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In this paper we introduce the definitions of approxmale strong and approximate uniform differentia- 
bility and prove that a function having finite approximate derivative on an interval I is app-oxirnalely 
uniformly differeniiahle at a pomt if and onb if it is approximately strongly differentiable there. We 
also introduce the definition of essentially AC [BY1 functions and prove that a measuable BVG func- 
tion an a set with finite measure is essentially AC. 

Key wards : Uniform dilYereuliability, strong difiercntiability. ayproxinlate uuiform differentiabildy. 

1. Introduction 

Let f be a real-valued f i~nci iou o n  a n  open intcrvnl I. L;Jziri' intloduced Lhc fo l los i~ lg  

definition. 

Dr,hitiorr I . I : I.et f" (x) exist finitely a t  each point of I. A point  a E I is said t o  be 
a point of unifnl-nl diiTercutiabiliiy o f f '  if Tor every B P 0 there is a nei&bourbood. 
.a ld) =- (a - 3, ci + 3 )  c I arid 3 pusitivc I I U I I ~ ~ C I -  P such that  

far all x E :la (6) a n d  x + h e  I whenever 0 < I h 1 I P. Otherwise a 1s said tu be 

a point of non-unifoum differentiability o f  j: 

Lahiri p m e d  the followmg results. 

Theorem 1 . I  : Let f ' i s )  exist finitely at each point of I. A pcint  E I is a point o f  
uniform differentiability of / i f f  ,f' i s  continuaus at u .  
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Throrenz 1 . Z :  Let /'(.Y) w s t  finiLc!y a! Cacl'. point of I. Then the set of the points 
of non-alliforn~ diifcl-mtiabilitg of j in 1 ic of f11-st category and  is an PC. 

Esser and Shishtal inilmdoccd the i"dlowing dciinition 

~ ~ f i , ~ ; , j ~ ~ ~  1 . 2  : j. is said to he strongly diECercntiable a t  a E I if the double limit 

lint G m  exists finiteiy. 
b.",-tC.,.t " - Y  

o i u  

This limit whenever exists is denoted hy f :p  (4 a i d  is called the strong deribative of)  
a t  a. 

r / ieor~, iz  1.3 : L e t 7  (r) exist finitely at c;sh point off .  Then f is strongly differenrisble 
a t  a E I iK f '  i~ continuous a t  a. 

From Thcoremj I .  1 and 1 . 3  we immediately derive the following result. 

Theorem I .4: Let f '  (I) cxist finitely an  I .  A point n E I is  a point of uniform di8e- 
rentiability of f' iff f is strongly differentiable a t  u. 

In Section 2, wc prove some results on strong and uniform diffcrcntiability. In Sec- 
tion 3, we introduce the definitions of approximate strong and approxin~ate uniform 
differentiability and extend the above results i~: tlue light of thesc new definitions and 
prove some other results. In Section 4. we introduce the definition of cssentiallg 
A C  [BYj functions and prove, among other r~!~nl t s ,  th.at if f'is BVG and measurable 
on a set E with I I IE  < -+ co, then f'is  essential!^ AC o n  E. 

2. Results on strong and uruforrrr differenliability 

Definiriori 2 . 1  : Let f and ,o bz Lwa rcal-valued Cunctionion [a, b ] .  Suppose that fot 
every a E (a, b )  there i s  a set S,  C (a, b) having a as two-sided limiting point such thar 

i n  ' exists and equds g (a) .  
.+a X - - a  
s: So 

At rhe points a and b necessai y modilications a l e  made. I n  this case we call g a derived 
function o r  f on [a, b]. 

Note 2.1 : If the approximate derivative ff, (x) exists finitely o n  ['I, 62. then .f& is a 
derived function o f f  on [a, b]. 

Theorem 2.1 : Let f b~ a. real-valued bounded function on [a, b ]  and lel. f attain its 
bounds a n  [a, 61. I f f  ponesjer a derived function g on (a, b)  and f ( n j  = f (b), then 
there is a paint c in (a, b)  such that (c) = O. 
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p& : If j ' (x )  =.f'(a) - - -  l ' ( h )  for a]! .xc 10, bl .  then g is) --. 0 011 (u,b). suppose 
tbnt there is a poillt ir ill (0 ,  b) with f ( < )  :, j ( u )  --.,f(b). Denote hy jW the 1.u.b. 
on [i,; h ] .  Then there IS a point < In [a. b ]  .;ach that AI = J.(L.). S i n e  .t] ;.j'(a) -- 
t ~ h )  we have IT : c -; b and 

J ( x )  - f (c) < 0 for all u E [a, b] .  (2.1) 

For any x in ( c ,  b) wc get 

Letting x + c over the &el S, (see def. 2.1 ), ue obtilin 

Again for any .v iu (a. c)  we get from (2.1) 

j ' ( 4  - f ( c )  > 0, 
X - C 

Letting s + c over the set So wc have 

g (c )  > 0. 11.3) 

Combining (2.2) and (2 .3)  we obtaul g ( c )  L 0. 

If there is a point T I  in (0,6) with f ( 1 1 )  i j ( a )  == f ( b ) ,  then proceeding as above and 
uGng the property of g.1.b. of J' on [a, b ]  1% deduce that g ( c )  .- 0 fo:. tome point c 

in (a, 6). This completes the praof. 

Curullary 2.1.1 : Let f be continuous on [a, b l  and possess a derived function g a n  
(0.b). Then there is a point c in (a, 6) such that 

CoroNury 2.  I . 2 ;  Let .f be continuous on  (a, b ]  and let f& (x) exist finitely a t  each 
point of (a, b). Then there is a point c in (a, 6) such that 

Theorem 2.2: Let f be cantinuous on the open inlenul I and let f possessa derived 
function g on I. Then f i< strongly differentiable bt a E I iff g is cantinuous a t  a. 

Proof: First suppose that g is continuous a t  a. Chooae any E > C. Then there is a 
:. 0 such that (a - 6, a 2 6) C I and 
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f (X) - f (j') = (X - J') S (<)- 

Clearly f E (a - 6. a + 6). SO using (2.4) we have 

x -Y 

This gives that f*  (a) exists and S;" (a) = g (a). 

Next, let f be strongl) differeniiable a1 a.  Then f' (a )  exists and f' (a )  =: g (a) = 

f * (z). Choose any s : 0. There is a 6 > 0 such that (a - 6, u -1 -  6) c I and 

for all X, y (x f 1.1 in (a  - 6, a f 6). Keeping x fixed and letting j. -+ x over set S, 
(see def. 2.1) in (2.5) we get 

This gives that g is continuous a t  a.  

Corollary 2.2.1: Let f be continuous on [u, b ]  and possess a derived Cunclion g on 
[a, h ] .  If g is continuous on [a, b ] ,  then f" (x) exists on [u, b] and f' (x) - g (x) on [a, b ] .  

Corollary 2.2.2. : Let f be conhuous on [a, b ]  and letyb, (x) exist finitely at  each poilit 
of [a, b]. Then f is strongly differentiable at  each point of continuity off;. 

Dejnitiorz 2.2: Let f be a real-valued function on the set E and let a~ E and be a 
limiting point of E If the ratio 

tends to a limit (finite or iniinite) a% x tends to a over the set E, we denote <his lin.it 
by f;(a) and call it the derrlative of J at a rclative to the set E .  

Definition 2.3  : Let f be a real-valued function an the set E which is dense in itsel! 
and let f; (xj exist finitely at  each point of E. ,fis said to be unifarmly differentiable on 
E if fbr any 8 > 0 there is a positive number 6 such that 

Theorem 2.3: t e t  f be a real-valued functionmeasurable a n  the set E wluch is dense 
In itself and mE < + w and let f;(x) exist finltely a t  each paint of E. Then g m  
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,,y 8 =. 0 there is a perfect set C C E such that r11 (E - c) < z and f is unifoimly 
differentiable on C. 

proof: Clearly f is continuous on E. By Theorem 4.3 ( [ 5 ] ,  Ch. IV, p. 113) f; is 
on E.  Let e be any given positive number. Then by Lusin's Theorem ([5], 

Theorem 7.1, Ch. 111, p. 72) there is a closed set F C E such that m (E  - F )  + E  

and f; i~ continuous On F. 

For any two positive integers K and n denote by E,,(K) the set of all points x E F 
such that 

 hene ever y E E, y # x and 1 y - x / < I/n. Tl~en clearly for each K ,  

El (K)  C E, (K)  c E, ( K )  . . . and F = U& En (K). 

Let s E En (K)  and y E E, y # x and 1 y - x ! < 1/2n. If x E E. (K),  then clearly (2.6) 
hoids. Suppose that x $E.(K). Then we can choose a sequence {x,} of points in 
En (K)  such that x, -t x as v -, + m. We may suppose that / x - x, j < 1/2n and 
s ,#y  for v = 1 , 2 , 3  ,.... Then / y - x , / < / y - x ] + ! x - x , / < l / n .  

Since f and f& are continuous on F, letting v -t + oo we see that (2.6) holds. Thus 

(2.7) 

for x e & ( K )  and y E E, y # x whenever x - y I < i12n. We have for each K 

& ( K ) c & ( K ) c E , ( K ) c  ... and E ; =  U E z E . ( K ) .  

So, for each K, there is a positive integer nx such that 

m (F - ( K ) )  i e/2K+1. 

Take BE= E,,,(K) and B = n$, B,. 

m 
Then B is closed and m (F - B) < 2 rn (F  - B,) < p e. Denote by C the set of all 

2-1 

condensation paints of B. Then C is a perfect set, C c B C F C E and 

m ( E -  C )  <m(,?C- F ) + m ( F - B )  + m ( B -  C) <&. 



L-1 be any positive number. Choose positive Integer K such that 2-" .;: ,, 

Thic gives that .f is unlfurmly differentiable on C 

T,i~orem 1 .4  : Let j  be :? real-valued F:~nctioni!~easurahle on the set E \\hick is dense 
in itself and nrE < + a. Supyoie Lhat ,f; ( s )  exists finitely a t  each poii!t of E. Then 
given any 2: - 0, rhrre is a perrect set C c E v ilh >n (1 - C )  -: -;c and a re~i-valucd 
function a on the :re&! !ine having the foliowingpropertics: (i) g possesse:. conl inu~u~ 
derivative on rhe rezl line. (ii) g (x)  = f ( x )  and g'(x) = jLix-) for all X E  C. 

Proof: Choore any e :  0. Then by Theorem 2 . 3  there exists a bounded perlecr 
set C C E with m (E - C) e such that f is nuiformly differentiable on C. Clearly 
,f and ,f; are continuous on C.  

Denote by a and b the g.1.b. and 1.u.b. of the set C and let G = [a, h ]  - C .  Then 6 
i5 an opcn "et and so can be expressed in the farm G == U, (a,, b.), wherc the openinter- 
v.11~ (a,. h:). (a,. b,).. . . are pairwisc disjoint. 

WE define the function g,, on [a,. 5.1 by 

xx (r.) - 4, (-1- - a,,)? 1 B, (x - aJ2 L (.s - u,,) f; (an) 4 f (a,). 

w b r e  -4, and B, are constants. We choose them s w h  that 

.x,, (b,) = f (6,). .4; (5.) - f ;  (6,). Then 



clearly g and h are continuous a t  each point of the set A = G u (- a; a) u (b, m); 
".(.y) exists a t  each paint of A and g' ( x !  = h (x). If a  E C, then 

This gives that iz is a derived function of g on (- m, 

We now show that g and 17 are continuous at each point of C. 

Case 1. Let G = cz, (an, 6 3 .  

Choose any 7 > 0. Since .f and are unifaimly contin~ious on C snd f  is uni- 
formly differentiable on C, there is a d with 0 < 6 < min {q ,  1) such that 

for all x, y ( x  # y)  in C whenever 1 x - y ! < 6. 

We choose a pasitive integer N such that 

Let a e C. Suppose that u  $ B = {cr,, b,, a2, b,, . . . ,ah, b,: and let 6, = min {+ 6, 
/ a - n 1 : u f B}. Take any real number x with / x  - a 1 < aO. If X E  C,  then by 
(2.8) 

l s ( x ) - g ( a ) =  I f ( x ) - f ( a ) I  < q ,  

/ h ( d - h ( a )  1 = i f ; ( x ) -  f L ( a ) I  (7. 

[f x  s G, then x E (a,, bJ for some n > N. W e  have, using (2 .9) ,  b. - a, < 6 and 
/ a r - a [  (6 .  So by (2.8) 



This giver that g and 11 are co~~tinuous a t  a .  Lct a - o, for sonic 7 8  (1 (: ?, < &). ~h~~~ 
cialrly g and 11 s rc  cont~naous at a cn  the right. Take 

j 0 = i n i n  3 5 ,  1 1 1 - a / :  " 'Band 1 i i u 1 .  

Hence g and 11 %re coritinuous a t  a on the left. If a  - 6, for somc :: (1 :< ;' ' N),then 
as above we can show that g and h are continuous at rr. 

Case If. Let C = U%, (an, 6.) for some poiitivt integer N. We may suppose ihat a < 
0, .-: b, : 0, .= b, < . . . .= a, < bN < h. It is easy LO s e t  that g and :I are continuous. 

By Coro1la1-y 2.2.1, g' (x) exists for 311 .Y c [a, b ]  and g' (x) - h (x). Thus 
continuox.; derivative c n  the whole real line and g'(u) J- 11 (x) =,f; (.r) %,- xf C, 
This comp!eter the proof of the theoreln. 

3. Resutts on approxinlate strong and approximate uniform differentiabilit> 

In this section we first stow that a function approximately semi-tonrifinouc, an a 
measurahla set E is measurable; further if the funct.ion is finite KC. on E, then it is 
approximately continwut' a.e. on E. 

D/$nition 3.1 : An extended real-velued function,/ on the measuiahle set E is said to 
be approximately uppel- [lower] semi-coulinuous at  a t  E if for e w ~ y  c 3- 0 thcre is a 
measurable sct S, C E having a as point of demity such that for rll x E S, , 

Iff is approximately continuous a t  a, then i t  is obvious thmt f is approximately upper 
and lower semi-continuous a t  a ; conversely iff is approximately upper and lower semi- 
continucus a t  a andf (=)# & cam, then j'is approximately continuous at n. 
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Lemma 3.1 : Let d be any subset of the real line. If A contains almost all of its deiwty 
pints. then A is measurable. 

pro@': Lei B denote the complement of A .  Assume that A is not measurable. Then 
t[le bets A and Rare  not metrically separated ([3,] Ch. V,  p. 117). So by Theorems 5.7 
and j . 8  (131, Ch. V, p. 117) Lh-ere is a set E C B such th.at n P E  l 0 and a t  each point 

E the density of A is unity. This cantradicts the hypothesis that A contains'almost 
all of its density points. Hence A is measurable. 

T/?eorent 3.1: (Cf. [ 2 ] ,  p. 309). Let f be an extended real-valued function on the 
measurable set E. I f f  is approximately upper [lower] semi-continuous on E, then f 
is measurable on E. Further iff is finite a.c, on E, then f is approximately continuous 
a.e. on E. 

Proof: Suppose that f is approximately upper semi-contir.uous on E. Let : be any 
real number and let A = {x. : s E E and f ( x )  2 :I). Let n be a paint of density of A 
aud let a~ E. Assume that f (a) < j ~ .  Since f isapproximatelyupper semi-continuous 
at a,  there i? a measu~able set S. C E having a as point of density such that 

f (x )  i y for all x E S.. (3.1) 

Let B = E - S,. From (3.1) we see that A c B. Clearly the density of B at a is 
zero which contradicts the fact that A has unit density at a. Hence f (a) 2 g, that is, 
~ E A .  Since A has density zero a.e. on E' (complement of E) it follows that A 
contains almost all of its density points. So by Lemma 3.1, the set A is measurable. 
This gives that f is measurable on E. 

Further, i f f  is finite a.e. on E, by Theorem 10.6 ([j]. p. l32), j i s  approximately conti- 
nuous a.e. on E. 

Iff is approxinxately lower semi-continuous on E, then - f is approximately upper 
semi-continuous on E and the result fallows. 

Definition 3.2 : Letf  be a real-v&ed function on the set E. f is said to be approxi- 
mately strongly differentiable a t  a E E, if there is a measurable set S C E containing a and 
having a as point of density such that the double limit 

lim f tX) -f (" exists finitely. 
C". ?,W$ I - J' I 

The above limit whenexer exists (finite or infinite) is denoted by f,; (a) and is called the 
approximate strong derivative af f at  a. 

It is easy to see that if fz (a) exists, then the approximate derivative f& (a) exists and 
f f  (4 =fG(=). 



 if;^,, 3 3 : Let ,f be a real-valued functio~l on the interval1 and let &(,) 
tinitzly at each point of I. f is said to be appi-ilximrtely uniform!y diffn.entiable at a 
point i 7 if far evcry E > 0 there is a measurable :et S C I Containing a and having. 
as point o r  dencity such that 

y - x  

for all x, y (X # y)  in S. 

For tha remaining part of this section we suppose that 1 is a fixed finite open interval, 
f is a real-valued function on I and J& (x) exists finitely a t  each p o d  of I. This gives 
that ,f is measurable on I (see Theor-om 3 1 ) .  

For each a G 1 ,we denote by Fa the family of all measurable i c t %  S c J containilig ,, 
and havi!rg a as point of dencity. Fol- any two points .I.. 1, is# ?.) In I u e  write 

Then clearly U (S, ,  a) G U (S,, a) iT Sl C S,. 

Let u(a)  = inf { U  (S ,  a): Sf Fa}. 

Theorem 3 .2  : The function t~ is approximately upper semi-coniinuou~ on I end hence 
t t  is meawrable on I. 

Proof : Let a e I. CChoose any E > 0. There is an  element So E Fa such that u (So, U) 
< tr (a) -i- i:. Denote by S the set of pointc of S, where the deilrity of S, i% unity. Then 
S is measurable and each point of S is a point of density af S. Clearly S E  F*for each 
x e S. Take any x E S .  Since S > So. 

ZI (x) < U (S, X) < U US, a) < u (a) + E .  

This givcs that u is approximately upper semi-continuous a t  a and so on I. By Theorem 
2 . 1 ,  u is rncasurabfe an 7. 

Theore~m 3.3 : f is approximately aniformly diRerentiable a t  a e I iff zr (a )  = 0. 

Proof: First suppose that f is approximately uniformly differentiable a t  a. Chaase 
any E :, 0. Then there is a member SE 17, such that y (x ,  y) < 8 for all x, y ( x i  y) 
in S. This gives that U (S ,  a) S &. Since u (a) < u (S, a) we get 0 < u (a) < 8 .  

I t  follaws that u (a) = 0. 
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Next, let u (a) = 0. Cboose any e > 0. There is a member S G F, such that (s, a )  
< 8.  Since y /  (x, y) < U (S, ui for x. y (x # y) in S we get 

y (x, y) < E for all s, y in S with .c # y. 

Hence f is approximately uniformly differentiable a t  a. 

Theorem 3 . 4  : For each k > 0, the measure of the set 

E = {x : x E I and 11 (x) > k) is zero. 

proof : Since u is measurable, the set E is meawrable. Assume that niE > 0 .  Again, 
since f; (x) is finite at each point of E, by Theorem 10.8 ([5], Ch. VJI, p. 237) f is BYG 
on E. So there is a sequence of sets El, E,, E,,. . . such that E= Ug, Enand f is BV 
on each En. Since f is measurable on E, from Theorem 4.2 ( [ 5 ] ,  Ch. VII, p. 222) it 
'dlows that the sets E,, E2, E;,. . . may be taken measurable. Since nzE > 0, mE,> 0 
br some positive integer j~. Again, since f is BV o n  E,, ?here is a fonciion g ,  BV on I, 
such that g = f on E, ([5], Lemma 4.1. Ch. VIT, p. 321). So f;, (x) exists finitely a.e. 
m E,. Let A denote the set of points s of E, such that fir (x) exists finitely and x 
s a point of density of E,. Then A is dense in itself and mA =mE,> 0 and f; (.x) exists 
initely a t  tach point of A. By Theorem 2.3, there is a perfect set B  C A such that 
nB > 0 and f is uniformly differentiable on B. Choose any E with 0  < e < K. 
rhen there is a 6 > 0 such that 

o r  all x,y(x#y) in B whenever [ x - y I  < S .  

Let C denote the set of points of B  where the denstty of B is unity. Then 7nC = 
nB>O. Let u s C  and S = ( a - 6 ,  a + d ) n C .  T h e n S e F , a n d  fd(~)=f:~(x) 
br all x e  C. We have from (3.2j, 

or all x, y (x # y)  in S .  This gives that U (S, a) < e .  So 0  4 u (a) f 8 .  This contra- 
licts the hypothesis that I! (x) > k for all x x E E >. Hence mE = 0. 

Pheorern 3.5 : Let f be a real.. alued function on the open interval I and let f& (x) 
xist finitely a t  each point of I. Then f is approximately unifornzly differentiable almost 
verywhere on I. 

'roof: For each positive integer n, let 

E,= {x: X E  I and u(x)> lln) and E = , U z I  E.. By Theorem 3 .4 ,  mE,= 0  
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lor 11 = 1.2, 3.. . . and so mE = 0. If x E I - E, tb.en a (x) = 0. So by Theorem 3.3 
f i s  approximately uniformly differentiable at x. This proves the theorem. 

Tl7eni@in 3.6 : f' is approximately strongly differentiable a t  a E I iff f is approximately 
uniformly differentiable at a. 

Proof: First suppose that f is approximately strongly differentiable a t  a E I. There is 
a member S, E F, such that 

for all s, :, (x f y) in S,. 

Deuote by S, the set of paints of S, where the density of S, is unity. Then S, has 
iinit density at each of its points. Let w f S,. Since f,;, (a) exists  finite!^, there is a 
member S, E F, such that 

TakeS ,=S2nS3 .  Then S,eF,. L e t . z ~ S , a n d z # w .  Thenz,  w ~ S , a n d ~  
by (3.3) 

Letting 2 -, w over the set S, we have 

If& ( 4  -f&(a) 9 2.  

Let x, y E S, and x # y. Then 

< 28 [using (3.3) and (3.4)]. 

This gives that 0 < u (a\ < U(S,, a) < 28. Since & > 0 is arbitrary we obta~n 
u(a )  = 0. Hence f is approximately uniformly differentiable a t  a. 

Next, let f be approximately uniformly differeutiable at a. Choose my  E 0. There 
is a member SE Fa such that 

for all x , y  (xZ y) in S. 
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Again, for s, y ( x  =# y )  in S, 

< + E + + E = E  [using ( 3 . 5 )  and (3.6)]. 

This gives that f is approximately strongly differentiable at a. 

From Theorems 3.5 and 3.6 we obtain the following : 

Theouern 3 . 7  : Let f be a real-valued function on the finite open interval 1 and 
let f&(x) exist at each point of I. Then f is approximately strongly differentiable almost 
everywhere on I. 

4. Essentially BV and AC functions 

Definition 4.1 : Let f  be a real-valued function on the measurable set E. f  is said to be 
essentially BY [ A C ]  on E if given any E > 0 there is a; measurable set A C E with 
nz (E - A )  < E such that f is BV [AC] on A. 

Let E be a measurable set with rnE < + oo and let f  be essentially AC on E. Then 
it is easy to show that f  is essentially BV on E. In this section we show that the con- 
verse is also true. Further we show that a measurable function BVG on a set E with 
inE < + m is essentially AC on E. 

Throughout this section we suppose that E is a measurable set with mE $- oo and 
f  is 2 real-valued function measurable on E. 

Theorem 4.1 : I f f  is approximately strongly dillkentiable a.e. on E, then f is essentially 
AC on E. 

Proof : Denote by the set of points o f  E where f is approximately strongly differentiable. 
Then m (E - B )  = 0: 

Let e > 0 be chosen arbitrarily. Take q = €/(I + mE). Let a e B. Then there is 
a measurable set S, c B containing a and having a as point of density such that 
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for all x, 1. ( x i  ?;) in S,. Then 

1 f ( y ' ~ - f ( . ~ ) i  <{J - ' - l f & ( u )  1 } 1.1-x: 

for all r, 3. in S,. This gives that f is AC on S,. Since a is a point of density of s,, 
there is a positive number 6, such that 

n2 Is, n A, @)1 ; 
mil,  (8)  

1 - 9  (4.1) 

Let F = {i, (S) : 0 i 6 < 6, and a e 5). Theo F covers the scl B in the sense of Vitali. 
Hence by V~tali's Theorem ([3], Ch. V, 711. 5.1, p. IIO), there is a finite number or pair- 
wisc disjoint intervals 

A,&, @,I, rAa, (4. , . ., &&.(/IN) (4 B)  

in the family F such that 

Write A; = s,,n ! (11,) (i = 1,2.  . . . , N )  and A = wL, A,. 

N N 
nzA- 2 : m A i > ( 1 - q )  , Z m [ B n 3 , , ( h 3 ]  

'-I lEil  

> 1 - ) ( I  - 1 )  [using (4.211 

> in5 - q (1 +- mR) -- inB - E = mE - E .  

The function f is AC on each of the sels A,, A,, . . . , A,. Since the intervals A,,(h,), 
!La, (Q, . . ., Lam (hid) are pairwise di$oints we can show that f' is AC a n  A. Hence 
f is essentially AC an  E. 

Theorem 4.2 : Iff is BVG on E, then f is essentially AC o n  E; hence essentially 
BV o n  E 

Proof : Denote by B the set of points of E where f is approximately strangly differenti- 
able. Since.f is BVG and measurable on E. B can be expressed in the form E =- U:,E.; 
wherc f is BY on eclch E, and each P, is measurable. For each n, f;, (x) exists finitely 
as. on E,. Chase any e > 0. By Theorem 2.3 there is a perfect set -C. C E. with 
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,, $+-. - C,) 4 &j2* such th8t f'is unifornily differentiabk on C.. Denote by A ,  the set 
ofpoints of Cn whcrt thc density of C, is unity. Then each point of A, is a point of 
dcnsiry or A. and 112 (E, - A,) < &". Let A = u,,?~ A,. Then A C E and m (E A)  
< E .  

Lel a f A. Then a e A, for some iz. Choost any q > 0. Since f is uniformly differen- 
tiable cn C. there is a 6 > 0 such that 

1 1 f'w - f'b) -y9 ( x )  1 < ,, 
Y - x  

(4.3) 

for all s. 3. (x # y) in  C,. Take S = (a - 6, a + 6) n C,. Then ,S is measurable, a E S 
and S ha? unit density at  a. If x E S and x # a, then using (4.3) we get 

Therefore for any x, y (x# y )  in S, 

y - x  y - x  

( i l  [using (4.3) and (4.411. 

This gives that f is appl.oximately strongly differentiable a t  u. and so a c B. Hence 
A C B. We Imve E -- B c E - A. Sa n~ (E - B) cc E.  Since c > 0 is arbitrary, 
m (E - B) = 0. Thuz f is approximately strongly diffhcntiabic ax .  on E. Uy Theo- 
rem 4.1, J' is essentially AC on B. 

Corollnrj 4.2.1 : i f f  is essentially BV on E. then j is essentially AC on E 

P?oof: For each positive integer tz, thtre 1s a measurable set B, c E with iii (E - B,) 
< l / r l  such t l u ~  f is BV on Bn. Let B = U 2 ,  B.. Then B c E and in (E  - B) = 0. 
The function f is BVG on B. So by Theorem 4.2, f is essentially AC on 6! which gives 
that f is essentially AC on E. 

Corollary 4.2.2 : Iff& (x) exists finitely a.e. on  E, then f is essentiallj AC on E. 

Proof': Let B denote the set c ~ f  points of E where j& (x) exists finitely. Then 
nz (E  - B)  = 0. By 'Thecrem 10.8 ( [ S ] ,  Ch. VII, p. 237) f is BVC on B. Now by 
Theorem 4.2, ,f is essentially AC on  B and so on E. 

Theorem 4.3. Iff'& (x) exists finitely a.e. on E, then given any c > 0 there is a per- 
rect ie t  A C E with n? (E  - il) < E such that f; (x) exists finitely at  each point oi' ,1 and 
thul f' is unifoiinly difierentiable on A.  



proof : By Corollary 4.2.2, f' is esseut.al1y BV on B. Choose any e :, 0. There is 
measur~ble set B c E virh in (E  - Bi i f c such that j'is BV on B. Denote by c 
the set of the poiats of R where j'; (s) existi finitely. The13 m (B - C) = 0. By Theu. 
rcm 7.3. there is a peiiccl set A c C with m (C - A) < $ c such th8.t J' is u n ~ f o ~ l ~  
differentiable on A .  We have A C C C 6 C E. So E - A = (E  - B) U (3 - Cj 

u (C - A )  and n r  (E - 4) < ni (E  - B) 1 -  Ad(B - C) f nr (C - A) < 8. 

This proves the theorem 

From Theorems 4.3 and 2.4 we obtaiu the following: 

Theorpin 4.4 : If f&(s) exists finitely a x .  o n  E, then give11 ally c 3. 0. there is a per. 
fect set .4 c E with n l  ( E  - A) .: i and a f~mction g defined o n  the real line havjllg the 
following properties. 

(i) g possesses contiuuous derivative on Lhe real line. 

(ii) g (x) = f ( x )  and g' (.Y) = j& (x) Car all x E A.  

5. Notations 

a. e. = almost everywhere 
iff = if and only if 
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