field.

A second order theory of thermo-viscous fluids is characterized by
== ayd + ogd + asd® -+ agh® + ag(db — bd) . (1.3)

&= b + fis (bd + db) (1.9
©89
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with the constitutive parameters o, f; being polynomials in the invariants of d and j
in which the coefficients depend on density and temperature only. When the fluid is
Stokesian (7.¢., when the stress tensor depends only on the rate of deformation tensor),
and Fourier-heat-conducting (i.e., when the heat flux bivector depends only on the tempe-
rature gradient-vector), the constitutive coefficients «; and a; may be identified as the
fluid pressure and coefficient of viscosity respectively and as as that of cross-viscosity.

The flow of incompressible thermo-viscous fluids satisfies the usual conservation equa-
tions.
Equation of Continuity
v, 5= 0. 1.3

Equation of Momentum
20,
/J[% -+ vy, kjl:ﬂpﬁ‘ 3,4 (1.6)
and Energy equation

pe = tydy — iy + PV .70
where

F, = kih component of external force per unit mass,

¢ = specific heat;

¥ =energy source per unit mass and

q; == ith component of heat flux bivector,

4 = eglrpl2. (1.8

Solving a specific boundary value problem implies solving (1.5), (1.6) and (1.7)
together with the constitutive equations (1.3) and (1.4), satisfying the appropriate boun-
dary conditions such as the no-slip conditions. These equations are, apart from being
nonlinear in character, coupled and may not be that easy to realize an exact solution
for a specific boundary value problem.

In this cammunication, we adopt the four-step recursive approach-proposed by Langlois
and Rivlin* to obtain an approximate solution for the equations concerned to investi-
gate the effect of non-Newtonian, non-Fourier terms in (1.3) and (1.4). The fluid is
assunted to be in a state of steady flow within the volume occupied by the fluid and the
boundaries are supposed to be rigid and at rest or moving in a specified manner. It
is, further assumed that there are no external forces and no heat source within the flow
region. The four steps of the recursive procedtre are detailed as follows.
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Step T A solution (v, af¥, #49) of the equations of motion and energy for an
incompressible Newtonian-viscous and Fourier-heat conducting fluid in the absence of
body forces and heat sources is obtained subject to suitable boundary conditions.

Step II : The solution (v, «f, @) obtained in step I is introduced into the equa-
tions of motion and energy of the incompressible thermo-viscous fluid described above,
ie., equations (1.6) and (1.7) and the additional body force F, and heat source pv
required to support this solution are calculated.

Step 1T : A solution (v®, o, 0} of the equations of motion and energy for an
incompressible Newtonian-Fourier heat conducting fluid, under the influence of body
force F, and heat source pv computed in step II, is obiained subject to the homo-
g:neous boundary conditions such as zero velocity/zero flux/zero temperature on the
boundary I

Step IV : Then (v, = v — 0¥, a; = oi? —a®, §= 6% — ) is an approximate
solution for the equations of motion of a very slow motion of an incompressible, slightly
thermo-viscous fluids, subject to the same boundary conditions used in step L.

Following the procedure sketched above, we examine hereunder, the steady flow of a
second-order incompressible thermo-viscous fuid in along straight non-circular pipe
under the action of constant pressure gradient. The pipe wall'is assumed to be fixed
and maintained at a constant temperature 8,. Let ;he axis of Z be chosen along the pipe

line and the pipe represented by

Iig(x3)=0. -9
The pressure gradient down the tube axes is

2

_D“_Z} = ¢ (1.10)

2. Equation of motion and energy in different steps

Step I: The equation of motion and emergy at this stage are same as those of
Newtonian-viscous fluid and therefore purely rectilinear flow is sustainable. If
(0,0, w® (x,3)) is the velocily and 8% (x, ) is the temperature, then we have

. @.1)

V2w = /20y
and

T2 00 = — ﬂ_?ﬂ_cz W) (2.2)

1
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together with the boundary conditions

with = 0
bor = 91} onrl" @3

Step 11 1w, §@ realized above are substituted in the equations of motion and energy
10 obtain the body force F and heat source v to support the flow, we thus obtaip

(20 a1 o w4
pF, = — La5 2@ bl - w wl
a3
1) g — g gay
T g (65) 93 65 6,",)
"2¢
Loy (,a_’ S - 0@ Wl - 0L
3

Sl 0 — g W&))/z:’ @.4

2c,
A1) Ly gt (1,
pF, = — [as (; R 0 R i S

g (6 0% — 6 62)

2 — 2y
+ as( O — g2 Wi — wiv g
!

g
— W - 9w w;},‘)/Z] 2.5
Iy asw‘”]
F‘ = -} ¢ = B
[ : - @.6)
and heat source
pv =~ é{f—s‘”« ~ o (0 )2
— agls (W B - Wb g5) @7

where ¢, = d8/dx is the temperature gradient and is assumed to be constant,

Step 111 1 The body force and heat source obtained above are substituted in the eque-
tions of motion and energy for a Newtonian viscous-Fourier heat conducting fluid.
If (u*), v®, wi?)) are the velocity components and ) (x, y) is the temperature field,
these equations reduce to

@
da

L R Vu o+ F, @9

0=

_ Du{” ag
= W‘f“f 72o? +pF, - 2.9
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0= ?T?EW‘E’-FPT.‘?C& (2.10)
and ‘
pecyw® = — 720 ~B—“§—;—‘2 @.11)

with boundary conditions
u® = 0,9® =0, w® =0, and g = § on I (2.12)

Introducing w'®), the stream function, by

2 2
wy® ity o W)

@l = s
ay Ix

so as to satisfy the continwity equation. Equations (2.8) and (2.9) yield after elimi-
nating o'

2 . 1)_giry . A
THY® = {s%cl‘ [_as B_“(:}(xgg) ) +ag 4~:i W) 4w ol )/2] (2.13)
£ ) 5
with
V’:" = = ./,;2) on I (24 14)

Step IV . An approximate solution for the flow through pipes can now be given by

The velocity field :

== ul) e gl®) — ()

p=p0 —p® = — )

W= Wl — @ (2.15)
pressure

a = af — o (2.16)
and the temperature field

8 == B — g, 2.17)

Thus a purely rectilinear flow of thermo-viscous fluids in straight tubes is not sustain-
able. The flow in the tube is composed of a rectilinear velocity w = w@ — w®) down
the tube axis over which is superposed a secondary flow characterized by the stream
function () obtained from the equation (2.13) in planes perpendicular to tube axis.

3. Flow through an elliptic tube
Let the cross-section ' of the tube is given by
¢ (x, ) = x%a® + p/b* — 1 =0, 3.1
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Introducing the non-dimensional variables
x=aX, y=a¥ and ¢ = bja
(3.1) can be written as
2 Y2 L Vg2 R
a2 Xt L Y —~0g?=0. 3.2)

The solution for egns. (2.1) and (2.2) together with boundary conditions in 2.3
may be obtained as :

_aa” N L ova
W) = - T (@ X+ Y~ a*) (3.3

gm =, + < ;162(1 ’4 +a) (1 + 56%)

7a3[g )(1 + Ga;f[ (.\
g (1 e (5 4o X — (1 +06%) (1 + 563 V2] [6% X* + Y2 — ¢
3.4

Sobstituting (3.3) and (3.4) in (2.4), (2.5). (2.6) and (2.7), we can obtain body force
and heat source to sustain the velocity and temperature as

. cEaza 120
Ph= "5 @¥or

ag peci €,a® s
¥ B reny T30 T2 Q450D ¥
— 240° (1 +6) (1 +20) X* ¥ +86* (1 4 50%) (3 +07) 7]

peeicy

o m) a 'az)f{480 0 oD (1 + 56%) X7

— 9654 (1 + 502) fXY2 -+ 960% (1 +0%2 (o* + 106 4 1) X2¥°

— 480t (1 + 0% (5 +62) X°

— 166 (5 +6%) (1 +06%) (l46* + 2802 L 6) X°

+16(5+6" (1 + 562 (1 + 36 G +o¥o? X] (3.9

asc?a(2 402

pFy = — 2(l+dg)z

PCCE Chogt® o P
R RTT e B2 G+ X
— 45t (5 + oD (1 + 30’2) X +240% (1 4 0%) (2 +0%) XY?]

PLely
t e (12%/31) (T3 02)2]‘” [480% (1 %3 (5 + 02) X2y
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+ 9607 (1 + 0% (1 + 1062 464 X279 — 960°f (5 +0%) X2 ¥
4+ 486t (1 +50%) (1 +oh)E ¥e
— 160% (60* + 280% + 14) (1 +¢H) ¥*

4+ 160%(5 + 65 (1 + 563 (1 +36YH (3 Lo Y). (3.6)
_ pecici oga? Biag 5D G CRE-
PEy= = agf ce? aga® + o® -1 ] 3.7

and the heat source is

—_Bee | 2Ga v 2
=T %(1+02>2(0X +¥)

_BeEAT [ o (5 4a?) (1 409 X0 36* (I 4078 Xy
30} B .

— @+ Q57+ (1 +36% S +o2)ot X2

+ (3 +0o?) (1 + 5¢%) oY1 - a?)? (3.8)
with f== (1 4% (1 + 60% 4 a%).
Using these in equations of motion (2.8) and (2.9) and then eliminating pressure, the

equations of motion and energy reduce to

2pect ¢ 16pccang . ™ gn2
4y (2) — 1 b2 288 2 72 2 B2 2 4.2 2 2,2 2 2
Tiwt® = YA GRS s a? B2 (@ — BN (B x4 aty a® b%) xy

+ 2aq {B2 (@ 4+ 26%) ¥ + a2 (22 + B0y — @ bR (a* + bﬂ)}], 6.9

2ag ¢ c1pc
20,02) — § C3 C1P) 22 22 2R
Viw pry N e e L ) (3.10)

and

7o = - Bt pea e G.11)

agfy b
with’ '

and boundary conditions given in (2.12) and (2.14).

Equation (3.9) together with (2.14) yields the solution

@ = Ry® 4y (3.12)
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where

and

with

where

and
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Y == (X + Y* — 62 {—5 + 85 X+ S2Y2)/g
W =g (1 —o¥) (0? X* + Y2 — 6% (85~ 5, X° — 5, Y XY}k

5o = o2 (49361 + 24870 + 1203167 + 933908 + 43450% 4 17010*
4 2896% + 33)/(30* + 2¢% - 3) (150% - 4o® + 1)
5y =% (300% = 1136® - 4500° + 2840* + 720% + 11)/(150* 4- 40® + 1)
5y = (116% 4 280 + 6% + 2)
55 =2 (1756*" + 72863 - 20716 - 12860° + 6770% - 1840® - 25)/(T0*
4+ 402 + 1) (S0t -+ 66% 4 5)
5= (3 4 220° - 4dot 4 14a® + T0%)/(To* + 40® + 1)

s5 = 1+ 20% + 5¢¢

g == 1500 + 600°% + 2345* - 600” + 15
h = Tg% + 280% - 580+ - 2802 4- 7
K = 3as fr/8pc coaea’.

(3.13)

(3.14)

The secondary flow in planes perpendicular to the tube length for a thermo-viscous
fluid is thus composed of two components y® and wf® which are illustrated in Figs. 1
and 2 (for o =0.4). The pattern w{® (Fig. 1) is composed of the flow around 2
single vortex around the centre of ellipse. The flow pattern y;® (Fig. 2) is rotational
consisting of flow around four vortices in four quadrants symmetrically placed about the
axes of ellipse. This flow is similar to the one nuticed by Green and Rivlin® fora
Riner-Rivlin fluid. It is noticed thatfor K = 1.0 the component y® dominates ovet
w® and the resulting siream line pattern ‘%) is much very close to that of y® but
drifted towards the boundary (Fig. 1).

The

axial velocity component w(® can be noticed to be

2
Wi — (‘_‘G_"’:i.%_}i’cfd [~0% (5 + 02 (1 + 50% +4° (5 +0%) (ot X

+ (1 +0N (1 +50%) P] (0% 22 + Y2 — 0N/ (1 +0°)

3.18
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Fig. 1. Stream line pattern. — W%, -2,

and the temperature field 62 as

00 = ci;";“‘ﬁ [4, + By X* + B,Y?
— (DXt + DyX2 Y2 + DY) (02 X2 + ¥* — o)

where

Dy = ot (46 + 6452 - 1864 - 68)/f,

Dy = 0% (14 + 16102 + 1470* + 146%)/f;

D5 = (1 + 196° -+ 78a* -+ 61a%)/f

By = [(2 + 2162 + 630 -+ 190%) -+ 4 (Dy -+ 6D;) fo2 (1 +0%)

4Dy + 6Dy) fo? (0 + 6). (62 + 1)]24/, .
By = [0* (8 + 230% + 8¢* -+ ¢%) -+ 4 (D3 + 6D5) fo* (1 + 0%)
i — 4(Dg + 6Dy) fo? (6* + 6) (0% + V)}/24f

LIs—2

97

(3.16)
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F1G. 2. Stream line pattern y(®.

and
Ao = [0% (0% — 0% — 1) (D5 + 6D5)/6f — o (c* + 5) (Ds + 6D1)/6f
-+ g? {61 + 808 + 426° + 716t - 2102 -+ 2)
— 402 f (1 4 So2) (6% -+ 5)}/247* (1 + 0% — L/(1 +a?)]
with
L = BragBilascip® *a*
and

fi=180F(1 + 1562 + 15¢* +¢%).
The expressions for wi?) and ) vanish when the non-Fourier coefficients g, fp vanish.

The Nussult Number which characterize the heat transfer coefficient on the boundary
is computed as

Nu=#.V8 (3.17)
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where # is the unit normal io the boundary

Nu = Nuy — Nu, (3.18)
where
Ny = [62(5 +03) (1 -+ 56%) — 62 (1 +62) (5 + D) X*
— (A o1+ 562 Y] ot XTF Y6 (1 +a2)f (3.19)
and

Nuy =2 [Ag -+ B X® + By Y2 — (D1 X* + DaX2 ¥ - Ds¥9)] Jor X7 + 7=
4+ 2(62 X%+ Y2 — g?) [0 (B, — 2D, X% — D, ¥?) X?
+ (Bs — DX? — 2D Y% Y/ (/6T X5 F X° (3.20)

The numerical estimate of these parameters shows that Nu, < Nuy and Fig. 3 illustrate
the variation of the Nussult Number on the boundary.

The mass transfer in the tube is given by
Q= [fwdxdy = [[(w®) ~ wi®)dxdy
A A

_af—3¢a o
2 ag 1

J

+

a*

—_4. 0gC3 Crpeat o oc g 602 ] 3.21
A R ¢-20

The effect of a4 is to reduce the flux of the fluid through any cross-section of the tube.

Velocity components #(® and v¢® are obtained as
u = — (g2 X2 + Y? — 0% 2KY [2(— 5 -+ 5; X% 4+ 5,73)
+ 55 (02 X% 4 Y* D] + X [(55 — 5:X° — 55 YD (02 X2 + Y2 — o)
— 25, ¥2 (02 X2 -+ Y2 — o]} (3.22)
v = (0% X% + Y2 — 0% {2KX [26%(— 50 + 5, X2+ 5,72 + 51(62 X2 4 V2 —0¥)]
4 Y [(s3 — 5,X2 — 5572 (562 X* + Y2 —0?)
— 25, X2 (0 X? + Y2 — D))} (3.23)

4. Flow through a circular pipe

The case of circnlar tube can be realized as a special case by putting o = 1-0.
‘We notice that

wt1&=-§17‘f(1—x=—1ﬂ) @.1)
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Fig. 3. NU vs. the eccentric angle 0.
and
0y
o = g, - ’LL [ (X2 = ¥%) — (X + Y22 — 3]. @.2r

324y,

The body force and heat soutce are given by

— [ ldaa cicgpe \* .
pF, = [ i az"X_M%'(W) SX+Y-1DX

3
+ 25 fﬁ%“- =300 + v} Y] @3

_ P _3ctaa C1CapC 9 .
pr= =[-8yt (G2 Y e+ =D Y

2 3
R ig;f LB+~ 4 X:" . @
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F= _[11 , /’ii‘gf-/%i(xu yi— 1)] .5

and beat source

B G
pr = [ R (X - 7%

s i 2 Xt yE
O SRR L LY “.6)
The stream function is given by

W = Ca® (X° 4 Y2 — 1)° (X* o V2 — 4)/192 “.7
with € == 04 ¢2 copefad ;.

The velocity components are
4 = — CB V(X ¥ — 1) (X2 + V2 — 3)32 (4.8)
v = Cp X (X TP 1) (X + Y2 —3)/32. (4.9)
The axial velocity component is
W) = AL 3y (2 4y L vy (4.10)
16 o} fi1

and the temperature field is deduced as

o ﬁ,zlc,a
2) — 2 —
@ = “Gf (X 4+ 1

L BOSTRE s yny a7 (0 4 Y — (4 P (@D
57602 fiy

It is interesting to note that there is marked departure between the flows of a thermo-
viscous fluid as compared to that of visco-elastic fluid in circular tubes.

It is noticed by Ericksen® that a purely rectilinear flow down a circular tube can be
maintained under the influence of constant axial pressure gradient. This would not be
the case for a thermo-viscous fluid flow in a circular tube. Thisflow given by w ) and
¢ @ is therefore helical in nature.

Another point of contrast between the thermo-viscous and visco-elastic fluids hes
been noticed by the authors?. In a Couette flow of a thermo -viscous fluid, a temperature
gradient depending on the velocity of the moving plate is generated within the flow

LLSc.—3
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region whereas such a phenomenon does not happen for the classical viscous and viseo.
elastic fluids.
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