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Steady flow of a thermo-viscous fluid through straight tubes 
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Abstract 

In this papcr, the steady flow of a second order incompressible thermo-\iscous fluid through straight 
tubes is studied. It is noticed that, as in the case of visco-elaslic fluids, a purely ratilinear .flow of 
themo-viscous fluids in straight tubes, under the iufluencc of a constant pressure gradient, is not sus- 
rainable. There exists a secondam flow in the tube cross-sections perpendicular to its axis. The flow 
through elliptic tube is illustrated as an example from w ~ c h  the flow tbrough a circular pipe has been 
deduced as a special case. 
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1. lntrodoction 

Koh and Eringinl introduced the concept of thermo-viscous fluids which reflects the 
interaction between thermal and mechanical responses in fluids in motion due to external 
influences. For- such a class of' fluids, the stress-tensor r and heat flux bivcctor h are 
postulated to be polynomial functions o f  the kinematic tensorc, siz.. the rate of deforma- 
tion tensor d : 

dii r= (u4, I uj, i)!2 (1.1) 

and thernal gradient bivector b : 

where u, is the ith component of velocity and 8 1s the temperature field. 

A second order theory elf thermo-viscous fluids is charactermd b? 



with the constitutive parameters a,. Bi being polynomials in the invariants of d and b 
in which the coefficients depend on density and temperature only. When the fluid is 
Stokesian (i.e., nhen the stress tensor depends only on the rate of deformation tensor), 
and Fourier-heat-conducting (i.e.,  when the heat flux bivector depends only on the tempe- 
rature gradient-vector). the constitutive coefficients n, and a, may be identified es the 
fluid pressure and coefficient of viscosity respectively and a, as  that af cross~viscosi~~. 

The flow of incompressible thermo-viscous fluids satisfies the usual conserbation equa- 
tions. 

Equation of Continuity 

v ,  < = 0. 

Equation of Momentum 

and Energy equation 

~8 = f<jd,j - gi, 6 + pv 

where 

Ft = kth component of external force per unit mass, 

c = specific heat; 

v = energy saurce per unit Inass and 

q, = ith component of heat flux bivector. 

Solving a specific boundary value problem implies solving (1 .5), (1 .6) and (1.7) 
together with the constitutive equations (1.3) and (I  .4), satisfying the appropriate toun- 
dary conditions such as  the no-slip conditions. These equations are, apart from being 
nanlinear in character. coupled and may not be that easy to realize an exact solution 
for a specific boundary value problem. 

In this communication, we adopt thefour,step recursive approach.proposed by Langlpis 
and Rivlin4 to obtam an approximate solution for the equation, concerned to investi- 
gate the effect of non-Newtonian, non-Fourier terms in (1.3) and (1.4). The fluid is 
assumed to be in a .itate of steady flow within the volume occupied by the fluid and the 
boundaries are supposed to be rigid and at rest or moving in a specified manner. It 
isfuxther assumed that there are no external forces and no heat saurce within the flow 
region. The four steps of the recursive procedure are detailed as follows. 
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ste~ I : A solution (v:", a?), 8")) of the equations of motion and energy for an 
incompressible Newtonian-viscous and Fourier-heat conducting fluid in the absence of 
body forces and heat sources is obtained subject to suitable boundary conditions. 

Step I1 : The solution (v:", a?', 8"') obtained in step I is introduced into the equa- 
tions of motion and energy of the incompressible thermo-viscous fluid described above, 
i.e., equations (1.6) and (1.7) and the additional body force F, and heat source pv 
required to support thk solution are calculated. 

Step III : A solulion (up', a:2): fl'?"J of the equations of motion and energy for an 
iucompressible Newtonian-Fourier heat conducting fluid, under the influence of body 
force F, and hezt source pv computed in step IT, is obtained subject to the homo- 
gn1311E b~undary conditionn snch as zero velocity/zero fluxlzero temperature on the 
bouudary T. 

Step IV : Then (v, = up' - vFJ,  al = a:) - 0 = $('I - 0(2)) is an approximate 
sol~tion far the equations of motion of a Very slow motion of an incompressible, sligbtiy 
thermo-viscous fluids, subject to the same boundary conditions used in step I. 

Following the procedure sketched above, we examine hereunder, the steady flow of a 
second-order incompressible thermo-viscous fluid in a long straight non-circular pipe 
under the action of constant pressure gradient. The pipe waliis assumed to be fixed 
and maintained a t  a constant temperature O1. Let the axis of Z be chosen along the pipe 
line and the pipe represented by 

The pressure gradient down the tube axes is 

2. Equation of motion and energy in different steps 

Step I: The equation of motion and energy at this stage are same as those cf 
Newtonian-viscous fluid and therefore purely rectilinear flow is sustainable. If  
(0, 0, wil) (x,  y)) is the velocity and 0'1) (x ,? ' )  is the temperature, then we have 

v2 w'l' = c1/2a,. (2.1) 

and 



together with the boundary conditions 

s r l )  = o 
0") =g1)0nj-  (2.3) 

s 1  1 : ,, 11). @('I realized above are substituted in the equations of motion and encr31 
to obtain the body force F and heat source 1, to SUppOtt the flow, we thus obtaili 

and heat source 

&,y = - Bae,c, - ar (,,'y 9. ll,ll,s)/~ 

a, 

-- aGcz (PVO s:=) + I V ~  0;') (2.71 

whera r? = 3Bl2x is the temperature gradient and is assumed to be constant. 

Stcy III : The body force and heat source obtained above are substituted in the eque- 
tionr of motion and energy for a Newtonian viscous-Fourier heat conducting fluid. 
I f  (uI3', v@), wl')) are the velocity components and 01:) (I,).) is the temperature field. 
these equations reduce to 

,C) 
O =  3 , + ~ v ~ ~ v + p ~ ,  

Ss (2.8) 
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Introducing y'", the stream function, by 

so as to satisfy the continuity equation. Equations (2.8) and (2.9) yield after elimi- 
nating al'J 

with 
yr!.I = O = yW 0. r, (2.14) 

Step IY : An approximate solution for the flow through pipes can now be given by 

The velocity field : 

u = U(lJ - ale) = - ~ ( ( 2 )  

= ~11J - o ( ~ J  == - v(Sl  

w = ,,,(I' - w ( 2 )  (2.15) 
pressure ., = ,pr - ur ax (2.16) 
and the temperature field 

@ = tlu, - @ ( % I .  (2.17) 

Thus a purely rectilinear flow of thermo-viscous fluids in straight tubes is not sustain- 
able. The flow in the tube is composed of a rectilinear velocity w = wcl) - ~ ( ~ 1  down 
the tube axis over which i s  superposed a secondary flow characterized by the stream 
function gee) obtained from the equation (2.13) in planes perpendicular to tube axis. 

3. Flow through an elliptic tube 

Let the cross-section r of the tube is given by 

4 (x, ~ 1 )  = ~ ~ 1 ~ 8  + ppa - I = 0. 
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Introducing the non-dimensional variables 

x =ax, ?; = aY and a = bju 

(3 .1)  can be written as 

"2 x2 + yl - = 0. (3.2) 

The solutian for eqns. (2.1) and (2.2) together with boundary conditions in (2.3)> 
may be obtained a? 

Substituting (3.3) and (3.4) in (2.4), (2.51, (2.6) and (2 .7) ,  we can obtain bad): force 
and heat source to sustain the velocity and temperature as 

pP -- --c: 1 + 20% 
nZ, (I+G"' 

a,  pee: c2a3 
+ 12aE a +02,f I- (1 + 2at) (1 + 5"' YB 

- 240' (1 + 0" (I + 20') XP2 Y + 802 (1 5as) (3 + oz) Y] 

PCClC2 ha' + a6 +az)2f PSo3 (I -.t a2)$ (1 + 509 xy4 

- 96a4 (1 $503 f XYZ + 96a4 (1 + uYz (a* + 10a2 + 1) X2y3 

- 4Su' (1 + aq3 (5 + a2) X 

- 1&i' (5 4- 0') (1 i- a" ((146' + 28c2 + 6) X3 

+ 16 (5 +aa) (1 + 509 (1 + 3o2) (3 + aa) u2 X ]  

a& a (2 + 0%) 
pF, = - 

a: 
Y 
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+ 96u"l + u ~ ) ~  (1 + 10a2 +a4)X"YS - 9606J. (5 ++) 3 2  y 

+ 48a2 (1 + 5u2) (1 4- Y5 

- 16a"6r1 + 280% + 14) (1 + u2) Y3 

4- 16a0 (5 + u2) (1 + 5u2) (1 + 35%) (3 + a 3  Y ] .  (3.6) 

(3.7) 

and the heat source is 

Using these in equations of motion (2.8) and (2.9) and then eliminating pressure, the 
equations of motion and energy reduce to 

Equation (3.9) together with (2.14)' yields the solution 

:vw = K,,,FI +p~ 8 '  . 



where 

g = ljOo8 4 600G i 2 3 4 ~ ~  4 600' + 15 

The secondary flow in plalles perpendicular to the tube length for a thermo-viscous 
fluid is thus composed of two components y~:" and ypJ which are illustrated in Figs. 1 
and 2 [for a = 0.4). The pattern (Fig. 1) is composed of the flow around a 
single vartex around the centre of ellipse. The Row pattern y/;-") (Pig. 2) is rotational 
consisting of fiow around four vortices in four quadrants symme~rically placed about the 
axes of ellipse. This fiow is similar to the one lluticcd by Greeli and Rivlin2 for a 
Riner-Rivlin fluid. It is noticed that for K = 1.0 the component @ dominates over 
~ 2 )  and the resulting stream line pattern y@1 is much very close to that of y:" hi 
drifted towards the boundary (Pig. 1). 

The axial velocity component w ( ? ]  can be noticed to be 

+ (1 + 07 (1 + 5u2) ye] (u2 x2 + ya - u2)/f (1 + r5) 
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FIG. 1. Stream line pattern. - I&, - -  - $ I z ) .  

where 



FIG. 2. Stream line pattern 

and 

A,  = [02 (G* - o2 - 1 )  (D3  + 6Ds)/6f - G' (GI + 5) ( D 3  -L 6D1)/6f 

+ 02 { ( G I ~  + So8 + 4206 + 710' f 21c2 + 2)  

- 4 o Z f  ( 1  + 50') ( c 2  4- 5)}/24f2 (1 1 c 2 )  - Lj(1 1- c 2 ) ]  

with 

L = j33&/aB~:pP P a 4  

and 

fi = 180f (1 4- 150' f 15c4 + 0''). 
The expressions for wc2) and 0@) vanish when the non-Fourier coefficients a,, j3, vanish. 

The Nussult Number which characterize the heat transfer coefficient on the boundary 
is computed as 

Nn=A. v8 (3.17) 
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,"here A is the unit normal lo the boundary 

Nu = Nu, - Nu, (3.18) 

where 
N L I ~  = [aZ (5 f c 2 )  (1 + 50') - o 2  (1 f ( i2)  ( 5  $- cT2) X2 

- (1 + 0 2 )  (1 + 50') Y21 &-/6 (1 + 0 2 )  f (3.19) 
and 

Nu, = 2 [Ao + BIX2 + B3 Y 2  - (D1X4 + DJX2 Y 2  + D5Y4)] 

+ 2(02 X Z  + P - 0 2 )  [uz (& - 2D1X2 - DsY2) X 2  

+ (B3 - D 3 X  - 2D5YZ) Y ] / @ m .  (3.20) 

The numerical estimate of these parameters shows that Nu, < NuI and Fig. 3 illustrate 
the variation of the Nussult Number on the boundary. 

The mass transfer in the tube is given by 

The effect of a, is to reduce the flux of the fluid through any cross-section of the tube. 

Velacity ccmponents d2J and v(%)  are obtained as 

4. Flow through a circular pipe 

The case of circular tube can be realized as a special case by putting u = 1 .0 .  
We notice that 



The body force and heat source ate given by 
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and beat sozrcc 

The stream function is given by 

y(?l 3 C[rG fp - 1 -  Y.) - l ) ?  (P + Y? - 4)/192 

with C -. a, c: r2pc/a: p,. 

The axial velocity component is 

and the temperature field is dcduced as 

It is interesting to. nate that there is marked departure between the flows of a thenno- 
viscous fluid as comp;tred to that of visco-ela~tic fluid in circular tubes. 

It is noticed by Ericksens that a purely rectilinear flow down a circular tube can be 
maintained under the influence of constant axial pressure gradient. This would not be 
the case for a thermo-viscous fluid flow in a circular tube. This flow given by w ('1 and 
9 "I is therefore helical in nature. 

Another point of contrast between the thermo-viscous and visco-elastic fluids has 
been noticed by the authors'. In a Couette flow of a thermo-viscous fluid, a temperature 
~radient depending on the velocity of the moving plate is generated within the flow 



rezion whereas such a phenomenon does n o t  happen for  the classical viscous nnd visco. 
elastic fluids. 
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