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Abstract

The propagation characteristics of electromagnetic waves in a dielectric-lined rectangular metal wave-
guide have been studied, The lining on the two side walls (E-plane) together with the air space in between
them is considered as a homogencous equivalent dielectric medium whose equivalent dielectric constant
is derived by using electrostatic theory, The theoretical work is based on the fact that LSE and LSM
modes can be pic ted in a rect: lar metal waveguide lined in the two longer sides (H-plane) by
dielectric lining, The phase constant, guide wavelength, phase velocity, cut-off frequency, relative inten-
sities, power flow, attenuation constant and power handling capacity of different LSE,, and LSM,,modes
have been determined, Experimental verification of the guide wavelength at *X°, ‘ku* *and *Ka’
bands and cut-off frequency are reported,

Keywords: Inhomogeneous waveguide, LSE and LSM modes

1. Introduction

The successful development of microwave techniques and their utilization for micro-
wave communication created interest in the design and development of various types
of microwave components based on the properties of inhomogeneous waveguides, viz.,
guides partially loaded with dielestrics, férrites, ete. Introduction of dielectrics or ferrites
in waveguides results in changes of (i) cut-off frequency, (if) phase constant, (iii) power
flow, (iv) band width, (v) phase velocity, (vi) attenuation constant, etc., and may in some
cases permit the use of a guide of smaller cross-section for a given cut-off frequency.

Previously several workers have studied rectangular waveguides loaded by dielectric
slabs in the M-plane*-® and rectangular waveguides loaded by dielestric slabs in the
E-plane*2*. The square waveguide with a dielectric lining has been studied by
Tsandoulas?3. In most of these cases, E or H modes and in some cases LSE, LSM and
EH modes have been considered.

* Blectronics and Radar Development Establishment, Bangalore 560 001,
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In this paper an attempt has been made to make an exhaustive analytical study of ag
many aspects as possible of the problem of propagation of electromagnetic waves in a
dielectric-lined rectangular metal waveguide and verify experimentally some of the theo-
retical results. The theoretical work has been based on the fact that LSE and LSM
modes can be propagated in a rectangular metal waveguide lined on two sides by dielec-
tric lining.%%7, The lining on the two side walls (E-plane) together with the airspace in
between them is considered as a homogeneous equivalent diclectric medium whose equi-
valent dielectric constant has been derived by using electrostatic theory. The work has
been motivated by the fact that there is suffcient scope for theoretical and experimental
work on the propagation characteristics of a diclectric-lined rectungular metal wave-
guide on which very little information is available in published literature, and it is fejt
that this will add to our knowledge of the subject.

Deriving the field compornents for LSE and LSM modes using Hertz potentials, and
applying boundary conditions, the characteristic equations have been derived and solved
numerically for varying parameters like dielectric constant and thickncss of dielectric
coating. The modal analysis shows that the propagating modes can be classified into
two categories, namely, (i) completely sinusoidal and (ii) partly sinusoidal and partly
hyperbolic, Rdlative intensities of different LSE,,, and LSM,, modes, the power flow,
attenuation constant, cut-off frequency, phase velocity, grovp-velocity and power handl-
ing capagity (by two methods) have been determined. Experimental verification of the
guide wavelength at X, * Ku’ and < Ka’ bands and of the cut-off frequency are reported,

2, Geometry of the problem

The dielectric-lined waveguide (Fig. 1) is divided into five regions and the structure is
modified (Fig. 2) by using the concept of equivalent dielectric constant as explained
later. It is assumed that the walls of the metal waveguide have infinite conductivity.
the dielectric lining has constants ¢, p, == 1,0 = 0, and the equivalcent dielectric region 1
of Fig. 1,b has constants e, x,=1 and ¢ =0,

Considering the three regions 1, 4 and 5 of Fig. 1 as equivalent to three capacitors
in series, the equivalent dielectric constant ¢, of the composite medium made up of the
above three media is derived as follows:

1 1 1 1

Alﬁofr,cx:AlEnff,T Areory, TAleofn M
a d (a —2d) d

where 4, = area of the capacitor plate
€q == permittivity of free space

and  d = thickness of the dielectric lining

Solving eqn. (1) for «,,, we obtain .

o = ae, €

= e F e, (0= 2d) @
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Fio. 1a. Dielectric-lined i guid Fig. 1b. Equivalent of Fig. la,

d—Diclectric lining thickness; a—Width of the guide; s-IHeight of the guide; e, —Equivalent
dieleciric constant,

Fie. 1. Geometry of the problem,

3. Field components

1t is known that a rectangular metal waveguide loaded with dielectric lining on the ‘top
and bottom H-plane faces (Fig. 2), supports LSE and LSM modes™*. Each of these
modes are characterized by five field components with E, = 0 and H, = 0 in the case of
LSE and LSM modes respectively. The field components of the LSE mode are derived

> .
in terms of a magnetic type Hertzian vector potential 7y and the field components of the

LSM mode are derived in terms of an electric type Hertzian vector potential -1:,.

4, LSE,, mode

»

. L
The magnetic-type Hertzian vector potential 7y can be expressed as
- -> ’
Ty = A ¥m - - : ®
where the magnetic scalar potential is given by
yu =F() g Q) exp (jot — Tmn 2)- @

> -> .
The electric and magnetic field vectors E and H are given by

»

F = — ottty V ¥ ®
z

. ©

H = J X -
v — JOUq He
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where 41, = permittivity of free space = 4z x 10-7 henry/meter. The field components
derived from eqns. (5) and (6) are given by

E, = = jOlolly Tun Ut 4
E, =0 (8)
. 2
E,, = —jomo by 22 )
¥y,
= (10
3
(e 22 un
R
Hey= = Tun 3 U2

Where yy satisfies the scalar Helmholtz equation

32 D‘A

A O + K, ey = 0 (3
where

ky= o Jelts

i=1,2,3 indicating the regions 1,2,3 (Fig. 2)

€y = €rag

€y = €y

The solution of eqn. (13) is of the form

vu= (oo} G {0} ) exp ot ~ 5,9 )

where k,; and k, denote the transvetse propagation constants in the »and x direstions
respectively. The values of k, are discrete and equal to mm/ju, where m « 0,1,2, which
-are determined by applying the proper boundary conditions that E, = © at x == 0 and
at x =a.

Assuming that the guide is lossless the longitudinal propagation constant can be
written as

Yo = B (3
where f,, should be real for propagation to exist.

Equation (14) can be written in the form

Vi =8 (9) 005 T x exp (jurt — fiay 2. - (16)
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The field components in regions 1,2,3 of Fig. 1 b, derived with the aid of eqns. (7) to
(12), ate as follows:

E,, = optolt, By [C sin k,, y + D, cos ky, 3]

c0s Z7 5 exp (~jBua 2) an
E, =0 (18)
E, = Jw;tny, [C sin k,, ¥ + D, cos k,,»]

¢

sin r%z xexp (= jBus 2) . Y

H = ’%Tkﬁ [C, cos kwy — D;sin kwy]

L

X sin m—: X €xp (— jfua2) (20)

men? .
Hy, = (ﬁgm -+ 7) [C, sin k,;y + D, cos k,;¥]

X ©0s %’”x exp (— By ) (#3))]
H,, = — jBua by [C; 05 kyy — Dy sin k,,¥]
cos 2 x exp (= Jfwn?) 2)
where i = 1,2,3 respectively in the three regions 1,2,3 and k5 = k,». The harmonic
time dependence ¥ has been omitted for the sake of convenience.
The boundary conditions at the interface of the different regions are:
Between regions 1 and 2, i, at y = (b — d),
“Ep=Ey Hy=Ha E,=E, H,=H, ' @3)
Between tegions 1 and 3, ie., at y =d,
E,=E,, H,=H,, E,
and H, = H,,. 24)
Aty=b, E,=E, =0 25)
Aty=0, E,=E,=0. (26)
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The conditions (25) and (26) give

Dy = — C, tan (ky, b) (27
and Dy=0. (28)

Applying the boundary conditions (23) and (24) and using eqns. (27) and {28), we
obtain

Cisin (k3 + Dy cos (k1) — Cy sin (ky, 1) = 0 (29
Ciky, cos k, y1 — Dy k, sin (k,, 1) — Cy &y, c0s (ky,01) == 0 (30)
cos (k,, b) [Cy sin (k,, ) + D; cos (k,, 3] + Casin (k,,31) = 0 (31)

cos (k,, b) [Ci kK, cos (k,, y2) — Dy k,, sin(k, 32)] — Co k,, cos (K, ) = 0 (32)

where yy =d, yo="5b —d.

For a non-irivial solution of eqns. (29) to (32), the following characteristic equation is
satisfied :

sin (k,, 31), cos (k,, 3), 0, —sin (k,, 31)
ky, cos (ky, y1), — K, sin (k) 0, —k,, cos (k, 1)
cos (k,,b) sin (k,, yo), cos (k, B), sin (k,, 1), 0, cos (K, 3)| =0  (33)
k,, cos (k,B), — Kk, cos (k,b), —k, cos {k, )0,
608 (k,, v) X sin (k,, y)
which on simplification becomes

k2, cost (k,, d) sin k,, (b —2d)
+ 2k, k,, cos (k,,d) sin (k,, d) - cos K, (b —2d)

— k2, sin? (k,, d) sin k&, (b — 2d) = 0 (34)
where '
2 w2
Ky = O o fy €0 € = Pl = T (35)
and
. mt gt
Ky = 0% o fl, €0 €, — By — (36)

qZ
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5. LSM,,. mode
The field components are derived in this case with the aid of the electric-type Hertzian

>
vector potential 7, given by

M .
e =Yg (37
where the electric scalar potential wy is given by
ve=h()1(») exp (jor — y,,2). (33
The magnetic and electric field vectors H and E are expressed as
H = joe, €, 7 X .7;5 (39)
E=7 x (jmo €N) (40)

where i == 1,2,3 refer to the regions 1,2,3 in Fig. 2. The field components derived from
eqns. (39) and (40) are given by

H,, = joey & fun ¥ , @

H,=0 “2)

H, =jewe, e %V% (43)
P

Ey= b (44)

, ) 2

By = = (rane + 52F) #3)
=y, Ys

Ei=—Tm , “6)

Proceeding in a similar way as in the case of the LSE,,, mode, the solution of the scalar
Helmholtz eqn, (13) is of the form

vs=10) sin 20 xexp (jot — ym 2)

= (G, sin k,,y + H, cos k,,)) sin m71z x exp (jot = Yy 2) 7

where i = 1,2,3 in the three regions 1,2,3. .
Using eq);s. (41) to (47), and applying the boundary conditions given by eqns. (23) to
(26), we obtain the characteristic equation for LSM,,, modes as

&, k2 cos? (ky, d) sin k,, (b — 2d) R

A+ 2ergq &, Ky, k,, 008 (k,,d) sin (k,, d) cos k,, (b — 2d)

— &y k2, sin (k,, d) sin k,, (b —2d) =0 (48)
where k, and ki, ave given by eqns. (35) and (36),
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6. Solution of the characteristic equations for LSE and LSM ntodes

Tt is found that the solution of the characteristic equs. (34) and (48) for LS, and LSM,,,
modes respectively, exist only when the transverse propagation constant k,, is real, But
k,, may be real or imaginary, which means that

m*n®
0F ol € €, > <ﬁ3m + T) 49)
In order that k,, is real, but k,, is real or imaginary, the following inequality condition
must be satisfied.

WP flo fly €0 €zeq < (/};fm + mi’E:), (503

&
which means that | &,, |> is always greater than | &,, |*. This is justified as the computa-
tion of ., shows that ¢, is always greater than e.,.

It is also observed that when k,, is always real and k,, is real, the characteristic equa-
tion is expressed only in terms of circular trigonometric sine and cosine functions. How-
ever, when k,, is imaginary and k,, is real, the characteristic equation will involve not
only cireular trigonometric functions but also hyperbolic functions. We may designate
these solutions of equs. (34) and (48) as (1) a completely sinusoidal mode (&,, and &,,
are both real and positive) designated as Mode 1 and (2) partly sinusoidal and partly
hyperbolic mode (k,, is imaginary and 4, is real and positive) designated as Mode 2.

If, however, k,, is imaginary, or in other words,

2 e
O fia thy € €, < (ﬂfm - %f-> eI

T
the characteristic equation will involve only hyperbolic functions and the modes obtained
from the solution may then be identified as completely hyperbolic mode. But when the
characteristic equation involves only hyperbolic functions it is found that there is no
solution. Hence it is concluded that the completely hyperbolic modes cannot exist.
The non-existence of the completely hyperbolic modes can be justified by the following
argument. The characteristic equation for this made, if it exists, i given by:

K2, 005 (K d) sintt Gk, (6 — 2))
+ 2k, Kip, cOSh (K, d) sink (k,, d) cosh (K, (b —2d)

¥ar Var

+ K, sinh? (k,, d) sinh (k,, (b —2d) =0 2
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7. Numerical computations for LSE,. and
LSM,.. meodes

Numerical computations of the different
propagation characteristics like the axial
phase constant f, .. the guide wavelength
Agmn = 27/ Buas the phase velocity v, =
0/ Puns the group velocity

me peyh
RS R
» _do ¢ i k3, -
L I e

the cut-off frequency f, . and attenuation
constant below cut-off for dominant and
higher order modes have been made. Figs.
2.1 t0 3.6 present ihe normalized phase
constant a By, vs. ak, for different LSE and
LSM modes respectively for various values
of d and ¢,. Figs. 4.1 to 5.2 present the
normalized phase and group velocities for
various LSE and LSM modes respectively
vs. ak, for various valucs of d and ¢,.
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where k,, = jk,,, and k,, = jk,,. and k,,, and k,, are real and positive. Equation (52)
is satisfied if and only if all the terms of this equation are zero at the same time. This

means that k,, and k,, simultaneously become zero. Since k,, and k,, satisfy the
equations
. 2 H2
Bin = e B+ 18, =" 3

and- -

o min® (54)

- 2 g2
R kv:v T

both k,,, and k,, cannot become zero. Hence it can be concluded that the characte-
ristic eqn. (52) does not have any solution for the complete hyperbolic modes.

In the case of partly sinusoidal and partly hyperbolic modes the transverse propaga-
tion constant in region 1 is '

ky, = fly, (55)

where k,,, is a real positive quantity. In this case the characteristic eqns. (34) and (48)
for LSE,, and LSM,, modes respectively become

k2, cos? (k,, d) sink (k,, (b — 2d)

+ 2k, k,,, cos (k,d) sin (k,,,) cosh k,, (b — 2d)

+ kg, sin® (k,, @) sink "k, (b — 2d) = 0 g (36)
a;nd ) ‘

— &, k3, cost (K, d) sink K, (b — 2d)

+ 2eeq €y Ky, K,y COS (K, d) sink (K, d) . cosh (K, (b — 2d))

— ehg K2, sin? (k,, d)

— &, k2, sin® (k,,d) sinh (k, (b —2d))=0 - 7
where

B, = B+ @aT” — ey K (58)

and k,, is given by eqo. (36).
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8. Cut-off frequency of LSE, and LSM..
modes

The cut-off condition is determined by
putting fs = 0 ineqns. (35) and (36). For
modes type 1, both k,, and &,, arc real and
therefore eqn. (35) becomes

2 el
ni* 7
k3, = 0® o Jly €0 €xpg — Plw — @ =0
and hence at cut-off,
' 20
k:u = €raq kgu T (:‘})

wherc the subscript ¢ indicates the values
at cut-off, and

2, = 08 teco.
Hence for mode I, the cut-off condition is
given. by

1 m*rn’
W = v e €2 (60y
81 == f,m a*
or
me
f:; = _2(1—\7:7:; (61)

Similarly fo1 mode 2 to exist, k,, is real and
k,, is imaginary, and the cut-off condition
for the mode is derived from equ. (35) as

2
mer
2 z m'
ki, = erq ki — P =0 (62)
where k2 | = % uge,
200
Ushyp ekt Uty medet
5‘45-'
5
E; 12
Er
ES
e
gﬂ'
& L2 o
- \\
HEL S,
o~ e
L PROYe Sl
3

Fig, 5.3. Normalized phase-and group velocities vs,

T 1 5 Y B Y
Relative pumittity, Ly Retative umllul;lxy. [
tey 2

€, for LSM, .
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which yields -

1. m*z?®
R A
o, < b ¢ (63)

or

fus ﬂ';_, (64)

1t is evident that the cut-off frequency for mode 2 is lower than that of mode 1. Equa-
tions (59) and (62) are solved for obtaining the cut-off frequencies for both LSE,, and
LSM,,, modes. .

Figures 6. 1 to 7 present the normalized cut-off frequency ako, vs. flling factor d/a for
LSE,, and LSM,, modes respectively. Figs. 8.1 to 9 presentthe normalized cut-off
frequency ak,, vs. relative permittivity e, for LSE,, and LSM,, modes 1espectively.

9. Bandwidth

The percentage bandwidth is defined as

- ff—s
B, =200 x I (65)

where 7 = out-off frequency of the lowest mode
S = cut-off frequency of the next higher order mode.

The percentage bandwidth of the LSE,, aud LSM,,. modes has been caloulated as a func-
tion of diclectric filling fastor d/a and e,,, and the results are shown in Figs. 10 and 11.

10. Attenuation constant below cut-off

In the region below cut-off the square of the transverse propagation constants &%, and
k2, are real, and the modes below cut-off are non-propagating. ya. can be written as

7...» = Gut © (66)
- and q,, satisfies the cquatwns
2 .
K, = € k3 + O — ma:l' (67)

m? n?
k2, = €rq Ky - O — = (63)
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The attenuation constant below cut-off a,, has
been calculated for both LSE,, modes and
LSM,,, modes and are shown in Figs. 12 and
13 respectively.

11. Relative intensities of the field components
of LSE,., and LSM,,, modes .-

For LSE,., modes, (equs. (29) to (32)), three of
the amplitede constants Cy, D,, €y, C3 can be
expressed in terms of one of them, say C,, and
hence their relative amplitudes can be calcu-
lated. Equations (27) and (28) give the values of
D, and D,. It is similar for LSM,,, modes,

Using the calculated values of the above
amplitude constants, the relative intensities of
the field compounents for LSE,, and LSM,,
modes are caleulated and presented in Figs. 14.1
to 15.2 respectively.

12. Ofthogonal propérties of the fields of LSE,,
and LSM,,, modes

The following orthogonal relation holds good
for LSEy. and LSM,,, modes* in the dieléctric-
lined rectangular metal waveguide

g Ei o X Hi g - a,da=0 (69

where m # p and n# g.or both, and S depotes
the cross-section of the lined waveguide, E, (.
is the transverse eclectric field for the ‘mn’th
mode. For a lossy medium, H, (., is placed by
Hin so that

g E, (mny X H:(M) cR, ds = 0. (70)

Further in the case of LSE,,, modes the transverse electric fields for two different modes
are orthogonal. The same is also true for the transverse and the longitudinal magnetic
field components which is as follows :

J;j E; (pey - Ei(p da =0

.Lf Hy o - Wi da =0

(71)
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fsf E, )+ Exuy da =0

.y H, (o + H, 50y da = 0.
None of the orthogonal properties given by eqn. (71) hold good for LSM,, modes.
The orthogonal properties of LSM,,, modes can be treated as described by collin'.

The above orthogonal properties are used to evaluate the fotal power flow by the
summation of the power flow in each region carried by each non-degenerate mode
individually.

13. Power flow for LSE,, and LSM,, modes

The average power flow along the positive longitudinal z-direction is calculated by
using the relation

P =4 Re [ (B xH). 2, dyd )

where S is the cross-section of the lined waveguide. The total power flow is the sum
of the power P,, carried inside the region (< y< (b — d)), the power P., in the region
2((b — d)<<y< b); and the power P, in the region 3 (0< y<< d) (Fig. 2).

For LSE,, modss, E, =0 (i = 1,2,3), and hence the total power flow P,» is given by
a (o~d) . » . ‘¢ .
P =% Re [ [ [ (B, Hyudy+ ) E H;y dy+] B Hidlde -(3)

Substituting the expressions for the appropriate field components from- eqns. (17) to
(22), we obtain -

&@,M(z  min® b—2d _sin2k, (b —2d)
o e (1) Re[ 1 i - EASED

o (b —2d  si - L N
AP <__2>2A n sin 2k,§](cb 2d) -
£73

L1.Sc—4
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RaPer ]

Fic. 15.1. Relative field intensity Fig. 15.2. Relative field intensity
along y-direction for LSMjy, and along y-direction for LSMy and
LSM,; modes 2. LSM,, modes 1.

where N, is the Nuemann factor given by
Ny =1 when m =0
=2 when m =123 (75

and

3
E, = ki, cos ky,d
Fy, =sin k, d (76)
E, = cos k,, cos k, (b — 2d) — %@ sin k,, d sin &, (b — 2d)

v

k, .
Fy= ];1’ cos ky, d sin k, (b — 2d) +sin k,, d cos k, (b — 2d) a7

%1

Similarly for LSM,,, modes, the total power flow is given by

e {17 (A2 2 260 =20

Pyr {xsm

1
) Lo 2 g
TH, 12 4 weo AP (ﬂm.. T

B )

4k,
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+ {(T1~51 LTy s S sin Zk,gk(b — 2d)}
A

el {[T‘,[ ( *'nZk d) |5, ‘Z<d s1n2k d)

" " 2 feyy d s 2L 2k, d
+(TSE+ T35 5*“-277,57-»} e} (4 2 2 )] a9

where
H, is an amplitude factor for LSM,,, modes corresponding to C, for LSE,, modes,
k,
Ty = — 2 sin k,, d
3 ' kﬁ Vs

€,

Si= " cos k,d
El'eCl
T, = —sink, d cos k, (b — 2d) + ,’f—“ 5'1 cos k,, d. (79)
Ya Treq
sin ky, (b — 2d)
Ty =cos k,,d cos k,, (b—2d)
— Kot ik, sin K, (b~ 20) (80)

The variation of the total relative power and the relative power in regions 1, 2 and 3 for
some of the LSE,. and LSM,,, modes are shown in Figs. 16.1 to 17.2 respectively.
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ak, for LSE,y mode. flow vs. ak, for LSE, mode 2,
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14. Power loss and attenuation constants for LSE,, and LSM,., modes

There are two types of power losses, namely, (i) power loss in the diglectric media and
(ii) ohmic loss due to the finite conductivity of the metallic walls. Both these types of
losses are calsulated to caloulate the attenuation constant in the dielectric-lined wave-
guide.

In the previous sections it was assumed that the dielectric mate:ial used for the lining
is perfect (zero condustivity) and the metallic wall of the waveguids is a perfect conductor
(in future conductivity). However, in practice, the power loss in the diclestric-lined
waveguide is caused by the finite value of the loss tangent of the material, and by the
finite conductivity of the metal walls, and consequently, the axial propagation constant
becomes complex.

In the presence of loss, the power transport along the waveguide decreases exponen-
tislly according to the factor exp (— 2a,). where o is the attenustion constant. If P,
1s the power flow at z = 0, when P, = P, exp (— 2a,) is the power flow at z == z in the
z direction. The rate of decrease of the power transport is then given by (14]

dP,|d, = P, = — 24 P,. (81)
If the relative permittivity of the dielectric lining is given by

G=e—jd ' S ®
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‘where

&fe, = tan 8,
the power loss P per unit length in the dielectric material is given by

=3 ff[E[ 13| da
=£€2_°ifst'E*da (83)

where J =0, E = we, ¢ E the conduction current density
oy; = finite conductivity of the medium (f = 1,2,3 denoting the regions 1,2,3)
§ = cross-section of the guide transverse to the direction of propagation.
Equation (83) becomes

=5 [ anrsinr sy | )

in the different regions 1,2,3,
where oy, = we, €, tan 5,

tan & = loss tangent of medium i (i= 1,2,3).
If the dielectric lining is lossy and its dieleciric constant is

G =c,—Je, (85)
where tan §, = ¢,/¢,. then the equivalent dislectric constant e, is also complex and
is given by
—J €'rea (86)

a (Era_je:‘:)

& —
€reqg = €req

= . 87
Zd) [(ll + €y = J ;] ( )
(using eqns. (2) and (85)). TherEfore‘
a[ < 24 e, )+ &, tan 52]
a.2d
€req = 53 (88)
) + & tan? 53]

and
'nu

tan 8, == P

req

a[e,, tan 8, (;2_—% o+ e,,) — €, tan 52] .
S — )
21237 ¢ €y, 1an 0y
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As tan &, - 0, eqn. (88) reduces to eqn. (2). The total power loss Py . in the
dielectric media for the LSE,, mode is the sum of the power losses Py, Py, and Py
in rogions I, 2 and 3 respectively. Hence

= Py Py, - P,

e (LSE)

a (b~d)
Yoo, [ ] (B, [P --1E, P E, [ dydy
a :

+ 3o [ (Bt | By 2o | 2D
b=}

2 1% dy dx 90)

£, 1+

E,[* -+

. a
+ 20,
00

is the finite conductivity of the dielectric regions 2 and 3, 4, is the finite

where 0,3, = 0,
Making

conductivity of the equivalent diclectric region, and g, = 1 for all the regions.
use of eqns. (17), (18) and (19),

@k, m? d o osin® K, d
Pur rsmy = ZNA ! </}:rm A [”uu | As | (\2 -~ 4/‘,:/' )

ta, {] A ((b — 2d) 51}1 2k, 4/5}) - 21[)

b — 2d c.m“ k, (b " N
2 -+
+18 ] kz ' T - (AyBY - A7 B

£

sin® k,, (b — 2d)/2kh}
2k, d
4, ( _sin m,>
+”"’ {] I %,
2 (d | sin2k, d
‘ +18.1 (5 )
4 (doB - 4L By ““2 kﬂ’"d}] ©n

where the amplitude constants A, 4s. B, and B, are given in terms of Cy, C,, D, and D,
by, the two equations:
' Gy = Ay o8k, pp + Byisin k. 3

Dy = By cos k,, y, — Ay sin ky Ve 92)
where &k ==1,2.
the attenuation comstant oy for LSE,, mode can be caloulated as

PdT (LSF)‘ N
Gy (Lsgy = 5 P*' ; nqpers per ¢m

(%)
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8686 P ’
= I8 b per om (93)
2P, Gse

where P, sz is the power flow given by eqn. (74).

Due to the finite conductivity of the waveguide metallic wall also, the electromagnetic
field is attenvated. The surface current density J, in the metal wall is given by
J.o=n X H.
Hence the power loss per unit length of the metal wall is given by
P,=%Re Z, § J,.J3% d

wall

=1R ¢ H, -H*d (94)

wall

where

Z, = 1—}—-’ - R+ X, ©3)

o, being the finite conduetivity of the metallic wall, Z, the surface impedance of the metal
wall, and R, = l/v,0 is the surface resistance of the metal wall, and 6 = (2jouo,)"*
is the skin depth. Hence

= (D/,t_q e
R = (7 ) .

Hence the total power dissipated per unit length in the metal walls for the LSE,, mode
is

Porise =% R, 'd¢1|ls (| Hy, |? +IH, ) dy ]
+ iR, ¢ (1 He, [P+ HD® dx (96)
top and boitom walls )
(1=123)
& fon 10 4 | Aoos &, d — Bysink, d ¢
37{‘7‘]‘#« N, + 5 27_4 31" v | A3 COS K, o sink, d [%)

w2 [+ 2 | 0 i (§ - Sokad
b <(b — 2d)sin 2k, (b — 24)

4k,
B IL—___2qd+stIr (b—Z(I) ‘HAaf (2 91112/&,,,,d>
/d sm2k,,, . wp oy Sin? k, (b — 2d
+1B 1 5+ )+(AJB +atp) e

- (4B] -+ 43 B 5“*'—»-— 2B (| A3 2 Ky 1D
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K, ~2d
(d sm 2k I\ bt |2((b 2d) | sin 2 Z,(b ))

187 K, (‘b 72 - s 20 “2")) 1A Ly

sm 2k,,d> LBy 2k, 12 __sin 2k,,,d)
— (4B} + By [k o S 0220 2
2ky,
— (B + 4 B 11, 2 kwd)} ©n

where 4,, By, 4z, B, are given by eqns. (92) and 4, = Cj, and B, = D,. and 4,, 4,.
B, and B, are related to Az by the following equations :

B, =4, sin k,d= A4A;F; (98}
Ay = 4 L cos ky, d= AzE, (99)
kflll
By=dy I:% 608 kyd sin &, (b — 2d) -+ sin &yud 608 Ky, (b — 2d) | = AsF,
“ (100)
Ay = Ay [cos kyd cos k, (b 2d)
~ R in Kod sin Ky, (6~ 20) | = 4B 1oy
V2
The attention constant ¢, sg for LSE,, mode is given by
Oy (25E) = 2%',"—”"55’- nepers per ¢m
#T(LSE)
8:686 Porizse
= — 2R dh per G
2P qusm P (102
The total attenuation constant ar sz for LSE,, mode is given by
O (158) T Om(zse) (103)
using eqns. (93) and (102).
Similarly the total attenuation constant ar ey for LSM,, modes is given by
Opzsmy = Gatzsm T Omizsm (104)
where
P
Gacrem = 2‘#’% nepers per om
L
= 8686 PdT(LSll) (105)

=T (LSK)
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PdT(I.SM)

__"EJL a|:ﬁ m ﬂ |[|k,,1 {IGLP ~2d _sin Zkfk&,_zd)
V1
5 —2 in 2k, (b — 24 " "
+ i H P (@‘Z_d_ Myé""‘"ﬁ — (G HY + G: Hp)
sin? &, (b — 2d)) m? n2 (b——zd *in.ika(b‘zd)
X u2k ] (ﬁmn+ {lGl |2 5 , )
P b — 24+Sm 2k,,(b——2d)> T (G + GLHY

. S Ky M?}+ o[ o+ »_—J[Iky ¢ {1er

2k,
((d; 511121%!1) At A“s_ynv4 2’93?1)—(GZH° + oyt k,,d}
ng m' ) {| G (¢ ﬁ_sm 2]@, >+ VH, P2 (d sin 2]»,,d
" . k,d dy 7%
© (ol + 6 Hy N }] + % a2 (f +
2
« [1 K, I _sin Zky,d> 4 (B - m? b \ d sin ik,,,d)] (106)
vz
and P,y is given by eqn. (78).
and
Gy (r581) = .S;":‘(ZZ)) nepers per cm
P
= 8686 _IomT{LsM) db er ¢n
ELET ‘ (107)
where
‘PMT(LSM)

R 5 . m?n® . .
~3[e esi; (B + Y 62 (12 P+ 16 sin B+, 008 Ky 12
{E”|H3]z (2 w + e, G

b — 2dsm 2k,, (b — 2d)
4k

+ 2w EO

+€,’;qu1 2

» (b —2d _sin 2k, (b — 2d)
p i,
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sin? k, (b — 2(/) sin .’Zk“zl> -
Zk”, €2 ‘ G, l k') 2]\,”’

AR 2"#2") + (O + G ) W}] (108)

n,

+e (G HE + G HY)

The total attenuation constants for different LSE and LSM modes vs. aky are shown
in Figs. 18 and 19 respectively,
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15, Power handling capacity

The powet handling capacity of the dielectric-lined waveguide is caloulated by using the
following two methods:

(i) Breakdown electric field.

(ii) Temperature rise in the dielectric.

The power handling capacity calculated by the first method determines the power
capabilities within the limits of the elsctric breakdown of the dieleotric medium free from
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obstacles and discontinuities®®. This provides the maximum transmissible power on
the basis of the highest allowable electric field strength.

However, the power transmission through the dielectric materials is accompanied by
beating, and since the dielesiric materials soften at high temperaturcs, the maximum
possible degree of overheating has to be determined. This is done by the second method
which determines the maximum power handling capacity by the dielectric-lined wave-
guide.

15.1. Breakdown electric field method

The maximum transmissible power in the dielectric-lined waveguide is calculated by
knowing the highest permissible value of the electric field which causes the breakdcwn
at the interfaces of the squivalent dielectric and the dielectric material.

For LSE,,, modes, in the case of the mode for which m = 0, it is evident from the
field components of various regions (eqns. (17) to (22)) that only the E, component exists
and therefore the maximum value of E at the interface of the two media will decide the
dielectric breakdown. At y = y;, with the aid of eqn. (17), the maximum electric field

is given by

Eurmn = Oftolly D1 (109)
and using eqn. (98), we have
B, tmary = Aol By S0 K, d,
50 that
- E gy (mx) _
> Gt B s T aio

The breakdown electric field strength for air is 2-9 x 10* volis/em. If the dielectric
lining of the waveguide is thin, the thickness of the equivalent- dielectric region will be
large and the dielectric density small. In the limiting case when - 0, the waveguide
is completely filled with air (e, = 1), and its dielectric breakdown is 2-9 x 10% volts/om
under normal temperatore and pressure.

Considering the infrinsic breakdown of the dielectric with pulses of short duration
and at sufficiently low temperatures where heating effects are avoided, the maximum
electric ficld that can be applied to dielestric materials depends mainly on the discharge
jnception field and thus on the permittivity of the material. Therefore since ¢ > 1,
the equivalent dielectric material withstands a greater breakdown field than air (¢, = 1).

The breakdown field for the equivalent dielectric material can also be assumed o be
2°9 X 10* volts/em at normal temperature and pressure. Hence

E, (mary = 279 X 10* volts/cm. ‘ 1

3
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Therefore from egn. (110), we have

29 X 10* volts/cm

4= v d a2
(putting 4, =1).
Substituting eqa. (112) in eqn, (74), the maximum power handling capacity for the LSE,
modes can be calculated.

The variation of the maximum power handling capacity P,r(1sem) wte* With frequency
and dielectrio lining thickness d for some LSE,, modes of iype 1 are shown in Fig. 20
for ¢, =208 and ¢, =256.

For LSE,,, modes for which m > 0, there are two electric field components E, and
E,. Assuming the dielectric breakdown at the interface y == d, it is nccessary to find
the greater of the two field components E, and. E,. The component thus found decides
the breakdown field of the equivalent dielectric material.

From eqns. (17) and (19), and from the houndary conditions (23) o (26}, it van be
seen that at y =d =y,

E,, = OltoltyBunds sin. k,,d cos f"b’f x (113
E,, = jout, = 4y sin K, dsin =" . (114)

E,, is maximum at x = 0 and at x = a/m along the interface p = d.

Therefors

Eﬂi (maxy == wﬂﬂﬂrﬂmnAs Sin kv:d (I 15}
and B, is maximum at x = a/2m along the interface. This gives

] mr .

B, (maxy = JOU oty - Ay sink, d. (116}

Comparing eqns. (115) and (116), it can be seen that E,, (5 > £y, ey When fpma > mr.
iy

Hence B, () =29 X 10¢ volts/om (118)
which again gives

Aa En, {max) (1 19)

= DB sint (%)
Equation (119) can be used in eqn. (74) to find the maximum power handling capacity
for the LSE,, (m > 1) modes.

The variations of maximum power handling capacity Py (1, ne/@® With frequency
and dieleotris lining thickness for LSE,; and LSE1; modes of type 1 are shown in Fig. 21.
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For LSM,,,, modes the electric field components at y == d = = y; can be written as follows

B, =
B, = Ha “r
Ea1 :jHa

When x=0 or ¢

(ﬂm

ﬂm,, sin k,,y

~ ik, — ™ sin ky,d cos 7

)cos] a’

sin mn

(E,zm, ~H3»— k,. sink,.d.

Wﬁen X == aj2m,

sin m7r

(Eyues = H G{i( + —»> 008 ky,d

and

(Ey, mex == ijHakv. sin kllnd"

120)
(121)

122
(1'25)
(124)

(125)
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Therefore E, i = Eo tnasy = Ery (wan)
when af,, > mr.

Hence the maximum power handling capacity is caleulated by putting E, (u =
2+9 x 104 voltsjem which gives
H, = _Seeq @279 X 10% voltsjom (126)
P e, (a® Pia - mEat)cos k,d
Using eqa. (126) in eqn. (78), the maximum power handling capacity for LS‘M,,,,, mo'dcs
is found. The variation of P,r (s men/a® with frequency and dielectric lining thick-
ness for some of the LSM,,, modes of type 2 are shown in Fig. 22.
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Fig. 22. Maximum power handling capacity vs. ak, for L8M,,; (m = 1 and 2) mode 2.

15.2. Method using temperature vaise in the dielectric

The power lost per unit length is expressed as follows:
dP, _ 2aP,
@ 8636 (123)

where P, is the axial power flow and o is the attenuation constant in decibels per unig
length.

The heat is mostly developed in the dielestric itself as the field is concentrated in the
dielectric materials of higher permittivity at high frequencies.

The general equation of heat conduction is given by [24, 25]

lfl? =k, };L (T, = T) kilocalories per hour (124)
N

where dQ/dt = rate of heat flow

Ay = surface area at right angles to the heat flow in (cm)?
d, = length of the conducting path in cm
.. ks = thermal conductivity of the dielectric in kilocalories/hour (em) (°C),
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T; and 7, are temperatures in °C on the two faces of the interface between two dielec-
trics (in this case T, is in air and T, is in the dieleotric lining).

The thermal resistance R, is defined as

_ 4y
R; = A (125)
The power loss per unit length is given by [24]
dF do .
¢ 1163 . 2
7 1-1633 < in watts (126)

(1 kilocal/hour == 11633 waits)

From eqns. (126) and (123), we obtain

ag _ ap,
750 27

The following assumptions are made for caloulating the average power flow based on
the softening temperature of the diclectric lining material:

(i) that thete is no air gap between the dielectric lining and the metal wall; and
(ii) the heat transfer by convection from the metallic surface is negligible.

Considering that the heat developed in the diclestric flows through the outer surface
of the dielectric lining uniformly, the total rate of heat flow [25] is:

CZQ’(T_l“— Tz)+(T2*T3)=T1—T3

G R TR, R TR, (28)
where
T, — T, = temperafure difference between the two faces of the dieleotric lining
in °C
T, — T, = temperature difference between the two faces of the metallic wall

R, = (-i = the thermal resistance of the dielectric
kA,

ks = the thermal conduotivity of the dielestric lining in kilocal (hour)
(om) (°C)

Az = average dielectric area in (cm)?

d = dielectric thickness in cm

R, = & ): the thermal resistance of the metal surface

o KAy )

Ky = the thermal conductivity of the metal in kilocal/(hr) (cm) (°C) -

A = average metallic area in (cr)?

d; = metallic wall thickness in cm

L.1.Sc.—5



160 R. CHATTERJEE AND G. K. DEB

Equation {128) can be written as

I =T =% Ra + ‘f,? R, (129)
which for LSE,, modea becomes
_ ~T(m) dig(LSE) dl”m (5w 130
: (T ' 3037\ K4, oy (130)
where

0q sy = dielectric attenuation in dbjom given by eqn. (93)
O oy = Metallic attenvation in dbjem given by eqn. (102)

The average dieleciric area in (em)® i3

Ay = 411:25_‘4% =2(a+b—2d) (131
and the average metallic area in (cm)? is

A= A (b 2 (132)
where

A, = sutface area of the air-diclectric boundary =2 (a -+ b — 4d) in (cm)*
Ag, = surlace area of the diclecteic-metal boundary == 2 (¢ 4 b) in (cm)*

and
A, == surface arca of the outer metal surface

= 2{a+ b4 4d) in ()
Then eqn. (130) can be written as.

o 5037(T —Ty)
Pyr (5w = (TW~‘§§_‘_*_”2 i e (133)
KA, T koA
Maximum transmissible power limited by the dielectric overheating in the dielectric-
lined waveguide is given by:
37(T — Ty) e
5-037 ( ) (134)

J’a [Tt d
K Ag +

,
Plr ooy mae =

where .
(T) ~ Tylmy = Mmaximum temperature differense between the inner dicleotric

surface and the outer metallic surface
Similarly for LSM modes,
5037 (T — T

Plr (csmpmss ™=
S N T 3
de,, Fe Ay
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Whete 0y (g A0Q Oy ar¢ given by eqns, (103) and (107) respectively. The power
handling capacity has been calculated in the two cases of dielectric lining, viz., perspex
and teflon for both LSE and LSM modes using eqns. (134) and (135). The heat
conductivity K, for perspex, teflon and brass are taken to be equal to 0-1116 x 10~2
Kilocal/(hr) {cm) (° C), 0°1666 x 10-2 kilocal (hr) (cm) (C C), and 09360 kilo:al (hr)
(em) (° C) respectively. The softening temperature 73 for perspex and teflon. are 78° C
and 327° C respectively. The ambient temperature Ty of the guide wall is taken to be
25°C, and the metallic wall thickness is &) = 0-127cm. The variations of power
handling capacity Plreie mes With froquensy and dielectric lining thickness are shown
in Figs. 23 and 24 for two values 2-08 and 2°56 of the relative dielectric constant for
some of the LSE,, modes. Fig. 25 shows the variations of P rireymes With frequency
and d for some LSM,,, modss of type 2.

Py isting 1wt

[re—

[y
T it

Fia, 24. Maximum power handling FiG, 25. Maximum power handling
capacity (Temp. rise) vs. 2k, for capacity (Temp. rise) vs. ak, for
LSE,, (2 = 1 and 2) mode 1. LSM;, (m = 1 and 2) mode 2.
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16. Experimental work

An experimental study of the following has been done:
(i) Guide wavelength of LSMyy mode type 2 at &-bamd (80124 Gliz);
Ku-band (12°4-18-0 GHz); and
Ku-band (26-5-40-0 GHz)
(ii) Cui~off frequency of the LSM;; mode type)2.
The wavegnide used is an X-band (¢ ==2-2860m, b . 1-016 om) sioited line-section
with uniform dielectric lining on the inside on all lour sides with perspes or teffon of
different thicknesses.
Tables I and II give the frequency-guide wavelength charasteristios in X~ and Ku-hands
respectively.
Table 1[I gives the cut-off frequency for LSM,, mode iype 2 for perspex and feffon
for two diclectric coating thicknesses.

17. Discussion

17.1. The validity of the theory

The approximate theory for the dieleciric-lined rectangular waveguide has been derived
by using the concept of the equivalent dielectriz constant as given by eyns. (1) and (2)
The experimental verification of the theoretical values of the guide wavelength and cutr
off frequency proves the aceuracy of the approximate theory.

17.2. The characteristic equation

The charagteristic eguation for LSE,, modes as given by egn. (34) reduces 1o

tan (k,b) =0 or k, = ”TZ‘ (136)

when J = 0 for the ai-filled wavegnide so that e, = | and

L omim n2be
ﬁfnn = k§ — - s B (137)

(from eqn. (54)).
which is satisfied by the TE,, and TM,,, modes of the air-filled waveguide.

When the waveguide is completely filled with the dielestric material (e i.e., wh
d = b2, eqn. (34) reduces to ol (), £ when

2 tan (k,,, g) =0 or
ky, = 2nnfb (138)
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Table I

Frequency-guide wavelength characteristics

Frequency : X-band (8-0-12-4 GHz)

Frequency Theoretical g incm Measured
in GHz g in ¢m
L3M;y; LSM,,
Mode 1 Mode 2 Meode 1 Mode 2

@ €,=2-56; d=0-15cm

8-3594 4-2799 4-5600

9-4093 3-4898 3-6400
10-4493 2-9744 .. .. 3-100
11-4942 2-6045 .. 16-0050 27400
(®) ¢, =2-08; d=0-15cm

8-3594 4-4828 4-700

9-4033 3-6307 3-800
10-4433 3-0843 3-200
11-4942 2- 6961 2-800
(©) ¢,=208; d=0-2cm

8-3594 4-2960 4-36

9-4093 3-4467 3-54
10-4493 2-8620 2-96
11-4942 2-4813 2-60
() ¢, =2:56; d=03cm

8-3594. 3-3383 . 3-62

9-4093 2-8041 .. .. 3-04
10-4493 2-4289 o 6-2043 2-58
114942 2-1475 .. 3-6930 2-32
@ ¢,=208; d=0-03cm

8-3594 3-6523 3.95

94093 3-0431 .. . 3-26
10-4493 2- 6254 . 25-28 2-90

2-3166 . 4-8328 2-50

11-4942
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Table 1T
Frequency-guide wavelength characteristics

Frequency: Ku-band (12-4-18-0 GHz)

Frequency Theoretical gin cm Measured
in GHz ingocm
LSMyy 1LSMs
Mode 1 Mode 2 Mode 1 Mode 2

@) ¢,=2-536; d=0-15¢cm

13-6107 . 2-0094 . 3-4633 2-180
14-6577 . 1-9169 .. 2-71881 2-000
15-7077 42022 1-7643 . 13720 1-820
16-7517 2-2805 1-6345 2-0815 1-680

17-7956 2-299 1-5224 4 6769 18635 1-560

#) &, =208; d=0-15cm

13-6107 i 2-1708 .. 3-8158 2:24
14-6577 .. 1-9824 .. 3-0022 2-02
15-7077 5:2790 1-8254 .. 2-5271 1-84
16-7517 3-2831 1-6923 PN 22050 1-72
17-7956 2-5513 1-57177 99442 1-8678 1-58

() €, =2:08; d=0-2cm

13-6107 . 2-0612 .. 29612 2-14
146377 . 1-8814 . 27612 192
15-7077 6-52 1-7216 .. 2:4212 1-76
16-7517 3-92 16624 .. 2-0312 1-68
17-7956 . 2-86 1-4324 .. 1-7616 1-48
(d) ¢, =2-56; d=0-3cm B

13-6107 3-4838 1-7478 .. 23323 1-84
14-6577 2-4869 1-5994 7-41m 2-0104 1-69
15-7077 2-0119 1-4739 31080 1-7766 1-48
16-7517 . 1-3662 . 1-5967 1-37
17-7956 - 1-2726 .. 1-4525 1-34
€) €,~2-08; d=0-3cm

13-6107 6-6017 1-8844 . 2-6911 1-94
14-6577 3-3748 1-7257 . 2-2806 1-76
15-7077 2-5194 1-5922 8-4446 1-9962 1-61
16-7517 2-0755 1-4781 3-3585 1-7840 1-49

17-7956 1-7911 1.3792 2-4383 1-6176 1-39
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Table III
Cat-off frequency for LSM.; mode type 2

Material of Thickness of ‘Theoretical Measured
lining lining in em cut-off fre- cut-off fre-
quency of quency in
LSMy; mode 2 GHz
in GHz
Perspex 0-15 5-9285 5-60
(¢, =2-56)
Perspex 0-30 5-5447 5:20
Teflon 0-20 5-7420 5:50
Teflon 0-30 5438 5-30
and then
mia?  nim?
B = ek§ — - 5 (139

(from eqn. (53)).
The above results are true for LSM,, modes also,

17.3. Improper modes

In the case of partly sinuscidal and partly hyperbolic LSE,,, modes the transverse propa-
gation constant k,, (in region 1) is imaginary. Putting k,, = jk,,., where k,, is a real
quantity, eqn. (54) becomes

2 2
By = fon + o — a e (140)

For the propagation of partly sinusoidal and partly hyperbolic mode, the following
condition must be satisfied by eqn. (140)

2 g2
ety = B T — ikt 20, (141)

"

At out-off, B,,= 0, and hence the cut-off frequencies of the partly sinusoidal and partly
hyperbolic mode satisfy the following inequality :

m? n? -
—— Erequ 2..0

aﬂ
or B
Dy mac (142)
2 Je ENE™
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where ¢ = 1//ilpeo
from m =0, at cut-off, we obiain
k2, (cut-off) = — o o 4, €uéreq (143)

From eqn. (143) it is evident that &, (cut-off) cann. »t become positive. Therefore partly
sinusoidal and parily hyperbolic LSE,, modes cann i propagate in the diglegtriv-lined
metal rectangular waveguide, and hence arc in.proper modes.

17.4. Propagation charactervistics of LSE,, and LSM,, modes

(i) It is observed from Figs. 3.1 t 4.6 that (a) the aff,. vs. ak, characteristics of
both LSE,, and LSM,. modes vary almost in a similar fushion: (b} in both types
of modes ihe cui-off [requency increases with the mode index m and order of
appearance r of modes; (¢) generally LSM,,, modes of type 2 and LSE,, modes of
type 1 propagate for a larger fraquency range for all values of ¢ () LEMy, mode type 2
is the dominant mode (with lowest cut-off frequency); () in the cases of all modes of
various types, at high frequencies, ak, ¥5. af,, curves for the dielectric-lined waveguide
approach towards the phasc constant vs. frequency curve of the completely filled wave-
guide. The encrgy is then consentrated practically in the diclectric lining and the
inhomogeneous waveguids can be used as a dieleciric guide.  As o result the kwses in the
dielectric-lined waveguide increase at high frequency.

(ii) At high frequencies the phase velocity and the group velocity approach asymptoti-
cally 1/ ¢, times ihe veloeity of light (Figs. 5-1 to 6.3), and the product v,p,[C? firr
both LSE,, and LSM,, modes approach 1/e, for all & and ak, as shown iy, Table 1V.

Table IV

Product of normalized phase and group velocitics

v, v, /¢
€, /e, Dielectric
lining LSMyy LSMyy
thickness mode mode
dincm type 2 iype 2
2:56 0-390 015 0-389 0-390
0-30 0-388 0-388
0-40 0-389 0-390
0-50 0-390 0390
9.0 0-111 0-15 0-110 0-111
0-30 0-109 0-110
0-40 0-111 0111
0-50 0-110 0-109
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(ili) The percentage bandwidth in the dielectric-lined waveguide cannot be more than
66-62, which happens to be the bandwidth between the TE,, and TE;, modes of the air-
filled waveguide.

(iv) In the case of all the modes of LSE,,, and 1L.SM,,, types, the total attenuation con-
stant o vs. ak, curves tend to infinity near cut-off frequency, and then most of the curves
pass through minima and then approach infinity again at very high frequencies (Figs. 18,
19 and 26). This shows that at high frequencies all the energy is concentrated almost
in the dielectric lining which introduces high losses. The attenuation constant of
higher order modes helps to assess the order of mode purity. It may be said that the
higher the attenuation of the higher order modes the greater is the mode purity of the
dominant LSM;, mode type 2, oo
It is also observed that the total s oqfiios £ dsoses
attenuation constant in the case 4 h t ‘ /
of LSM;; and LSM, modes of 205y, mm_\\f ,’,12‘ I Lstzy mode2 ~— |/ ‘

e 2 mimmam ot ok =40 | B 7 PERERE N, o
and ak, = 7°82 respectively at -i5E 1y moted —— /1 \/jos
d=0"15cm. fia =250

(V) It is interesting to find
that the power handling capascity
(temp. rise method) is maximum
at the points where the attenua-
tion constant is minimum of the
various modes (Table V).

(vi) From Figs. 24, 25 and 26
it is evident that the power
handling capacity of the domi-
nant LSMj; mode type 2 due to
method 2 is higher than that of
any other mode for all values of
d and «,, though the maximum
power handling capacity of the
higher order LSE,, and LSM,,
modes is not significantly less than
that of the LSMy; mode type 2.

(vii) The mtaximum transmis-
sible power decreases with the
increase of frequency, ie., with
the increase of field concentration \
and dielectric-lining  thickness, T ko fadume” ko fadons
and this can be explained by the w . ol
fagt that the power losses in the Fic. 26, Total attenuation constant vs, ak, for LSE,,,
dielectric increase with d and ak,. and LSM,,,, modes (Parameter being d).

5| tsEgy mode § — —
€y = 256

Total attenuation constant &1 in db/em
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(vili) The phase shift in the dielectric-lined waveguide with respect to the air-filled
wavegnideis calculated from the relatiom:
_2n>;180< 11 ) (144)

=
Punesostans Ay (ateteetrie) A late)

Table VI gives the phase shift as a function of frequency for ¢, == 2-56 and ¢ ~ 0-3 ¢m,

(ix) The experimental determination of guide wavelength A, verifies the exisience of
the LSMy, mode type 2. The discrepancy between theoretical and experimental values
of 4, and cut-off frequency f, is very small and it may be aseribed to the approxima-
tions involved in the theory.

Table V
Frequency at which power handling capacity is maximum and
total attenuation is mininum for LSM,,, mode type 2

Maximum power Minimum attenuation
handling capacity

€, Dieleciric  ak, in radians ak, in radians
lining thick-
ness d in LSMy; LSM,, LSMy, LSM;,
cm mode mode mode mode
type 2 type 2 type 2 type 2
2-56 015 4-0 7-82 4-0 7-82
0-30 362 658 3-62 66
0-40 3-18 62 3-15 60
0-50 30 56 3-0 56
Table VX

Phase shift-frequency relation LSMi; mode 2
(e,, = 12-56; 4=0-3cm)

Frequency gtdietectric) glairtilled) in degfom
in GHz LSM;; modeZ  TE,, mode

8-355 3-3383 5-30 45-79
9399 2-8041 445 47-48
10-444 2-4289 3-68 50-40
11-488 2-1475 3-18 54-43
12-533 1-9266 280 58-28
13577 1-7478 2-51 63-21

14-620 1-5994 2-29 68-11
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18. Conclusions

The investigatio;ls on the dielectric-lined metal rectangular wavegnide lead to the follow-
ing conglusions :

(i) LSMy, mode type 2 is the dominant mode.

(i) LSEy, LSE;; and LSEy modss of type 1 are mproper modes as they do not
satisfy the proper boundary conditions at y = b for all 4 and epy.

(ii) Completely hyperbolic modes of either LSEmy or LSMpyn types cannot existin
such a structure.

(iv) In general, LSM;, mode type 2 has a lower attenuation constant than any other
modes.

(v) The maximum bandwidth that can be achieved between the dominant LSM,,
mods and the next higher order mode LSM,, is 66-6 per cent which is the same
as that of an airfilled rectangular metal waveguide.

(vi) The power handling capacity due to temperature rise method in the case of the
dominant LSM;; mode typs 2 is generally the highest for all values of & and all
fraquencies.

(vii) The power handling capacity (temperature rise method) is maximum when the
total attenuation is minimum, though this is less than that of the TE,, modg
in an airfilled waveguide.

(viii) The power handling capacity calculated by the method of lemperature riss is
lower than that obtained by the breakdown fisld method.

(ix) The measurement of guide wavelength Ay establishes the existence of the domi-
nant LSMy; mode type 2 at X- and Ku-bands.

(x) Measurement of A, at Ka-band proves the existence of higher order LSM,,
modes especially of type 2.

(xi) There is a fair agreement between the theoretical and experimental results of the
guide wavelength at all frequencies.

(xii) Experimental values of cut-off frequencies agree well with the theoretical values
for LSMy, mode type 2 for various values of d and ery.

(xiii) The diclectric-lined metal rectangular waveguide may find application as a
phase shifter, slow-wave structure and probably as a high frequency trapsmission
line.

Further work is being catried out on the characteristios of such structures with very
thin dielectric linings and also on the coupling between modes.
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Seminar on ‘Management of R & D in Industry’

The Hyderabad-based Indian Research and Seminar Centre is organising an
cight-day seminar on ‘ Managemeni of R & D in industry * at Hotel Ashoka, Bangalore.
Slated to start on January 1, 1980, this course will cover the philosophy, planning and
functioning of R & D, selection of R & D personnel, finance and evaluation, tools and
processes, new industrial products and technological problems and is likely to be

useful to all involved in R & D.

The facully, according to the Centre’s press release, are drawn from established

and reputed institutions, The convener of the seminar is Dr. Anand Khare.

The registration fee per participant is Rs. 5,600, which covers board and lodging
at Hotel Ashoka for gight days and lecture material. The last date for registration is
November 30, 1979.

" Participants desirous of contributing original papers to the seminar should send
‘immediately a 300-word synopsis to the Centre.

Further particulars can be had from the Indian Seminar and Research Centre,
§-2-248/Bf1, Journalist Colony, Road No. 3, Banjara Hills, Hyderabad 500034, -



