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Abstract

In this paper we introduce the definitions of approximate strong and approximaie uniform differentia-
bility and prove that a function having finite approximate derivative on an interval 7 is aprroximately
uniformly differentiable at a point if and only if it is approximately strongly differentiable there. We
also introduce the definition of essentially AC [BV] functions and prove that a measurable BVG func-
Lion on a set with finite measure is cssentially AC,
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1. Introduction
Let f be a real-valued function on an open interval /. Lahiri! introduced the following

definition.

Definition 1.1 Let f*(x) exisi finitely at each point of /. A point ae ] is said to be
a point of wniform differentiability of fif for every &> 0 there is a neighbourbood.
el == (e — 3,0+ 8) C 7 and a positive number P such that

&j.{lf);z{(_\j —f x| < e
T
for all xe N\ (8) and x + hel whenever 0 < | £ ] <g P. Otherwise o is said tu be
a point of non-uniform differentiability of f.
Lahiri proved the following results.

Theoren: 1.1: Let f7(x) exist finitely at each point of /. A pcint ael is a point of
uniform differentiability of fiff /7 is comtinuous at o.
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104 P. C. BHAKTA AND D. K. MUKHOPADEYAY

Theorem 1.2: Let f'(x) exist finitoly af cach point of I. Then the set of the poipy
of nop-uniform differentiability of f in J is of first category and is an F,.

Esser and Shisha! introdugced the following definition.
Definition 1.2: fis said to be strongly differentiable at a e J if the double limit

lim L (Lz _f (87 exists finiteiy.
G, v;-;ga- ay -

This limit whenever exists is denoted by f* («) and is called the strong derivative of
at «.

Esser and Shisha proved the fcllowing result.
Theorem }.3: Letf’(x) exist finitely at sach point of 7. Then fis strongly differentiable
at acl iff f/ is continuwous at a.

From Theorems 1.l and !.3 we immediately derive the following result.

Theorem 1.4: Let f'(x) cxist finitely on /. A point a e/ is a point of uniform difie-
rentigbility of f Y £ is strongly differentiable at a.

In Section 2, we prove some resulis on strong and uniform differcntiability. In Sec-
tion 3, we introduce the definitions of approximate strong and approximate uniform
differentiability and extend the above resulis in the light of these new definitions and
prove some other results. In Section 4, we introduce the definition of cssentially
AC [BV] functions and prove, among other results, that if f is BVG and measurable
on a set £ with mE < - co, then f is essentially 4C on E.

2. Results on strong and uniforns differentiability

Definition 2.1:  Let f and g be two real-valued functions on {a, »]. Suppose that for
every a € (g, b) there is a set Sy C {4, b) having « as two-sided limiting point such that

fim AT i and equals g (a).
e X —a
&= 8

At the points a and b necessary modifications are made. In this case we call g a derived
fanction of f on [a, b].

Note 2.1: 1f the approximate derivative f7, (x) exists finitely on l, B, then 7, Jsa
derived function of f on [a, b].

Theorem 2.1 : Let f be a real-valued bounded function on la, ] and let f attain its
bounds on [z,0]. If f possesses a derived function g on (g, b) and f(a) = f (&), then
there is a point ¢ in (a, b) such that g {c) = O.

ot
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proof + I f(x)=f{a) = f(b) for all xela, bl then g(x)=:0 on (g B). Supposc
that there is a point & in (g, b) with f(&) > f{(a) == (k). Denoie by M the Lu.b. of f
o fa, b Then there is a point ¢ i {4 4] such that M = f(c). Since M > fia) =
Ftb) we have @ < c¢-Zh and

S —fe) <0 for all xeia,b] @.n

For any x in (¢, b) we get

IO =7 ¢

xX—c¢

Letting x — ¢ over the set S, (see del. 2.1), we obtuin

£ <0 (2.2)
Again for any x in (a, ¢) we get from (2.1)
UCEIICRYS
Letting x — ¢ over the set S, wec have
(2.3

(=0
Contbining (2.2) and (2.3) we obtain g (¢) = 0.

If there is a point iy in (g, &) with f(y) < f(a) == f(b), then proceeding as above and
using the property of g.lb. of f on {a, b] we deduce that g (¢ = 0 for some point ¢
in (g, b). This completes the proof.

Corollary 2.1.1: Let f be continuous on [a, b] and possess a derived function g on
(a,b). Then there is a point ¢ in {¢. b} such that

B~ flay= (b~ a)g().
Corollary 2.1.2: Lel f be continuous on [a, 5] and let f,, (x) exist finitely at each
point of (a,5). Then there is a point ¢ in (g, ) such that

F(B) ~fla) =& — a)fs (o).

Theorem 2.2: Let f be continuous on the open interval 7 and let f possess a derived
function g on 7. Then f i< strongly differentiable at « e 7T iff g is continuous at a.
Proof ©  First suppose that g is continuous at «. Choose any & > ¢, Then there is 2
9>-0 such that (x — 3, « +8)C 7 and

Jg(x) —g (@) | <& for all xe(a— 8, u+8). (2.4)
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Take any twe points x, ¥ (v y)in(e —d,a - 3). By Corollary 2.2.1, there is a point
£ lying between x and y such that
FE=f=x—-»g&-
Clearly éefe— &8, a-+98). So using (2.4) we have
[O=S0) e[ =is@)—s@ i<
x—y
This gives that f* () exists and /* (o) = g (a}-
Next, let f be strongly differeniiable at «. Then f’(e) exists and f'(o) = g(a)=
£*(a). Choose any &> 0. Thete is a 8 > 0 such that (e — 3, o &) C7and
for all x,y (x# 3) in (« — 8, o +8). Keeping x fixed and letting 3 — x over set §,
(see def. 2.1) in (2.5) we get

jg@ —gi<e
This gives that g iS continuous at a.
Corollary 2.2.1: Let f be continuous on [a, b] and posiess a derived function g on
[a, p]. If g is continuous on [a, b], then f7 (x) exists on [a, b] and f* (x) = g (x) on [g,b].
Corollary 2.2.2: Let f be continuous on [g, b} and let f7, (x) exist finitely at each point
of [a,b]. Then f is strongly differentiable at cach point of continuity of 77,
Definition 2.2: Let f be a real-valued function on the set £ and let e E and be &
limiting point of E. If the ratio

f&x) —fla)
X —a
tends to a limit (finite or infinite) as x tends o o over the set E, we denote this limit
by fz(e) and call it the derivative of f at « rclative to the set E.

Definition 2.3: Let f be a real-valued function on the set £ which is dense in itsell
and let fx (x) exist finitely at each point of £. fis said to be upiformly differentiable on
E if for any & > 0 there is a positive nuniber § such that

f(}) f(x) —pm|<s

for all x,y (Jca‘é ¥) in E whenever |x —y ! < 4.

Theiorem 2.3: et f be a real-valued function measﬁrab]e on the set E which is dense
in.itself and mE < -+ co and let f5 (%) exist finitely at each point of E. Then given
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any ¢ >0 there is a perfect set C C E such that m(E — ¢) <& and f is uniformly
Jifferentiable on C.

Proof 1 Clearly f is continuous on E. By Theorem 4.3 ({5}, Ch. IV, p. 113) f% is
measurable on E. Let & be any given positive number. Then by Lusin’s Theorem ([5],
Theorem 7.1, Ch. III, p. 72) there is a closed set FC E such that m(EF~F)<3e

and f{ is continuous on F.

For auny two positive integers K and n denote by E,(KX) the set of all points xe F
such that

=) -
=y TR <2 2.6

whenever ye E, y# x and |y — x| < 1/n. Then clearly for each X,

E (K) CE(K) T Eg(K)... and F= UR E,(K).
Let ve E,(K) and ye E, y# xand |y — x| <1/2n. If xe E,(X), then clearly (2.6)
holds. Suppose that x ¢ E,(K). Then we can choose a sequence {x,} of points in

E,(K) such that x, »x as v — + co. We may suppose that {x — x, | <1/2r and
w#y for v=1,2,3,.... Then {y—x,|{<|y—x|+|x~x,|<1/n

So

LD=JED | <2w 0=1,23..0.

Y%

Since f and fg are continuous on F, letting v — + co we see that (2.6) holds. Thus

for xe £, (K) and ye E, y# x whenever | x — y | < 1/2n. We have for each X
EEKCEK®CEKC... and F= U2 E,(XK).

So, for each K, there is a positive integer ny such that
m(F — Eg, (K)) < g/25%,

Take Bg = £,,(K) and B= NE, Bx
Then B is closed and m (F— B) < 2" m (F — Bx) <%& Denote by € the set of all
k=1

condensation peints of B. Then C is a perfect set, CC B C FCE and
mE-—)<mE—-F+mF—~B)+mB—c)<es
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el i be any positive pumber. Choose positive integer K such that 2% < .
Take &= 1/2ng. Lot x.ye C. y#x and {x—y|<é Then x, P& B (k) and
Ix—v|<12ng So by 2.7
NI pw| <2x<y,

This gives that 7 is uniformly differentiable on C.

Theorem 2.4 Let f be a realvalued function measurable on the set Z which is dense
in itsell and mE <+ oco. Suppose that f (x) exists finitely at each point of £, Then
given any ¢ > G, there is 2 perfect set ¢ ¢ E with m(£ — C) < ¢ and a real-valued
function g on the real line having the following properties: (i) g possesses continuous
derivative on the veal line, (ii) g (x) = £(x) and g’ (x) = f£{x) for all xe C.

"

Proof : Choose any ¢ > 0. Then by Theorem 2.3 there exists a bounded perfect
set € C E with m (E — C) < ¢ such that fis uniformly differentiable on C. Clearly
£ and ff are continuous on C.

Denote by @ and b the g.I.b. and Lu.b. of the set C and let G = [¢,b] — C. Then G
is an open cet and so can be expressed in the form G == U, (a,, b,,), where the open inter-
vals (ay. &) {44, 8,),. .. are pairwise disjoint.

We define the function g, on [a,, b,] by

where 4, and B, are constants. We choose them such that

2o (b)) = fb). gi(by) = fi(b). Then

Ao, = ) = (560 — e} — 2 {LELLED o))

w4,

Bty —an =3 {LODLE@) )l ()~ ey

T Oy

We now define the {unctions g and & on the real line as follows:
g(x)y e f(x), h{x)=fL(x) for x& C,
£(xX) =g, (). h(x)=g;(x) for a, < x < b,,
g =(x—a)fi (@ +f(a), h{x)=fila) for x <a,
g =(x—b) fg®) +5®). h(x)=fz() for x > b.
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Clearly g and / are continucus at each pointof the set 4 = G U (— oo, a) U (b, o0);
2 (x) exists at each point of 4 and g" ()= A(x). IfaeC, then

g(0) — g (d) f(v) f(a) == ff (o) = N {a),

fim : lim
2> E 2> a
a€C #el

This gives that / is a derived function of g on (— oo, oo).
We now show that ¢ and s are continuous at each point of C.
Case 1. Let G= 2, (4, by

Choose any # > 0. Since f and fi are uniformly continuous on C and f is uni-
formly differentiable on C, there is a § with 0 <5 < min {n, 1} such that

@ =F0Y < [ ) —F20)] <m,
’f();):x(m f‘,?(x)‘ < (2.8)
for all x,y (x# y) in C whenever |x — p| < 4.
We choose a positive integerv N such that
i (b —a)> %6, @.9)

N}

Let ae C. Suppose that o« ¢ B= {4, b, ay, by,.. .., b} and It &, =min {33,
Ja—u}: ueB}. Take any real number x with |x — o | <8, If xe(, then by
2.8)

lg) —g @)= [7x)—Ff@]| <y,

[hix) —h(a) | = (f5(x) —fe(a) ] <n.
If xeG, then xe (g, b,) for some n> N. We have, using (2.9), by — @, <3 and
la,—~a] < 8. So by (2.8)

Aahy— | < 1£200 — Sz ] + 2| LELZLE) oy [ <
Bty — | <3| LELTE) o] 1100 — fitad | < n

lgx) —g(@ | <lgla) —g@@ ]+ g6 —flan) |
KUfla) —f(@) |+ 4ubo— @) | + [ Balbn—an) | + K(x —a,
<y 43+ 4+ K
<@+ Kn
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where K = Sup i/t xe Ch

vy - Dt s e - Aed DR Y — (@) |

Filag) — fila) | = 3 Ap(by — @) | -+ 2] B, (b — 0) |

<+ 9 - G
= 18y,

This gives that g and / are continuous at «. Leta =4, for some y {1 = v < N). Then
civarly g and / are continuous at « cn the right. Take

Go=min (48, lu—af: weB and 15 o}
Let x heany real number infe — d.a). HxeC then |2 | —g(a) | < yand | (x
e f{a): <y, If xeG, then xe(a,. b, for some n > N. As above we can show that
jgt) —gl) i <@ +Ky and [ h(x) —h{e)| <i8n.

Hence g and /i are continuous at a on the left. If o = b, for some v (1 < 7 < N), then
as above we can show that g and h are continuous at «.

Case I1. Let G = UIL, (a4, ba) for some positive integer N. We may suppose that a <
a, < by T ay < by < ... <ag<bg<'b Ilis easy to sec that g and & are continuons.

By Corollary 2.2.1, g’ (x) exists for all x € {4, b] and g’ (x) = /i (x). Thus g possesses
continuovs derivative on the whole real line and g’ (x) = A (x) = f£(x) for all xeC,
This completes the proof of the theorem.

3. Resulis on approximate strong and approximate uniform differentiability

In this section we first show that a function approximately semi-continuous on a
measurable set £ is measurable; further if the function is finite a.e. on E, thenit is
approximately continuous a.e. on E.

Definition 3.1 An extended real-valued function f on the measurable set E is said to
be approximately upper [lower] semi-continaous at a e E if for every ¢ > 0 there is 2
measurable s¢t S, € E having o as point of density such that for zll xe S, ,

f<f@y--e[f() 2 fo) <]

If fis approximately continuous 21 «, then it is obvious that £ is approximately upper
and lower semi-continuous at a; conversely if f is approximately upper and lower semi-
continucus at ¢ 3nd f(a)# 4 oo, then fis approximately continuous at o,
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Lemma 3.1: Let 4 be any subset of thereal line. If 4 contains almost all of its density
points, then A is measurable.

Proof : Let B denote the complement of 4. Assume that 4 is not measurable. Then
the sets A and B are not metrically separated ([3,] Ch. V,p. 117). So by Theorems 5.7
and 5.8 ([3], Ch. V, p. 117) there is a set E C B such that m™* E > 0 and at each point
of E the density of A is unity. This contradicts the hypothesis that 4 contains almost
all of its density points. Hence 4 is measurable.

Theorem 3.1: (Cf. [2]. p. 309). Let f be an extended real-valued function on the
measurable set E. If fis approximately upper [lower] semi-continuous on E, then f
is measurable cn E.  Further if fis finite a.c, on E, then £ is approximately continvous

ae on E.

Progf : Suppose that f is approximately upper semi-continuous on E. Let y be any
real number and let A = {x: xeFand f(x)2 7}. Let a be a point of density of 4
and let ac E. Assume that f(a) << y. Since f is approximately upper semi-continuous
at «, there is a measurable set S, C E having « as point of density such that

f(x) <y for all xeS,. 3.1)

let B=E— S,. From (3.1) we see that 4 C B. Clearly the density of B at o is
zero which contradicts the fact that 4 has unit density at «. Hence f(c) 7y, that is,
acA. Since A has dewsity zero a.e. on E’ (complement of E) it follows that 4
contains almost all of its density points. 8o by Lemma 3.1, the set 4 is measurable.
This gives that f is measurable on E.

Further, if fis finite a.¢. on E, by Theorem 10.6 ([5], p. 132), fis approximately conti-
nuous a.e, on £.

If f is approximately lower semi-continuons on E, then — f is approximately upper
semi-continuous on E and the result follows.

Definition 3.2 : Let fbe a real-valued function on theset E. f is said to be approxi-
mately strongly differentiable at o e E, if there is a measurable set § C F containing « and
having o as point of density such that the double limit

tim LSO e ety
oy >i@mm | X~y |

2,YES

aFEY

The above limit whenesver exists (finite or infinite) is denoted by fi3 (2) and is called the
approximate strong derivative of f at a.

Tt is easy to see that if £, () exists, then the approximate derivative fy, (2) exists and

F1@) = £ ().
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Definition 3.3 1 Let f be a real-valued Tanction on the interval7 and let 740 exis
finitely at cach point of 7. fis said to be approximately uniformly differentiabie ate
point e 7 if for every & > 0 there is a measurable set § C 7 Containing o and having o
as point of density such that
AS ’ b
SOZIW

y—x
for all x,y {(x #y) in S,
For the remaining part of this section we suppose that / is a fixed finite open interyal,

fis a real-valued function on 7 and £, (x) exists finitely at each point of 7. This gives
that f is measurable on / (see Theorem 3.1).

For each « ¢ 7 we denote by F, the family of all measurable cets S ¢ 7 containing 4
and having « as point of density. For any two points x, y {x 5 v} in 7 we write

o —-r& f(x

(x5 STy e )] E

For ae/ and SeFq, let
U(S,ay=sup {y{x,)) :x,yeS and x% y}.

Then clearly U (S, @) K U (Sp, 0) if Sy C S,
Let w(a)=inf{U (S,a): SeF,}.

Theorem 3.2 : The function » is approximately upper semi-conlinuous on 7 and hence
u# is measurable on 1.

Proof : letael. Chooseany ¢>> 0. There is an element S, e F, such that U (S, a)
<L u(2) 2. Denote by S the set of points of S, where the density of S0 is unity. Then
Sis measumblc and each point of S is a point of density of §. Clearly Se F, for each
xeS. Take any xe §. Since §> S,.

(X SUGEXI<US, o) <ule) +ea

This gives that v is approximately upper semi-continuous ato and so on 7. By Theorem
3.1, u is measurable on 1.

Theorem 3.3: fis approximately uniformly differentiable at « & 7 iff u (o) = 0.

Proof : First suppose that f is approximately uniformly differentiable at o. Choose
any ¢ > 0. Then there is a member Se F, such that y (x,1) < ¢ for all x,y(x# 5
in S. This gives that U (S,a) <e. Since u(a) < U (5,0) we get 0 <Lule) <&
It follows that u(a) =



STRONG AND ATPROXIMATE UNIFORM DIFFERENTIABILILY 113

Next, letu (o) = 0. Choose any & > 0. There is 2 member S e F, such that U (S, «)
<& Sincew (x,1) €U (S o) for x.y(x+#) in § we get

wix,y) <& for all x, yin § with x+# y.
Hence f is approximately uniformly differentiable at «.

Theorem 3.4: For each k > 0, the measure of the set

={x: xel and u(x)= k} is zero.

Proof : Since v is measurable, the set E is measurable. Assume that mE > 0. Again,
since f, (x) is finite at each point of E, by Theorem 10.8 ([5], Ch. VII, p. 237)f is BVG
on E. So there is a sequence of sets Ey, E,, Ej,... such that E= UR E,and [ is BV
on each E,. Since fis measurable on E, from Theorem 4.2 ([5], Ch. VII, p. 222) it
‘ollows that the sets E;, E,, £;,... may be taken measurable. Since m£ > 0, mE,> 0
‘or some positive integer 7. Again, since fis BV on E,, there is a function g, BV on I,
such that g = fon E, ({5], Lemma 4.1, Ch. VII, p, 221). So fbi, (x) exists finitely a.e.
o E, Let A denote the set of points x of E, such that fé, (x) exists finitely and x
s a point of density of E,. Then A4 is dense in itself and m4 =mE, > 0 and f3 (x) exists
initely at each point of 4. By Theorem 2.3, there is a perfect set B C 4 such that
#nB>0 and f is uniformly differentiable on B. Choose any & with 0 <e < K.
Then there is 2 d > 0 such that

f(};?:{c‘(x) — | <e (3.2

or all x,y(x# y) in B whenever |x —y| < 6.

Let C denote the set of points of B where the density of B is unity. Then mC =
nB>0. let aeC and S=(¢—3, o+ N C. Then SeF, and f;(x) =fs, (x)
or all xe €. We have from (3.2},

fo;,)_ ,{(x) fa®|<e

orall x,y (x% y)in S. This gives that U(S,e) <e. S0 0 <u(a) <& This contra-
licts the hypothesis that u (x) > k for all xe E D C. Hence mE = 0.

Theorem 3.5 : Let f be a real-alued function on the open interval 7 and let f7, (x)
xist finitely at each point of . Then f is approximately uniformly differentiable almost
verywhere on 7.

roof : For each positive integer n, let
E,={x: xeJand u(x)> Injand E= UR E,. By Theorem 3.4, mE,=0

=3
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forn=1,2,3,... and so mE=0. If xel—E, then u(x) = 0. SobyTheorem3
7 is approximately uniformly differentiable at x. This proves the theorem.

Theorem 3.6 : f is approximately strongly differentiable at ae 7 iff /' is approximately
uniformly differentiable at a.

Proof :  First suppose that £ is approximately strongly differentiable at e 7. There js
a member S;€ F, such that

1 fO) —f(x) ,
R ACI Y 63

for all x,p(x# ) in S.
Denote by S, the set of points of §; where the density of S, is unity. 'Then S, has

unit demsity at each of its points. Let weS,. Since fj, (w) exists finitely, there is g
member S;e F, such that

lim
Z>w
ZeSy

) —=fle)_ .
e -fap ().

Take S;= S, N S;. Then S,eF,. Let z& S, and z # w. Then z, @ <S5, and so
by (3.3)

|£=1@ g o] <.

I—w

Letting z - o over the set S, we have
[fo@) —fa(d <e (3.4
Let x,ye 8, and x% p. Then '
SO =

y—x

<[L22L9 |+ 10— @
< 2¢[using (3.3) snd (3.4)].

This gives that 0 <<u(a) S U(Sy, o) < 2¢. Since &> 0 is arbitrary we obtam
u(a)="0. Hence f is approximately uniformly differentiable at a.

Next, let fbe approximately uniformly differentiable at e. Choose any ¢ > 0. There
is a member Se¥F, such that

L0279 pr | < 6.9

for all x,p (x+ ) in S.
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Let x&S5 and x# «. Then by (3.5), ‘
[fa &) — fa (@) ]
FG) —flo) _ £ (@)

X —a

+[H22L0 | <de 6.6

Again, for x,y (x# ) in S, .
[[2=10 @ <|L222 p |+ 1w -£o]

y—x
<ie+4e=¢ [using (3.5) and (3.6)].
This gives that f is approximately strongly differentiable at o.

From Theorems 3.5 and 3.6 we obtain the following:

Theorem 3.7: Let f be a real-valued function on the finite open interval 7 and
let f, (x) exist at each point of 7. Then f is approximately strongly differentiable almost
everywhere on 1.

4. Essentially BV and AC fanctions

Definition 4.1 : Let f be a real-valued function on the measurable set E. fis said to be
essentially BV [AC] on E if given any &> 0 there is a measurable set 4 C E with
m(E — A) < g such that f is BV [4AC] on 4.

Let E bs a measurable set with mE < -+ oo and let f be essentially AC on E. Then
it is easy to show that f is essentially BV on E. In this section we show that the con-
verse is also true. Further we show that a measurable function BVG on a set E with
mE < 4 oo is essentially AC on E.

Throvghout this section we suppose that E is a measurable set with mE < 4 co and
fis & real-valued function measurable on E.

Theorem 4.1 : If fis approximately strongly differentiable a.e. on E, then f is essentially
AC on E.

Proof : Denoteby the setof pomts of E where f is approximately strongly differentiable.
Then m (E — B) = 0:

Let ¢ > O be chosen arbitrarily. Take = gf{l - mE). Let ae B. Then there is
a measurable set S, C B containing o and having a as point of density such that

FO)L—FG) _ .
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for all x,y (x5 p) in Sy Then
SO =/ <+ fa@l}y—xi
for all x, y in §,. This gives that fis 4C on S,. Since o is a point of density of Sas

there is a positive number d, such that

mSen Ay ()]
MmN (3)

for all 5 with 0 < 8 < 8, where N (0) = [0 — &, « + O]

>1—p 4.

Let F={/4(0): 0 <8 <5, and a = B}. Then F covers the set B in the sense of Vitali,
Hence by Vitali’s Theorem ([3], Ch. V, Th. 5.1, p. 110), there is a finite numiber of pair-
wise disjoint intervals

Nag (B0, ANay [ Aaﬂ (hg) (e;€.B)
in the family ¥ such that
N
2 m[BO fnag ()] > mB — 1. . 4.2
el
Write A; = SgN Lg, M) =1,2, ..., N) and 4 = UL, 4,
By (4.1) we have
md, > (1 — ) m g, () > (1 =) m [B 0 L, ()]
and
) 5
mAd = 3 md; >0 —n J m[B0Au)]
Lot iwl
> (L —n) (mB—1n) fusing (4.2)]

>mB— (1 +mBy=mB—~¢e¢=mE ~ &.

The function 7 is AC on each of the sels 4, 4,, ..., dy. Since the intervals Aq, (1),
Pray (ads oo s Loag (hg) are pairwise disjoints we can show that fis 4C on 4. Hence

[ is essentially AC on E.

Theorem 4.2: If fis BVG on E, then fis essentially AC on E; hence essentially
BY on E.

Proof : Denote by B the set of points of E where f is approximately strongly differenti-
able. Since fis BVG and measurable on £, F can be expressed in the form E = U, E,,
where fis BV on each E, and each [, is measurable. For each #, &, (%) exists fimitely
a.c. on E,. Choose any > 0. By Theorem 2.3 therc is a perfect set-C, ¢ E, with
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p{En— C,) < &2 such that f'is uniformly differentiable on C,. Denote by 4, the set
of points of €, where the density of C, is unity. Then each point of 4, is a point of
density of 4g and m(E, — 4,) < g2 Letd = U, 4,. Then4 C Eandm (E — 4)
<&

letac 4. Thenac A, for somen. Choose any n > 0. Since fis uniformly differen-
tiable on C,, there is @ § > 0 such that

AL .3

forall x, vy (x# ») in C,. Take S= (¢ — 9, e +8) N C,. Then §is measurable, ac S
and S has unit density at «. If x&§ and x # a, then using (4.3) we get

[ f2 () — foa (0} |

<[ LY |+ [ LD | <2 @4

Therefore for any x, ¥ (x5 ) in S,

y—2x

TOLO - o] <|[ L2222 w4 10— @]
< 7 fusing (4.3) and (4.4)].

This gives that f is approximately strongly differentiable at « and so ec B. Hence
ACB We have E—~BC E— 4. So m(E— B)< ¢ Since ¢> 0 is arbitrary,
m(E— B)= 0. Thus f is approximately strongly differcntiable a.e. on E. By Theo-
rem 4.1, f is esseatially AC on E.

Corollary 4.2.1: If fis essentially BY on E, then f is essentially AC on E.

Proof : For each positive integer n, there s a measurable set B, C E with m (E — B,)
< ljn such that f'is BV on B,. Let B= UL, B,. Then B C E and m (E — B) = 0.
The function f'is BVG on B. So by Theorem 4.2, f is essentially AC on B which gives
that f is essentially AC on E.

Corollary 4.2.2: If f7, (x) exists finitely a.e. on E, then f is essentially 4C on E.

Proof : Let B denote the set of points of E where f,(x) exists finitely. Then
m{(E— B)=0. By Theerem 10.8 ({5}, Ch. VII, p. 237) fis BVG on B. Now by
Theorem 4.2, f is essentially 4C on B and so on E.

Theorem 4.3. 1If f7,(x) exists finitely a.c. on E, then given any ¢ > 0 there is a per-
fect set 4 C E with m (E — 4) < & such that 3 (x) exists finitely al each point of A and
that f is uniforinly differentiable on 4.
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Proof : By Corollary 4.2.2, f'is essentially BV on E. Choose any ¢ > 0. There i
measurable set B ¢ E with m (E — B) < %¢ such that fis BV on B. Denote by ¢
the set of the points of B where f3 (x) exists finitely. Then m (B — €)== 0. By Theo-
rem 2.3, there is a peifect set 4 © C with m (C — A) < & such that f is uniformiy
differentiable on 4. We have ACCCBCE. So E—A=(E-BU (B~
U(C—A4) and m (E— Ay <m(E—B) - M(B~— )+ mC—4) <e

This proves the theorem.
From Theorems 4.3 and 2.4 we obtain the following:

Theorem 4.4: If £7,(x) exists finitely 2.¢. on E, then given any ¢ > 0, there is a per-
fect set 4 C E with m (E — 4) < ¢ and a [unction g defined on the real line having the
fallowing properties.

(i) g possesses continuous derivative on the real line.

(i) g () =S (x) and g’ (x) =f5 (x) for all xe 4.

5. Notations

a. e. = almost everywhere
iff =if and only if
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