Jour. Ind. Inst. Sc. 61 (A), July 1979, Pp. 127-171
(C) Printed in India.

Dielectric-lined rectangular metal waveguide

R. CHATTERJEE AND G. K. DEB*
Department of Electrical Commumication Engineering, Indian Institute of Science, Bangalore 560012.

Received on May 24, 1979

Abstract

The propagation characteristics of electromagnetic waves in a dielectric-lined rectangular metal waveguide have been studied. The lining on the two side walls (E-plane) together with the air space in between them is considered as a homogencous equivalent dielectric medium whose equivalent dielectric constant is derived by using electrostatic theory. The theoretical work is based on the fact that LSE and LSM modes can be propagated in a rectangular metal waveguide lined in the two longer sides (H -plane) by dielectric lining. The phase constant, guide wavelength, phase velocity, cut-off frequency, relative intensities, power flow, attenuation constant and power handling capacity of different LSE $_{m n n}$ and LSM $_{m n}$ modes have been determined. Experimental verification of the guide wavelength at ' X ', ' ku ' a and ' K_{a}, bands and cut-off frequency are reported.

Key:words: Inhomogeneous waveguide, LSE and LSM modes

1. Introduction

The successful development of microwave techniques and their utilization for microwave communication created interest in the design and development of various types of microwave components based on the properties of inhomogeneous waveguides, viz., guides partially loaded with dielectrics, ferrites, etc. Introduction of dielectrics or ferrites in waveguides results in changes of (i) cut-off frequency, (ii) phase constant, (iii) power flow, (iv) band width, (v) phase velocity, (vi) attenuation constant, etc., and may in some cases permit the use of a guide of smaller cross-section for a given cut-off frequency.

Previously several workers have studied rectangular waveguides loaded by dielectric slabs in the H-plane ${ }^{1-8}$ and rectangular waveguides loaded by dielectric slabs in the E-plane ${ }^{9-22}$. The square waveguide with a dielectric lining has been studied by Tsandoulas ${ }^{23}$. In most of these cases, E or H modes and in some cases LSE, LSM and EH modes have been considered.

[^0]In this paper an attempt has been made to make an exbaustive analytical study of as many aspects as possible of the problem of propagation of electromagnetic waves in a dielectric-lined rectangular metal waveguide and verify experimentally some of the theoretical results. The theoretical work has been based on the fact that LSE and LSM modes can be propagated in a rectangular metal waveguide lined on two sides by dielectric lining. ${ }^{4,5,7}$. The lining on the two side walls (E-plane) together with the airspace in between them is considered as a homogeneous equivalent dielectric medium whose equivalent dielectric constant has been derived by using electrostatic theory. The work has been motivated by the fact that there is suffeicnt scope for theoretical and experimental work on the propagation characteristics of a dielectric-lined rectangular metal waveguide on which very little information is available in published literature, and it is felt that this will add to our knowledge of the subject.

Deriving the field components for LSE and LSM modes using Hertz potentials, and applying boundary conditions, the characteristic equations have been derived and solved numerically for varying parameters like dielectric constant and thickncss of dielectric coating. The modal analysis shows that the propagating modes can be classified into two categories, namely, (i) completely sinusoidal and (ii) partly sinusoidal and partly hyperbolic. Rclative intensities of different LSE $_{m n}$ and LSM $_{m \times}$ modes, the power flow, attenuation constanit, cut-off frequency, phase velocity, group-velocity and power handling capacity (by two methods) have been determined. Experimental verification of the guide wavelength at $X,{ }^{\prime} \mathrm{Ku}$ ' and ' Ka ' bands and of the cut-off frequency are reported,

2. Geometry of the problem

The dielectric-lined waveguide (Fig. 1) is divided into five regions and the structure is modified (Fig. 2) by using the concept of equivalent dielectric constant as explained later. It is assumed that the walls of the metal waveguide have infinite conductivity. the dielectric lining has constants $\epsilon_{t \pi}, \mu_{r}=1, \sigma=0$, and the equivalent dielectric region I of Fig. $1 . b$ has constants $\epsilon_{\text {rea }}, \mu_{r}=1$ and $\sigma=0$.

Considering the three regions 1,4 and 5 of Fig. 1 as equivalent to three capacitors in series, the equivalent dielectric constant see of the composite medium made up of the above three media is derived as follows:

$$
\begin{equation*}
\frac{1}{\frac{A_{1} \epsilon_{0} \epsilon_{\text {raq }}}{a}}=\frac{1}{\frac{A_{1} \epsilon_{0} \epsilon_{n}}{d}}+\frac{1}{\frac{A_{1} \epsilon_{0} r_{n} n}{(a-2 d)}}+\frac{1}{\frac{A_{1} \epsilon_{0} \epsilon_{r o}}{d}} \tag{1}
\end{equation*}
$$

where $A_{1}=$ area of the capacitor plate
$\epsilon_{0}=$ permittivity of free space
and $\quad d=$ thickness of the dielectric lining
Solving eqn. (1) for $\epsilon_{x e q}$, we obtain

$$
\begin{equation*}
\epsilon_{\mathrm{rcq}}=\frac{a \epsilon_{r_{1}} \epsilon_{\mathrm{rr}_{3}}}{2 d \epsilon_{r_{2}}+\epsilon_{r_{3}}(a-2 d)} \tag{2}
\end{equation*}
$$

d-Dielectric lining thickness; a-Width of the guide; b--Height of the guide; $\epsilon_{\text {res }}$-Equivalent dielectric constant.

Fig. 1. Geometry of the problem.

3. Field components

It is known that a rectangular metal waveguide loaded with dielectric lining on the top and bottom H-plane faces (Fig. 2), supports LSE and LSM modes7, ${ }^{14}$. Each of these modes are characterized by five field components with $E_{y}=0$ and $H_{y}=0$ in the case of LSE and LSM modes respectively. The field components of the ISE mode are derived in terms of a magnetic type Hertzian vector potential $\vec{\pi}_{M}$ and the field components of the LSM mode are derived in terms of an electric type Hertzian vector potential $\vec{\pi}_{\mathbf{a}}$.

4. LSE m_{mn} mode

The magnetic-type Hertzian vector potential $\vec{\pi}_{\pi_{I K}}$ can be expressed as

$$
\begin{equation*}
\vec{\pi}_{M}=\vec{a}_{g} \psi_{u} \tag{3}
\end{equation*}
$$

where the magnetic scalar potential is given by

$$
\begin{equation*}
\psi_{M}=f(x) g(y) \exp \left(j \omega t-\gamma_{m n} z\right) . \tag{4}
\end{equation*}
$$

The electric and magnetic field vectors \vec{E} and \vec{H} are given by

$$
\begin{align*}
& \vec{E}=-j \omega \mu_{0} \mu_{\mathrm{r}} \nabla x \vec{\pi}_{\mathrm{u}} \tag{5}\\
& H=\nabla X=\frac{\vec{E}}{-j \omega \mu_{0} \mu_{z}} \tag{6}
\end{align*}
$$

where $\mu_{0}=$ permittivity of free space $=4 \pi \times 10^{-7}$ henry/neter. The field components derived from equs. (5) and (6) are given by

$$
\begin{align*}
& E_{s i}=-j \omega \mu_{0} \mu_{r} \gamma_{m n} \psi_{s t} \tag{7}\\
& E_{\boldsymbol{v}_{i}}=0 \tag{8}\\
& E_{w_{i}}=-j \omega \mu_{0} \mu_{\mathbf{r}} \frac{\partial \psi_{X X}}{\partial x} \tag{9}\\
& H_{u_{i}}=\frac{\partial^{2} \psi_{M}}{\partial x \partial y} \tag{10}\\
& H_{\nu 4}=-\left(\gamma_{\mathbf{w n}_{n}} \psi_{\Delta y}+\frac{\partial^{2} \psi_{M}}{\partial x^{2}}\right) \tag{11}\\
& H_{x_{4}}=-\dot{\gamma_{m n}} \frac{\partial \psi_{M}{ }^{\prime}}{\partial y^{\prime}} \tag{12}
\end{align*}
$$

Where $\psi_{u^{\prime}}$ satisfies the scalar Helmholtz equation

$$
\begin{equation*}
\frac{\partial^{2} \psi_{H}}{\partial x^{2}}+\frac{\partial^{2} \psi_{x}}{\partial y^{2}}+\left(\gamma_{m n}^{2}+k_{0}^{2} \mu_{r} c_{r_{i}}\right) \psi_{k}=0 \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& k_{0}=\omega \sqrt{\epsilon_{0} \mu_{0}} \\
& i=1,2,3 \text { indicating the regions } 1,2,3 \text { (Fig. 2) } \\
& \epsilon_{r_{1}}=\epsilon_{\mathrm{rta}} \\
& \epsilon_{r_{r}}=\epsilon_{r_{1}}
\end{aligned}
$$

The solution of equ. (13) is of the form

$$
\psi_{M}=\left\{\begin{array}{l}
\sin \tag{14}\\
\cos
\end{array}\right\}\left(k_{y t} y\right)\left\{\begin{array}{l}
\sin \\
\cos
\end{array}\right\}(k, x) \exp \left(j \cot -j_{m n} z\right)
$$

where k_{m} and k_{e} denote the transverse propagation constants in the y and x direotions respectively. The values of k, are discrete and equal to $m \pi / a$, where $m=0,1,2$, which are determined by applying the proper boundary conditions that $E_{s}=0$ at $x=0$ and at $x=a$.

Assuming that the guide is lossless the longitudinal propagation constant can be written as

$$
\begin{equation*}
\gamma_{m n}=j \beta_{m n} \tag{15}
\end{equation*}
$$

where $\beta_{m n}$ should be real for propagation to exist.
Equation (14) can be written in the form

$$
\begin{equation*}
\psi_{\pi}=g(y) \cos \frac{m \pi}{a} x \exp \left(j \omega t-\beta_{m n} z\right) \tag{16}
\end{equation*}
$$

The field components in regions $1,2,3$ of Fig. 1 b , derived with the aid of eqns. (7) to (12), are as follows:

$$
\begin{align*}
& E_{t_{i}}=\omega \mu \mu_{0} \mu_{\tau} \beta_{m i n}\left[C_{i} \sin k_{v_{i}} y+D_{i} \cos k_{y_{i}} y\right] \\
& \cos \frac{m \pi}{a} \times \exp \left(-j \beta_{m n} z\right) \tag{17}\\
& E_{y_{j}}=0 \tag{18}\\
& E_{s i}=j 0 \mu_{0} \mu_{5} \frac{m \pi}{a}\left[C_{i} \sin k_{x_{i}} y+D_{i} \cos k_{y_{i}} y\right] \\
& \sin \frac{m \pi}{a} x \exp \left(-j \beta_{m n} z\right) \tag{19}\\
& H_{i_{i}}=-\frac{m \pi}{a} k_{y_{i}}\left[C_{i} \cos k_{y_{i}} y-D_{i} \sin k_{y_{i}} y\right] \\
& \times \sin \frac{m \pi}{a} x \exp \left(-j \beta_{\operatorname{mn}} z\right) \tag{20}\\
& H_{y 4}=\left(\sigma_{m n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right)\left[C_{i} \sin k_{y i} y+D_{i} \cos k_{v i} y\right] \\
& \times \cos \frac{m \pi}{a} x \exp \left(-j \beta_{m n} z\right) \tag{21}\\
& H_{w i}=-j \beta_{m A} k_{y_{i}}\left[C_{i} \cos k_{y i} y-D_{i} \sin k_{y i} y\right] \\
& \cos \frac{m \pi}{a} \times \exp \left(-j \beta_{m a} z\right) \tag{22}
\end{align*}
$$

where $i=1,2,3$ respectively in the three regions $1,2,3$ and $k_{y s}=k_{y 2}$. The harmonic time dependence $e^{t a t}$ has been omitted for the sake of convenience.

The boundary conditions at the interface of the different regions are:
Between regions 1 and 2, i.e., at $y=(b-d)$,

Between regions 1 and 3, i.e., at $y=d$,

$$
\begin{equation*}
E_{\theta_{1}}=E_{v_{s},} \quad H_{s_{1}}=H_{v_{3}}, E_{s_{1}}=E_{k_{z}} \tag{24}
\end{equation*}
$$

and $H_{* 1}=H_{s g}$.
At $y=b, E_{* x}=E_{* z}=0$
At $y=0, E_{\theta_{0}}=E_{n_{p}}=0$.

The conditions (25) and (26) give

$$
\begin{equation*}
D_{2}=-C_{2} \tan \left(k_{y_{k}} b\right) \tag{27}
\end{equation*}
$$

and $\quad D_{3}=0$.
Applying the boundary conditions (23) and (24) and using eqns. (27) and (28), we obtain

$$
\begin{aligned}
& C_{1} \sin \left(k_{y_{1}} y\right)+D_{1} \cos \left(k_{y_{1}} y_{1}\right)-C_{3} \sin \left(k_{y_{2}} y_{1}\right)=0 \\
& C_{1} k_{y_{1}} \cos k_{y_{1}} y_{1}-D_{1} k_{\nu_{1}} \sin \left(k_{y_{1}} y_{1}\right)-C_{3} k_{y_{2}} \cos \left(k_{y_{1}} y_{1}\right)=0 \\
& \cos \left(k_{y_{3}} b\right)\left[C_{1} \sin \left(k_{\nu_{1}} y_{2}\right)+D_{1} \cos \left(k_{y_{1}} y_{2}\right)\right]+C_{2} \sin \left(k_{v_{1}} y_{1}\right)=0 \\
& \cos \left(k_{y_{1}} b\right)\left[C_{1} k_{y_{1}} \cos \left(k_{y_{1}} y_{2}\right)-D_{1} k_{y_{1}} \sin \left(k_{\nu_{1}} y_{2}\right)\right]-C_{2} k_{y_{2}} \cos \left(k_{y_{1}} y_{1}\right)=0
\end{aligned}
$$

where $y_{1}=d, y_{2}=b-d$.
For a non-trivial solution of eqns. (29) to (32), the following characteristic equation is satisfied:
which on simplification becomes

$$
\begin{align*}
& k_{y_{2}}^{ \pm} \cos ^{2}\left(k_{y_{2}} d\right) \sin k_{y_{1}}(b-2 d) \\
& \quad+2 k_{y_{1}} k_{y_{2}} \cos \left(k_{y_{2}} d\right) \sin \left(k_{y_{2}} d\right) \cdot \cos k_{y_{x}}(b-2 d) \\
& \quad-k_{y_{1}}^{2} \sin ^{2}\left(k_{x_{2}} d\right) \sin k_{y_{1}}(b-2 d)=0 \tag{34}
\end{align*}
$$

where

$$
\begin{equation*}
k_{n}^{2}=\omega^{2} \mu_{\theta} \mu_{r} \epsilon_{\mathrm{f}} \epsilon_{\mathrm{req}}-\beta_{m n}^{2}-\frac{m^{2} \pi^{2}}{a^{2}} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{\psi_{\mathrm{w}}}^{2}=\omega^{2} \mu_{0} \mu_{\mathrm{r}} \epsilon_{0} \epsilon_{r_{\mathrm{g}}}-\beta_{m \dot{\varphi}}^{2}-\frac{m^{2} \pi^{2}}{q^{2}} \tag{36}
\end{equation*}
$$

5. LSM mode $_{\text {m }}$

The field components ate derived in this case with the aid of the electric-type Hertzian vector potential $\vec{\pi}_{\text {. given }}$ by

$$
\begin{equation*}
\vec{\pi}_{s}=\mathbf{a}_{v} \psi_{E} \tag{37}
\end{equation*}
$$

where the electric scalar potential ψ_{a} is given by

$$
\begin{equation*}
\psi_{\varepsilon}=h(x) l(y) \exp \left(j o t-\gamma_{m n} z\right) \tag{38}
\end{equation*}
$$

The magnetic and electric field vectors H and E are expressed as

$$
\begin{align*}
& \mathbf{H}=j \omega \epsilon_{0} \epsilon_{r i} \nabla \times \vec{\pi}_{E} \tag{39}\\
& \mathbf{E}=\bar{V} \times\left(\frac{\mathbf{H}}{j \omega \epsilon_{0} \epsilon_{r i}}\right) \tag{40}
\end{align*}
$$

where $i=1,2,3$ refer to the regions $1,2,3$ in Fig. 2. The field components derived from eqns. (39) and (40) are given by

$$
\begin{align*}
& H_{e_{i}}=j \omega \epsilon_{0} \epsilon_{r_{i}} \gamma_{m n} \psi_{E} \tag{41}\\
& H_{y_{i}}=0 \tag{42}\\
& H_{w_{z}}=j \omega \epsilon_{0} \epsilon_{r i} \frac{\delta \psi_{E}}{\delta x} \tag{43}\\
& E_{w_{i}}=\frac{d^{2} \psi_{E}}{d x \delta y} \tag{44}\\
& E_{y_{6}}=-\left(\gamma_{m n} \psi_{E}+\frac{d^{2} \psi_{E}}{d x^{2}}\right) \tag{45}\\
& E_{v_{i}}=-\gamma_{m n} \frac{d \psi_{\xi}}{d y} \tag{46}
\end{align*}
$$

Proceeding in a similar way as in the case of the LSE $_{m n}$ mode, the solution of the scalar Helmholtz eqn. (13) is of the form

$$
\begin{align*}
\psi_{\mathrm{E}} & =1(y) \sin \frac{m \pi}{a} x \exp \left(j \omega t-\gamma_{m m} z\right) \\
& =\left(G_{i} \sin k_{y i} y+H_{i} \cos k_{y_{i}} y\right) \sin \frac{m \pi}{a} x \exp \left(j \omega t-\gamma_{m n} z\right) \tag{47}
\end{align*}
$$

where $i=1,2,3$ in the three regions $1,2,3$.
Using eqns. (41) to (47), and applying the boundary conditions given by eqns. (23) to (26), we obtain the characteristic equation for LSM $_{\min }$ modes as

$$
\begin{align*}
& \epsilon_{r_{2}}^{2} k_{y_{1}}^{2} \cos ^{2}\left(k y_{2} d\right) \sin k_{y_{1}}(b-2 d) \\
& +2 \epsilon_{\mathrm{req}} \epsilon_{\mathrm{r}_{2}} k_{y_{1}} k_{y_{2}} \cos \left(k_{y_{2}} d\right) \sin \left(k_{y_{2}} d\right) \cos k_{y_{1}}(b-2 d) \\
& -\epsilon_{\mathrm{roq}}^{2} k_{y_{2}}^{2} \sin ^{2}\left(k_{y_{2}} d\right) \sin k_{y_{1}}(b-2 d)=0 \tag{48}
\end{align*}
$$

where $k_{w_{1}}^{2}$ and $k_{v_{g}}^{2}$ are given by equs. (35) and (36),

6. Solution of the characteristic equations for LSE and LSM modes

It is found that the solution of the charaoteristic equs. (34) and (48) for $L . S I_{m n}$ and $\mathrm{LSM}_{m n}$ modes respectively, exist only when the transverse propagation constani k_{i} is real. But $k_{p_{1}}$ may be real or imaginary, which means that

$$
\begin{equation*}
\omega^{2} \mu_{0} \mu_{r} \epsilon_{0} \epsilon_{r 2}>\left(\beta_{w n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \tag{49}
\end{equation*}
$$

In order that $k_{y_{u}}$ is real, but $k_{y_{1}}$ is real or imaginary, the following inequality condition must be satisfied.

$$
\begin{equation*}
\omega^{2} \mu_{0} \mu_{r} \epsilon_{0} \epsilon_{\mathrm{rea}} \geq\left(\beta_{m a}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \tag{50}
\end{equation*}
$$

which means that $\left|k_{y_{1}}\right|^{2}$ is always greater than $\left|k_{y_{1}}\right|^{2}$. This is justified as the conputation of $\epsilon_{\text {ren }}$ shows that $\epsilon_{r 2}$ is always greater than $\epsilon_{\text {ren }}$.

It is also observed that when $k_{y_{2}}$ is always real and $k_{y_{3}}$ is real, the charseteristic equation is expressed only in terms of circular trigonometric sine anct cosine functions. However, when $k_{y_{1}}$ is imaginary and $k_{y_{k}}$ is real, the characteristic equation will involve not only circulat trigonometric functions but also hyperbolic functions. We may designate these solutions of eqns. (34) and (48) as (1) a completely sinusoidal mode ($k_{y_{1}}$ and k_{y} are both real and positive) designated as Mode 1 and (2) partly sinusoidal and partly hyperbolic mode ($k_{v_{2}}$ is imaginary and $k_{p_{*}}$ is real and positjve) designated as Mode 2.

If, however, $k_{y_{2}}$ is imaginary, or in other words,

$$
\begin{equation*}
\uparrow \quad \omega^{2} \mu_{0} \mu_{r} \epsilon_{0} \epsilon_{r x}<\left(\beta_{m n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \tag{51}
\end{equation*}
$$

the characteristic equation will involve only hyperbolic functions and the modes obtained from the solution may then be identified as completely hyperbolic mode. But when the characteristic equation involves only hyperbolic functions it is found that there is no solution. Hence it is concluded that the completely hyperbolic modes cannot exist. The non-existence of the completely hyperbolic modes can be justified by the following argument. The characteristic equation for this mode, if it exists, is given by:

$$
\begin{aligned}
& k_{y_{2 T}}^{2} \cos h^{2}\left(k_{y_{\lambda_{T}}} d\right) \sin h\left(k_{\nu_{\nu_{T}}}(b-2)\right)
\end{aligned}
$$

$$
\begin{align*}
& +k_{z_{1} r}^{2} \sin h^{2}\left(k_{y_{y} r} d\right) \sinh \left(k_{y_{\psi_{q}} r}(b-2 d)\right)=0 \tag{52}
\end{align*}
$$

Fig 2.3-Komolised phose conuloat

Fig. 2.9 Hermalized phate sonatant
oftran ve oky for L5E 11 mode

Fis. 2-2-Normolizad pheas constant

Fig 2+6-Wormalized phast constent

Fig. 2. 10 -Mbrmalized phate canitant Flman aks tar tste 12 mode

Mode $2, E_{t_{2}} \times 2.08$

Fig. 2.5 wiormegired phest censtant

Fig 2 . A-Normasized phate komitant

Fig 2 13-Narmalized phaye constant gf men ve ako tar LSE of mode

Fig : 21-Notmaleacd phaing comslant
 aftere wi wo lor $\mathrm{SE}_{9 t}$ mock

Fig 2.23-Natmatized phase chnalani
a/tmn wi ake for $15 E_{2!}$ mada
Fig 27 - Nommelited parast corntont

Fis 3. 1-Normalizud phote constont

Fig 3 - 9 - Normalizet phase constent

Fis 313 -Normal, 12 ed phose constant

Fig s - At-Marmalized phioss censtent 4fint: ys, ake tre LSM 3 ! medt

Fig 3 17-Nstmalized phasi constant
oftmn ws. ako for LSM_{31}, mode

Fis 3. T0-kermalized phase canstant

Fig 3 12-Normalizad phase constan!

Fig 3 + 20 -Nomalized phate constant

Fig 3 - 18-Nermsized phame canstant uffnn we ake for $L \mathrm{SH}_{32}$ mode

Fig 7 . 21-Narmelized phase conztent - Pminve aka for LSMz; mode

Fig. 3 -NORMALIZEO PHASE CONSTAEAT afmit akg FOR LSMmn WOOE

(d)

$$
\begin{aligned}
& \text { _-_ Normalized phase veiority } \\
& 245
\end{aligned}
$$

7. Numerical computations for LSE Wa $_{\text {w }}$ and LSM $_{19 n}$ modes

Numerical computations of the different propagation characteristics like the axial phase constant $\beta_{m n}$, the guide wavelength $\lambda_{o_{m, n}}=2 \pi / \beta_{\pi n}$, the phase velocity $v_{v_{m, n}}=$ $\omega / \beta_{m n}$, the group velocity

$$
v_{a_{m n}}=\frac{d \omega}{d \beta_{m \mathrm{a}}}=-\frac{c}{\sqrt{\epsilon_{\mathrm{r}}}}\left[1-\frac{k_{y_{\mathrm{s}}}^{\mathrm{z}}+\frac{m^{2} \pi^{2}}{a^{2}}}{\omega^{2} \epsilon_{0} \mu_{\mathrm{g}} \epsilon_{\mathrm{r}}}\right]^{3}
$$

the cut-off frequency $f_{s_{m n}}$, and attenuation constant below cut-off for dominant and higher order modes have been made. Figs. 2. I to 3.6 present the normalized phase constant a $\beta_{\text {min }} v s . a k_{0}$ for different LSE and LSM modes respectively for various values of d and $\epsilon_{r x}$. Figs. 4.1 to 5.2 present the normalized phase and group velocities for various LSE and LSM modes respectively $v s$. $a k_{0}$ for various values of d and $\epsilon_{5 x}$.
whero $k_{y_{1}}=j k_{y_{1}}$, and $k_{y_{2}}=j k_{y_{2} r}$ and $k_{y_{1 r} r}$ and $k_{y_{y_{r}}}$ are real and positive. Equation (52) is satisfied if and only if all the terms of this equation are zero at the same time. This means that $k_{y_{2} r}$ and $k_{y_{2 r}}$ simultaneously become zero. Since $k_{y_{1} r}$ and $k_{\nu_{2 r}}$ satisfy the equations

$$
\begin{equation*}
\beta_{t+1}^{2}=\epsilon_{r}, k_{0}^{2}+k_{y y}^{z}-\frac{m^{2} \pi^{2}}{a^{2}} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{\mathrm{mx}}^{2}=\epsilon_{\mathrm{req}} k_{\mathrm{o}}^{2}+k_{v_{11}}^{3}-\frac{m^{2} \pi^{2}}{a^{2}} \tag{54}
\end{equation*}
$$

both $k_{y_{2},}$ and $k_{y_{y}}$ cannot become zero. Hence it can be conciuded that the characteristic eqn. (52) does not have any solution for the complete hyperbolic modes.

In the case of partly sinusoidal and partly hyperbolic modes the transverse propagation constant in region 1 is

$$
\begin{equation*}
k_{v_{1}}=j k_{v_{1} r} \tag{55}
\end{equation*}
$$

where $k_{t_{4} y}$ is a real positive quantity. In this case the characteristic eqns. (34) and (48) for $\operatorname{LSE}_{m n}$ and $\mathrm{LSM}_{m n}$ modes respectively become

$$
\begin{align*}
& k_{y_{z}}^{2} \cos ^{2}\left(k_{p_{g}} d\right) \sin h\left(k_{h_{4 F}}(b-2 d)\right) \\
& +2 k_{y,} k_{y, x} \cos \left(k_{y,} d\right) \cdot \sin \left(k_{y, d}\right) \cos / t k_{y, t}(b-2 d) \\
& +k_{y_{k},}^{s} \sin ^{2}\left(k_{y_{2}} d\right) \cdot \sin h \cdot k_{y_{1} r}(b-2 d)=0 \tag{56}
\end{align*}
$$

and

$$
\begin{align*}
& -\epsilon_{\gamma_{y}}^{2} k_{\nu_{4}}^{2} \cos ^{2}\left(k_{\nu_{z}} d\right) \sin h k_{y_{y y}}(b-2 d) \\
& +2 \epsilon_{\mathrm{req}} \epsilon_{\mathrm{r} 2} k_{y_{y} r} k_{y z} \cos \left(k_{y z} d\right) \sin h\left(k_{y_{2}} d\right) \cdot \cos h\left(k_{y, r}(b-2 d)\right) \\
& -\epsilon_{\text {req }}^{2} k_{y_{k}}^{2} \sin ^{2}\left(k_{y t} d\right) \\
& -\varepsilon_{\operatorname{Tgq}}^{2} k_{y,}^{2} \sin ^{2}\left(k_{y_{2}} d\right) \sin h\left(k_{v_{2} r}(b-2 d)\right)=0 \tag{57}
\end{align*}
$$

where

$$
\begin{equation*}
k_{\nu, ~}^{2}=\beta_{m \pi}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}-\epsilon_{\mathrm{xeq}} k_{0}^{2} \tag{58}
\end{equation*}
$$

and $k_{9,}$ is given by eqn. (36).

Fig. 5.1. Normalized phase and group velocities vs, ak, for LSM mn mode (Parameter being d).

Fig. 5.2. Normalized phase and group velocities vs, ak ${ }_{\mathrm{d}}$ for $\mathrm{LSM}_{\mathrm{mn}}$ mode.

8. Cut-off frequency of $\operatorname{LSE}_{\text {wn }}$ and $\operatorname{LSM}_{\text {mk }}$ modes

The cat-off condition is determined by putting $\beta_{\text {mem }}=0$ in eqns. (35) and (36). For modes type 1 , both $k_{y_{1}}$ and $k_{y_{*}}$ are real and therefore eqn. (35) becomes

$$
k_{i z}^{2}=\omega^{2} \mu_{0} \mu_{r} \epsilon_{0} \epsilon_{T \in C}-\beta_{m A}^{2}-\frac{m^{2} \pi^{2}}{a^{2}} \geq 0
$$

and hence at cut-off,

$$
\begin{equation*}
k_{v_{16}}^{2}=\epsilon_{\mathrm{raq}} k_{0 e_{1}}^{2}-\frac{m^{2} \pi^{2}}{a^{2}} \geq 0 \tag{59}
\end{equation*}
$$

Where the subscript c indicates the values at cut-off, and

$$
k_{0_{c 1}}^{2}=\omega_{0_{1}}^{2} \mu_{0} c_{0} .
$$

Hence for mode 1 , the cut-off condition is given by

$$
\begin{equation*}
\omega_{t \mathrm{~L}}^{2} \geq \frac{1}{\epsilon_{\mathrm{r}} \mathrm{aq}} \frac{m^{2} \pi^{2}}{a^{2}} c^{2} \tag{60}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{e_{1}} \geq \frac{\dot{m} c}{2 a \sqrt{\epsilon_{\mathrm{rec}}}} \tag{61}
\end{equation*}
$$

Similarly for mode 2 to exist, $k_{y_{2}}$ io real and $k_{y_{1}}$ is imaginary, and the cut-off condition for the mode is derived from aqn. (35) as

$$
\begin{equation*}
k_{y_{j}}^{s}=\epsilon_{\text {tea }} k_{0_{\mathrm{c} s}}^{s}-\frac{m^{2} \pi^{2}}{a^{2}} \leq 0 \tag{52}
\end{equation*}
$$

where $k_{0}^{\frac{2}{0}}=\omega_{9,}^{2} \mu_{0} \epsilon_{0}$

Fig. 5.3. Normalized phase and group velocities vs. ϵ_{f} for $\operatorname{LSM}_{m m}$.
which yields

$$
\begin{equation*}
\omega_{\theta_{2}}^{2} \leq \frac{1}{\epsilon_{50 G}} \frac{m^{2} \pi^{2}}{a^{2}} c^{2} \tag{63}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{\mathrm{a}}, \leq \frac{m c}{2 a \sqrt{\epsilon_{\mathrm{ret}}}} \tag{64}
\end{equation*}
$$

It is evident that the cut-off frequency for mode 2 is lower than that of mode 1. Equations (59) and (62) ate solved for obtaining the cut-off frequencies for both $\operatorname{LSE}_{m n}$ and LSM $_{\text {m\# }}$ modes.

Figures 6.1 to 7 present the normalized cut-off frequency $a k_{0 c}$ vs. filling factor d / a for $\operatorname{LSE}_{w n}$ and $\mathrm{LSM}_{\text {ma }}$ modes respectively. Figs. 8.1 to 9 present the normalized cut-off frequency $a k_{0,}$ ws. relative permittivity ϵ_{j}, for $\operatorname{LSE}_{m n}$ and $\operatorname{LSM}_{m n}$ modes respectively.

9. Bandwidth

The percentage bandwidth is defined as

$$
\begin{equation*}
B_{w}=200 \times \frac{f_{b}^{+}-f_{\sigma}^{-}}{f_{a}^{+}+f_{e}^{-}} \tag{65}
\end{equation*}
$$

where $f_{e}^{t}=$ out-off frequency of the lowest mode

$$
f_{0}^{+}=\text {cut-off frequency of the next higher order mode. }
$$

The percentage bandwidth of the LSE $_{m n}$ and LSM $_{m n}$ modes has been calculated as a function of dielectric filling factor d / a and $\epsilon_{r_{2}}$, and the results are shown in Figs. 10 and 11.

10. Attenuation constant below cut-off

In the region below cut-off the square of the transverse propagation constants $k_{\psi_{1}}^{2}$ and $k_{i,}^{2}$ are real, and the modes below cut-off are non-propagating. $\gamma_{m m}^{2}$ can be written as

$$
\begin{equation*}
\gamma_{m \times n}^{z}=a_{m}^{2} \tag{66}
\end{equation*}
$$

- and $a_{m n}$ satisfies the equations

$$
\begin{align*}
& k_{y,}^{2}=\epsilon_{\mathrm{f}} k_{0}^{2}+a_{m m}^{z}-\frac{m^{2} \pi^{2}}{a^{2}} \tag{67}\\
& k_{y_{2}}^{2}=\epsilon_{\mathrm{ru4}} k_{0}^{2}+a_{m n}^{2}-\frac{m^{2} \pi^{2}}{a^{2}} \tag{68}
\end{align*}
$$

Fig. 6.J. Normalized cut off frequency ako, vs. filling factor d/a.

Fig. 6.2. Normalized cut off frequency $\mathrm{ak}_{o \mathrm{o}}$ vs. flling factor d/a.

The attenuation constant below cuthoff $a_{m,}$ has been calculated for both LSE $_{\text {m }}$ modes and LSM $_{m n}$ modes and are shown in Figs. 12 and 13 respectively.

11. Relative intensities of the field components of $\operatorname{LSE}_{m n}$ and LSM_{m} modes .-

For LSE m modes, (eqns. (29) to (32)), three of the amplitude constants $C_{1}, D_{2}, C_{2}, C_{3}$ can be expressed in terms of one of them, say C_{2}, and hemce their relative amplitudes can be calculated. Equations (27) and (28) give the values of D_{2} and D_{3}. It is similar for LSM Lm_{m} modes.

Using the calculated values of the above amplitude constants, the relative intensities of the field components for $\operatorname{LSE}_{p / n}$ and LSM_{m} modes are calculated and prescented in Figs. 14.1 to 15.2 respectively.

12. Orthogonal properties of the fialds of LSE Lrw and $\mathrm{LSM}_{m n}$ modes

The following orthogonal relation holds good for $\operatorname{LSE}_{m n}$ and LSM $_{m n}$ modes ${ }^{14}$ in the dielectrialined rectangular metal waveguide

$$
\begin{equation*}
\iint_{\mathrm{S}} \mathbf{E}_{f(m n)} \times \mathbf{H}_{t(\mu v)} \cdot \mathbf{a}_{z} d a=0 \tag{69}
\end{equation*}
$$

where $m \neq p$ and $n \neq q$,or both, and S denotos the cross-section of tho lined waveguide, $E_{t(m n)}$ is the transverse electric field for the ' $m n$ 'th mode. For a lossy medium, $\boldsymbol{H}_{t(\rho)}$ is placed by $\mathbf{H}_{t(y a)}^{*}$ so that

$$
\begin{equation*}
\iint_{S} \mathbf{E}_{t(m n)} \times \mathbf{H}_{t(p n)}^{*} \cdot \mathbf{a}_{z} d s=0 \tag{70}
\end{equation*}
$$

Further in the case of $\operatorname{LSE}_{m n}$ modes the transverse electicic fields for two different modes are orthogonal. The same is also true for the transverse and the longitudinal magnetic field components which is as follows :

$$
\begin{align*}
& \iint_{S} \mathbf{E}_{t(m n)} \cdot \mathbf{E}_{l(n q)} d a=0 \\
& \iint_{S} \mathbf{H}_{t(m n)} \cdot \mathbf{H}_{t(p u)} d a=0 \tag{71}
\end{align*}
$$

Frg. 7. Normalized cut off frequency ak $_{o c}$ vs. filling factor d / a for $L^{L S M} M_{m n}$ mode.

$$
\begin{aligned}
& \iint_{S} E_{z(m n)} \cdot E_{z(p a)} d a=0 \\
& \iint_{S} H_{\tilde{u}(m n)} \cdot H_{z(m)} d a=0 .
\end{aligned}
$$

None of the orthogonal properties given by equ. (71) hold good for LSM $_{m n}$ modes. The orthogonal properties of $\mathrm{LSM}_{\text {m }}$ modes can be treated as described by collin${ }^{14}$.

The above orthogonal properties are used to evaluate the total power flow by the summation of the power flow in each region carried by each non-degenerate mode individually.

13. Power flow for $\mathrm{LSE}_{m, n}$ and $\mathrm{LSM}_{m n}$ modes

The average power flow along the positive longitudinal z-direction is calculated by using the relation

$$
\begin{equation*}
P_{z}=\frac{1}{2} \operatorname{Re} \iint_{S}\left(\mathbf{E}_{t} \times \mathbf{H}_{t}\right) \cdot a_{z} d y d x \tag{72}
\end{equation*}
$$

where S is the cross-section of the lined waveguide. The total power flow is the sum of the power $P_{z_{1}}$ carried inside the region $\left(d \leqslant y \leqslant(b-d)\right.$), the power $P_{s_{4}}$ in the region $2((b-d) \leqslant y \leqslant b)$; and the power $P_{x_{g}}$ in the region $3(0 \leqslant y \leqslant d)$ (Fig. 2).

For $\operatorname{LSE}_{m \mu}$ modes, $E_{v_{1}}=0(i=1,2,3)$, and hence the total power flow $P_{z \tau}$ is given by

$$
\begin{equation*}
P_{s T(\mathrm{Lss})}=\frac{1}{2} \operatorname{Re} \int_{0}^{a}\left[\int_{d}^{(b-d)}\left(E_{x_{1}} H_{y_{2}}^{*} d y+\int_{(b \sim d i)}^{b} E_{x_{2}} H_{y_{2}}^{*} d y+\int_{0}^{d} E_{x_{s}} H_{y_{2}}^{*} d y\right] d x\right. \tag{73}
\end{equation*}
$$

Substituting the expressions for the appropriate field components from eqns. (17) to (22), we obtain

$$
\begin{aligned}
\frac{P_{2 F}(\operatorname{ssz})}{\left|C_{3}\right|^{2}}= & \frac{a \operatorname{co\mu _{0}} \mu_{+} \beta_{n n n}}{2 N_{0}}\left(\beta_{m n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \cdot \operatorname{Re}\left[\left|E_{1}\right|^{2} \frac{b-2 d}{2}-\frac{\sin 2 k_{y_{1}}(b-2 d)}{4 k_{y_{1}}}\right. \\
& +\left|F_{1}\right|^{2}\left(\frac{b-2 d}{2}+\frac{\sin 2 k_{y_{1}}(b-2 d)}{2 k_{y_{1}}}\right)
\end{aligned}
$$

Fig. 9. Normalized cuf off frequency $\mathrm{ibk}_{\text {oc }}$ vs. relative permiftivity $\epsilon_{r_{2}}$ for LSM $_{m_{n}}$ mode.

Ftg. 8.2. Normalized cut off frequency vs. relative permittivity ϵ_{f}.

Fig. 10. Percentage bandwidth ws. filling factor d / a for LSE mh mode.

$$
\begin{align*}
& +\left(E_{1} F_{1}^{*}+E_{1}^{*} F_{1}\right) \frac{\sin ^{2} k_{y_{\mu}}(b-2 d)}{2 k_{y_{1}}}+\left|E_{2}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{n}}}\right) \\
& +\left|F_{2}\right|^{2}\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right)+\left(E_{2} F_{z}^{*}+E_{2}^{*} F_{2}\right) \frac{\sin ^{2} k_{y_{2}} d}{2 k_{y_{2}}} \\
& \left.+\left(\frac{d}{2}-\frac{\sin 2 k_{y_{2}} d}{4 k_{v_{z}}}\right)\right] \tag{74}
\end{align*}
$$

(A)

(b)

Fig. 11. Percentage bandwidth vs, filling factor d / a for $\mathrm{LSM}_{m n}$ mode.

Fio. T2. Normalized attenuation $a_{a_{m}}$ below cut off vs. ak for LSE $_{m n}$ mode.

Fig. 13. Normalized attenuation constant $a \alpha_{m n}$ below cut off vs. ak, for $\mathrm{LSM}_{m n}$ mode.

Fig. 14.1. Relative field intensity along y-direction for $\mathrm{LSE}_{0 \mathrm{t}}$ mode.

Fig. 14.2. Relative field intensity along y-direction for LSE_{21} mode.

Fic. 14.3. Relative field intensity along y-direction for $\operatorname{LSE}_{02}, \operatorname{LSE}_{12}$ and $\mathrm{LSE}_{2 \mathrm{a}}$ moder.

Fig. 15.1. Relative field intensity along y-direction for LSM_{21} and $\mathrm{LSM}_{\mathrm{gh}}$ modes 2.

Fig. $15 \cdot 2$. Relative field intensity along y-direction for LSM_{11} and LSM_{21} modes 1 .
where N_{0} is the Nuemann factor given by

$$
\begin{align*}
N_{0} & =1 \text { when } m=0 \\
& =2 \text { when } m=1,2,3 \tag{75}
\end{align*}
$$

and

$$
\begin{align*}
& E_{1}=\frac{k_{y_{2}}}{k_{y_{1}}} \cos k_{y_{2}} d \\
& F_{1}=\sin k_{y_{2}} d \tag{76}\\
& E_{2}=\cos k_{y_{2}} \cos k_{y_{1}}(b-2 d)-\frac{k_{y_{1}}}{k_{y_{2}}} \sin k_{y_{2}} d \sin k_{y_{1}}(b-2 d) \\
& F_{2}=\frac{k_{y_{2}}}{k_{y_{1}}} \cos k_{y_{3}} d \sin k_{y_{1}}(b-2 d)+\sin k_{y_{2}} d \cos k_{y_{1}}(b-2 d) \tag{77}
\end{align*}
$$

Similarly for LSM $_{m s}$ modes, the total power flow is given by

$$
\left.\begin{array}{rl}
\frac{P_{z T(x S M)}}{\left|H_{3}\right|^{2}}= & \frac{1}{4} \omega_{\epsilon_{0}} a \beta_{n n}\left(\beta_{m n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \\
& \times \operatorname{Re}\left[| \epsilon _ { \mathrm { ren } } | \left\{| T _ { 1 } | ^ { 2 } \left(\frac{b-2 d}{2}-\frac{\sin 2 k_{v_{1}}}{}(b-2 d)\right.\right.\right. \\
4 k_{y_{1}}
\end{array}\right)
$$

$$
\begin{align*}
& +\left\{\left(T_{1} S_{1}^{*}+T_{1}^{*} S_{1}\right) \frac{\sin 2 k_{y_{1}}(b-2 d)}{2 k_{y_{1}}}\right\} \\
& +\left|\epsilon_{r_{2}}\right|\left\{\left|T_{2}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right)+\left|S_{2}\right|^{2}\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right)\right. \\
& \left.\left.+\left(T_{2} S_{2}^{*}+T_{2}^{*} S_{3}\right) \frac{\sin ^{2} k_{y_{2}} d}{2 k_{y_{2}}}\right\}+\left|\epsilon_{r_{2}}\right|\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{v_{3}}}\right)\right] \tag{78}
\end{align*}
$$

where
H_{s} is an amplitude factor for $\operatorname{LSM}_{p_{n}}$ modes corresponding to C_{3} for LSE $E_{m n}$ modes,

$$
\begin{align*}
& T_{1}=-\frac{k_{y_{x}}}{k_{y_{1}}} \sin k_{y_{3}} d \\
& S_{1}=\frac{\epsilon_{\mathrm{ra}}}{\epsilon_{\mathrm{req}}} \cos k_{y_{2}} d \\
& T_{y}=-\sin k_{y_{x}} d \cos k_{y_{1}}(b-2 d)+\frac{k_{y_{2}}}{k_{y_{2}}} \frac{\epsilon_{r 2}}{\epsilon_{r e q}} \cos k_{y_{y}} d . \tag{79}\\
& \sin k_{y_{1}}(b-2 d) \\
& T_{3}=\cos k_{y_{2}} d \cos k_{y_{1}}(b-2 d) \\
& -\frac{k_{y_{2}}}{k_{\nu_{1}}} \frac{\epsilon_{\text {reg }}}{\epsilon_{r y}} \sin k_{y_{2}} d . \sin k_{y_{1}}(b-2 d) . \tag{80}
\end{align*}
$$

The variation of the total relative power and the relative power in regions 1,2 and 3 for some of the $\operatorname{LSE}_{m n}$ and $\operatorname{LSM}_{m n}$ modes are shown in Figs. 16.1 to 17.2 respectively.

Fg. 16.J. Relative power flow in regions 1, 2 and 3 and total relative power flow vs. $a k_{p}$ for $\operatorname{LSE}_{\text {ppn }}$ mode.

Fig. 16.2. Relative power flow in regions 1,2 and 3 and total relative power flow vs. ak_{q} for LSE $\mathrm{LSn}_{\mathrm{m}}$ mode 2,

Fig. 17.1. Relative power flow in regions 1,2 and 3 and total relative power flow vs. ak for LSM ${ }_{r n}$, mode 1 .

Fig. 17.2. Relative power flow in regions 1,2 and 3 and total relative power fiow vs. $a k_{0}$ for $\mathrm{LSM}_{m p}$ mode 2 .

14. Power loss and attenuation constants for $\operatorname{LSE}_{m n}$ and LSM $_{m n}$ modes

There are two types of power losses, namely, (i) power loss in the dieleatric media and (ii) ohmic loss due to the finite conductivity of the metallic walls. Both these typas of losses are calsulated to calculate the attemation constant in the dielectric-lined waveguide.

In the previous sections it was assumed that the dielectric mateial used for the lining is perfect (zero condustivity) and the metallic wall of the waveguide is a perfect anductor (in future conductivity). However, in practice, the power loss in the dielectric-lined waveguide is caused by the finite value of the loss tangent of the material, and by the finite conductivity of the metal walls, and consequently, the axial propagation constant becomes complex.

In the presence of loss, the power transport along the waveguide decreases exponentially according to the factor $\exp \left(-2 a_{z}\right)$, where a is the attenuation constant. If P_{0} Is the powar flow at $z=0$, when $P_{z}=P_{0} \exp \left(-2 a_{z}\right)$ is the power flow at $z=z$ in the z direction. The rate of decrease of the power transport is then given by 141

$$
\begin{equation*}
d P_{x} \mid d_{z}=P_{t}=-2 \alpha P_{z} \tag{81}
\end{equation*}
$$

If the relative permittivity of the dielectric lining is given by

$$
\begin{equation*}
\epsilon_{r}=\epsilon_{r}-j \epsilon_{r}^{\prime} \tag{82}
\end{equation*}
$$

where

$$
\epsilon_{r}^{\prime} / \epsilon_{\mathrm{r}}=\tan \delta
$$

the power loss P per unit length in the dielectric material is given by

$$
\begin{align*}
P_{d} & =\frac{1}{2} \iint|\mathbb{E}| \cdot|\mathbf{J}| d a \\
& =\frac{\omega \epsilon_{0} \epsilon_{\mathbf{F}}^{\prime}}{2} \iint_{\mathbb{S}} \mathbf{E} \cdot \mathbf{E}^{*} d a \tag{83}
\end{align*}
$$

where $J=\sigma_{a_{i}} E=\omega \varepsilon_{0} \epsilon_{r}^{\prime} \mathbf{E}$ the conduction current density
$\sigma_{d i}=$ finite conductivity of the medium ($i=1,2,3$ denoting the regions $1,2,3$)
$S=$ cross-section of the guide transverse to the direction of propagation.
Equation (83) becomes

$$
\begin{equation*}
P_{u}=\frac{\sigma_{d_{i}}}{2} \iint_{\mathrm{s}}\left(\left|E_{x i}\right|^{2}+\left|E_{y_{i}}\right|^{2}+\left|E_{n_{b}}\right|^{2}\right) d y d x \tag{84}
\end{equation*}
$$

in the different regions $1,2,3$,
where $\sigma_{a_{i}}=\omega \epsilon_{\epsilon_{0}} \epsilon_{r_{i}} \tan \delta_{i}$,

$$
\tan \delta_{i}=\operatorname{loss} \text { tangent of medium } i(i=1,2,3)
$$

If the dielectric lining is lossy and its dielectric constant is

$$
\begin{equation*}
\epsilon_{\epsilon_{r 2}}=\epsilon_{r 2}-j \epsilon_{\tau_{r}}^{\prime} \tag{85}
\end{equation*}
$$

where $\tan \delta_{z}=\epsilon_{r a} / \epsilon_{r p}$, then the equivalent dielectric constant $\epsilon_{r a s}$ is also complex and is given by

$$
\begin{align*}
\hat{\epsilon}_{\mathrm{req}} & =\epsilon_{\mathrm{req}}-j \epsilon_{\mathrm{roQ}}^{\prime} \tag{86}\\
& =\frac{a\left(\epsilon_{\mathrm{r}_{2}}-j \epsilon_{\epsilon_{r}}^{\prime}\right)}{(a-2 d)\left[\frac{2 d}{(a-2 d)}+\epsilon_{\mathrm{rg}}-j \epsilon_{\mathrm{r}_{3}}^{\prime}\right]} \tag{87}
\end{align*}
$$

(using eqns. (2) and (85)). Therefore

$$
\begin{equation*}
\epsilon_{r e q}=\frac{a\left[\epsilon_{r_{r}}\left(\frac{2 d}{a \cdot 2 d}+\epsilon_{r_{2}}\right)+\epsilon_{r_{z}}^{2} \tan \delta_{2}\right]}{(a-2 d)\left[\left(\frac{2 d}{a-2 d}+\epsilon_{r_{2}}\right)^{2}+\epsilon_{r_{2}}^{2} \tan ^{2} \delta_{2}\right]} \tag{88}
\end{equation*}
$$

and

$$
\begin{align*}
\tan \delta_{\mathrm{of}} & =\frac{\epsilon_{\mathrm{req}}^{\prime}}{\epsilon_{\mathrm{req}}} \\
& =\frac{a\left[\epsilon_{r_{2}} \tan \delta_{2}\left(\frac{2 d}{a-2 d}+\epsilon_{\tau_{r}}\right)-\epsilon_{\mathrm{r}_{2}}^{2} \tan \delta_{2}\right]}{\epsilon_{\mathrm{req}}(a-2 d)\left[\left(\frac{2 d}{a-2 d}+\epsilon_{\mathrm{r}}\right)^{2}+\epsilon_{r_{2}}^{2} \tan \delta_{a}\right]} \tag{89}
\end{align*}
$$

As $\tan \delta_{2} \rightarrow 0$, eqn. (88) reduces to eqn. (2). The total powar loss $P_{i_{i r i L s E}}$ in the dielectric media for the $L S E_{m a}$ mode is the sum of the power lossos $P_{a_{1}}, P_{d_{z}}$ and $P_{a ; 3}$ in regions 1,2 and 3 respectively. Hence

$$
\begin{align*}
P_{d_{T}(L S E)}= & P_{d_{1}}+P_{d_{1}}+P_{d_{3}} \\
& =\frac{1}{2} \sigma_{d_{4}} \int_{0}^{a} \int_{d}^{(b-d)}\left(\left|E_{x_{1}}\right|^{2}+\left|E_{y_{2}}\right|^{2}+\left|E_{x_{1}}\right|^{2}\right) d y d x \\
& +\frac{1}{2} \sigma_{d_{2}} \int_{(b-d)}^{b}\left(\left|E_{x_{x}}\right|^{2}+\left|E_{y_{2}}\right|^{2}+\left|E_{z_{2}}\right|^{2}\right) d y d x \\
& +\frac{1}{2} \sigma_{l_{3}} \int_{0}^{a} \int_{0}^{a}\left(\left|E_{\sigma_{3}}\right|^{2}+\left|E_{y_{3}}\right|^{2}+\left|E_{z_{3}}\right|^{2}\right) d y d x \tag{90}
\end{align*}
$$

where $\sigma_{d_{2}}=\sigma_{d_{4}}$ is the finite conductivity of the dielectric regions 2 and $3, \sigma_{t_{s},}$ is the finite conductivity of the equivalent dielectric region, and $\mu_{r}=1$ for all the regions. Making use of eqns. (17), (18) and (19),

$$
\begin{align*}
& P_{d T(L S E)}=\frac{a^{2} \omega^{2} \mu_{0}^{2}}{2 N_{0}}\left(\beta_{m n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\left[\sigma_{u_{2}}\left|A_{3}\right|\binom{d}{2}\right.\right. \\
& +\sigma_{d_{1}}\left\{| A _ { 2 } | ^ { 2 } \left(\frac{(b-2 d)}{2}-\frac{\sin 2 k_{y_{1}}(b-2 d)}{4 k_{y_{1}}}\right.\right. \\
& +\left|B_{1}\right|^{2}\left(\frac{b-2 d}{2}+\frac{\sin ^{2} k_{y_{1}}(b-2 d)}{2 k_{v_{1}}}+\left(\mathrm{A}_{1} B_{1}^{*}+A_{1}^{*} B_{1}\right)\right. \\
& \left.\sin ^{2} k_{y_{4}}(b-2 d) / 2 k_{y_{1}}\right\} \\
& +\sigma_{a_{2}}\left\{\left|A_{2}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right)\right. \\
& +\left|B_{2}\right|^{2}\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right) \\
& \left.\left.+\left(A_{3} B_{2}^{n}+A_{2}^{*} B_{2}\right)^{\sin ^{2} k_{y,} d} 2 k_{u_{2}},\right\}\right] \tag{91}
\end{align*}
$$

where the amplitude constants A_{1}, A_{2}. B_{1} and B_{2} are given in terns of C_{1}, C_{2}, D_{2} and D_{2} by the two equations:

$$
\begin{align*}
& C_{k}=A_{x} \cos k_{y_{k}} y_{k}+B_{k} \cdot \sin k_{y_{k}} y_{k} \\
& D_{k}=B_{k} \cos k_{y_{k}} y_{k}-A_{k} \sin k_{y_{k}} y_{k} \tag{92}
\end{align*}
$$

where $k=1,2$.
the attenuation constant a_{t} for $L S E_{m}$ mode can be calculated as

$$
\begin{equation*}
=\frac{8.686 P_{A_{T}(L S E)}}{2 P_{2 T}(L S E)} d b \text { per } \mathrm{cm} \tag{93}
\end{equation*}
$$

where $P_{z_{T}\langle L S E)}$ is the power flow given by eqn. (74).
Due to the finite conductivity of the waveguide metallic wall also, the electromagnetic field is attenuated. The surface current density J_{8} in the metal wall is given by

$$
\mathbf{J}_{s}=\mathbf{n} \times \mathbf{H} .
$$

Hence the power loss per unit length of the metal wall is given by

$$
\begin{align*}
P_{m a} & =\frac{1}{2} \operatorname{Re} Z_{s} \underset{\text { waII }}{\oint} \mathbf{J}_{s} \cdot \mathbf{J}_{s}^{*} d l \\
& =\frac{1}{2} R_{s} \oint_{\text {wa! }} \mathbf{H}_{s} \cdot \mathbf{H}_{t}^{*} d l \tag{94}
\end{align*}
$$

where

$$
\begin{equation*}
Z_{s}=\frac{1+j}{\delta}=R_{s}+j X_{s} \tag{95}
\end{equation*}
$$

σ_{ω} being the finite conductivity of the metallic wall, Z_{s} the surface inpedance of the metal wall, and $R_{n}=1 / \sigma_{\omega} \delta$ is the surface resistance of the metal wall, and $\delta=\left(2 / \omega \mu_{6} \sigma_{\omega}\right)^{1 / 2}$ is the skin depth. Hence

$$
R_{s}=\left(\frac{\omega \mu_{0}}{2}\right)^{1 / 2}
$$

Hence the total power dissipated per unit length in the metal walls for the $\operatorname{LSE}_{m n}$ mode is

$$
\begin{align*}
& P_{\mathrm{mT}(L S E)}=\frac{1}{2} R_{s} \underset{\text { sidewalls }}{\phi}\left(\left|H_{y_{i}}\right|^{2}+\left|H_{z_{i}}\right|^{3}\right) d y \\
& +\frac{1}{2} R_{s} \underset{\text { top end boltom wails }}{\phi}\left(\left|H_{z_{i}}\right|^{2}+\left|H_{z_{i}}\right|\right)^{2} d x \tag{96}\\
& \text { (} i=1,2,3 \text {) } \\
& =\frac{K_{s}}{2}\left\{a\left|k_{y_{2}}\right|^{2}\left[\frac{\beta_{m n}^{2}}{\bar{N}_{0}}+\frac{m^{2} \pi^{2}}{2 a^{y}}\right]\left(\left|A_{3}\right|^{2}+\left|A_{2} \cos k_{y_{2}} d-B_{3} \sin k_{y_{2}} d\right|^{2}\right)\right. \\
& +2\left[\beta_{n n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right]^{2}\left(\left|A_{3}\right|^{2}\right)\left(\frac{d}{2}-\frac{\sin k_{y 2} d}{4 k n}\right) \\
& +\left|A_{1}\right|^{2}\left(\frac{(b-2 d)}{2} \frac{\sin 2 k_{y_{1}}(b-2 d)}{4 k_{v_{1}}}\right) \\
& +\left|B_{1}\right|^{2}\left(\frac{b-2 d}{2}+\frac{\sin 2 k_{y_{1}}(b-2 d)}{4 k_{\nu_{1}}}\right)+\left|A_{2}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right) \\
& +\left|B_{2}\right|^{2}\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{w_{2}}}\right)+\left(\mathrm{A}_{1} B_{1}^{*}+A_{1}^{*} B_{1}\right) \frac{\sin ^{2} k_{p_{1}}(b-2 d)}{4 k_{y_{1}}} \\
& +\left(A_{2} B_{2}^{*}+A_{2}^{*} B_{2}\right) \frac{\sin ^{2} k_{y 2} d^{d}}{2 k_{y_{3}}}+2 \beta_{m a}^{2}\left(\left|A_{3}\right|^{2}\left|k_{y_{z}}\right|^{2}\right)
\end{align*}
$$

$$
\begin{align*}
& \times\left(\frac{d}{2}+\frac{\sin 2 k_{y_{1}} d}{4 k_{y_{2}}}\right)+\left|A_{1}\right|^{2}\left|k_{w_{1}}\right|^{2}\left(\frac{(b-2 d)}{2}+\frac{\sin 2 k_{y_{1}}(b-2 d)}{4 k_{y_{1}}}\right) \\
& +\left|B_{1}\right|^{2}\left|k_{y_{1}}\right|^{2}\left(\frac{(b-2 d}{2}-\frac{\sin 2 k_{y_{1}}(b-2 d)}{4 k_{y_{1}}}\right)+\left|A_{2}\right|^{2}\left|k_{y_{2}}\right|^{2} \\
& \times\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{v_{2}}}\right)+\left|B_{2}\right|^{2}\left|k_{y_{2}}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right) \\
& -\left(A_{1} B_{1}^{*}+A_{2}^{*} B_{1}\right)\left|k_{y_{1}}\right|^{2} \frac{\sin ^{2} k_{y_{1}}(b-2 d)}{2 k_{y_{1}}} \\
& \left.\left.-\left(A_{2} B_{2}^{*}+A_{2}^{*} B_{2}\right)\left|k_{y_{2}}\right|^{2} \frac{\sin ^{2} k_{y 2} d}{2 k_{y_{2}}}\right)\right\} \tag{97}
\end{align*}
$$

where $A_{1}, B_{1}, A_{2}, B_{2}$ are given by eqns. (92) and $A_{3}=C_{3}$, and $B_{3}=D_{3}$ and A_{1}, A_{2}. B_{1} and B_{2} are related to A_{3} by the following equations:

$$
\begin{align*}
B_{1} & =A_{3} \sin k_{y_{3}} d=A_{3} F_{1} \tag{98}\\
A_{1} & =A_{3} \frac{k_{y_{2}}}{k_{y_{1}}} \cos k_{y_{2}} d=A_{3} E_{1} \tag{99}\\
B_{2} & =A_{3}\left[\frac{k_{y_{2}}}{k_{y_{1}}} \cos k_{y_{2}} d \sin k_{y_{1}}(b-2 d)+\sin k_{y_{2}} d \cos k_{y_{1}}(b-2 d)\right]=A_{3} F_{2} \tag{100}\\
A_{2} & =A_{3}\left[\cos k_{y_{1}} d \cos k_{y_{1}}(b-2 d)\right. \\
& \left.-\frac{k_{y_{2}}}{k_{y_{2}}} \sin k_{y_{2}} d \sin k_{y_{1}}(b-2 d)\right]=A_{3} E_{2} . \tag{101}
\end{align*}
$$

The attention constant $a_{m(L S E)}$ for LSE $_{m n}$ mode is given by

$$
\begin{align*}
a_{m(L S E)} & =\frac{P_{m T(L S E)}}{2 P_{s T(L S E)}} \text { nepers per } \mathrm{cm} \\
& =\frac{8.686 P_{m T(L S E)}}{2 P_{k T(L S E)}} d b \text { per } \mathrm{cm} . \tag{102}
\end{align*}
$$

The total attenuation constant $a_{T(L s E)}$ for LSE $_{m n}$ mode is given by

$$
\begin{equation*}
a_{d(L S E)}+a_{m(L S E)} \tag{103}
\end{equation*}
$$

using eqns. (93) and (102).
Similarly the total attenuation constant $a_{T(L s W)}$ for LSM LSm $_{m o d e s}$ is given by

$$
\begin{equation*}
a_{T(L S M)}=a_{d(L S L J)}+a_{m(L S W)} \tag{104}
\end{equation*}
$$

where

$$
\begin{align*}
a_{a(L S M)} & =\frac{P_{d T(L S S M)}}{2 P_{s T(L S W M)}} \text { nepars per cm } \\
& =8.686 \frac{P_{d T(L S S H)}}{2 P_{\pi T(L S M)}} \tag{105}
\end{align*}
$$

$P_{a t(L S M)}$

$$
\begin{align*}
& =\frac{\sigma d_{1}}{4} a\left[\beta_{m n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right]\left[| k _ { v _ { 3 } } | ^ { 2 } \left\{\left|G_{1}\right|^{2} \frac{b-2 d}{2}-\frac{\sin 2 k_{v_{3}}(b-2 d)}{4 k_{v_{1}}}\right.\right. \\
& +\left|H_{1}\right|^{2}\left(\frac{(b-2 d}{2}-\frac{\sin 2 k_{3_{1}}(b-2 d)}{4 k_{x_{1}}}\right)-\left(G_{1} H_{1}^{*}+G_{1}^{*} H_{1}\right) \\
& \left.\left.\times \frac{\sin ^{2} k_{\mathrm{mx}}(b-2 d)}{2 k_{y_{1}}}\right\}\right]+\left(\beta_{m n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right)\left\{\left|G_{1}\right|^{2}\left(\frac{b-2 d}{2}-\frac{\sin 2 k_{p_{1}}(b-2 d)}{4 k_{21}}\right)\right. \\
& +\left|H_{1}\right|^{2}\left(\frac{b-2 d}{2}+\frac{\sin 2 k_{12}(b-2 d)}{4 k_{y_{1}}}\right)+\left(G_{1} H_{1}^{*}+G_{1}^{*} H_{1}\right) \\
& \left.\times \frac{\sin ^{2} k_{y_{1}}(b-2 d)}{2 k_{y_{1}}}\right\}+\frac{\sigma d_{2}}{4} a\left[\beta_{n n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right]\left[| k _ { y _ { 2 } } | ^ { 2 } \left\{\left|G_{2}\right|^{2}\right.\right. \\
& \left.=\left(\frac{d}{2}+\frac{\sin 2 k_{y 2} d}{4 k_{y_{2}}}\right)+\left|H_{2}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{y y_{2}} d}{4 k_{y_{2}}}\right)-\left(G_{2} H_{2}^{*}+G_{2}^{9} H_{2}\right) \frac{\sin ^{2} k_{y 2} d}{2 k_{y 2}}\right\} \\
& +\left(\beta_{n k}^{z}+\frac{m^{2} \pi^{2}}{a^{2}}\right)\left\{\left|G_{2}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{k_{2} \alpha} d}{4 k_{w_{2}}}\right)+\left|H_{2}\right|^{2}\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right)\right. \\
& \left.\left.+\left(G_{2} H_{2}^{*}+G_{2}^{*} H_{2}\right) \frac{\sin ^{2} k_{y_{2}} d}{2 k_{y_{2}}}\right\}\right]+\frac{\pi d_{2}}{4}\left|H_{3}\right|^{2}\left(\beta_{\mathrm{mn}}^{\infty}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \\
& \times\left[\left|k_{y_{2}}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{y 2} d}{4 k_{y_{3}}}\right)+\left(\beta_{m \mathrm{n}}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right)\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right)\right] \tag{105}
\end{align*}
$$

and $P_{\text {at }(L S M)}$ is given by equ. (78).
and

$$
\begin{align*}
a_{m(L S M)} & =\frac{P_{m \text { m }}(L S S M)}{2 P_{z d(L S M)}} \text { nepers per } \mathrm{cm} \\
& =8.686 \frac{P_{m T(L S W)}}{2 P_{\mathrm{sT}}(L S M)} \tag{107}
\end{align*} d b \text { per } \mathrm{cm}
$$

where
$\boldsymbol{P}_{m T(L S W)}$

$$
\begin{aligned}
& =\frac{R_{3}}{2}\left[\omega^{2} \epsilon_{y}^{2} \frac{a}{2}\left(\beta_{m s}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \epsilon_{r 2}^{2}\left\{\left|H_{3}\right|^{2}+\left|G_{2} \sin k_{y 2} d+H_{2} \cos k_{y 2} d\right|^{2}\right\}\right. \\
& +2 \omega^{2} \epsilon_{\theta}^{2} \frac{m^{2} \pi^{2}}{a^{2}}\left\{\epsilon_{r g}^{2}\left|H_{3}\right|^{2}\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{z}}}\right)+\epsilon_{r o q}^{2}\left|G_{1}\right|^{2}\right. \\
& \times\left(\frac{b-2 d}{2}-\frac{\sin 2 k_{y_{2}}(b-2 d)}{4 k_{y_{1}}}\right)+\epsilon_{r o q}^{2}\left|H_{1}\right|^{2}\left(\frac{\left(b-2 d \sin 2 k_{y_{1}}(b-2 d)\right.}{4}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\epsilon_{\mathrm{raq}}^{n}\left(G_{1} H_{1}^{*}+G_{1}^{*} H_{1}\right) \frac{\sin ^{2} k_{y_{1}}(b-2 d)}{2 k_{y_{1}}}+\epsilon_{y_{2}}^{2}\left|G_{2}\right|^{2}\left(\frac{d}{2}-\frac{\sin 2 k_{y_{2}} d}{2 k_{p_{2}}}\right) \\
& \left.\left.+\epsilon_{2}^{2}\left|H_{2}\right|^{2}\left(\frac{d}{2}+\frac{\sin 2 k_{y_{2}} d}{4 k_{y_{2}}}\right)+\epsilon_{r_{2}^{2}}^{2}\left(G_{2} H_{2}^{*}+G_{2}^{*} H_{2}\right)-\frac{\sin ^{2} k_{y_{2}} d}{2 k_{i_{2}}^{*}}\right\}\right] \tag{108}
\end{align*}
$$

The total attenuation constants for different LSE and LSM modes is. ak, are shown in Figs. 18 and 19 respectively.

Frg. 18.0. Total adenuation constani a_{s} (LSE) v. ak.

Fig. 19.0. Total atonuation constant a (LSM) vs. ak.

15. Power handling capacity

The power handing capacity of the dielectric-lined waveguide is calculated by using the following two methods:
(i) Breakdown electric field.
(ii) Temperature rise in the dielectric.

The power handling capacity calculated by the first method determines the power qapabilities within the limits of the electric breakdown of the dielectric medium free from
obstacles and discontinuities ${ }^{3,15}$. This provides the maximum transmissible power on the basis of the highest allowable electric field strengith.

However, the power transmission through the dielectric materials is accompanied by heating, and since the dielectric matrials soften at high temperaturcs, the maximum possible degree of overheating has to be determined. This is done by the second method which determines the maximum power handing caparity by the dielectric-lined waveguide.

15.1. Breakdown electric field method

The maximum transmissible power in the dielectric-lined waveguide is calculated by knowing the highest permissible value of the electric field which causes the breakdcwn at the interfaces of the equivalent dielectric and the dielectric material,

For $\operatorname{LSE}_{m n}$ modes, in the case of the mode for which $m=0$, it is evident from the field components of various regions (eqns. (17) to (22)) that only the E_{1} component exists and therefore the maximum value of E at the interface of the two media will decide the dielectric breakdown. At $y=y_{1}$, with the aid of eqn. (17), the maximum electric field is given by

$$
\begin{equation*}
E_{\left.x_{1} / \text { maxt }\right)}=\omega \mu_{0} \mu_{r} \beta_{m n} D_{1} \tag{109}
\end{equation*}
$$

and using eqn. (98), we have

$$
E_{x_{1}(m x a)}=A_{3} \omega \mu_{0} \mu_{r} \beta_{m n} \sin k_{y_{2}} d
$$

so that

$$
\begin{equation*}
A_{3}=\frac{E_{\pi x}(\max)}{\omega \mu_{0} \mu_{r} \beta_{m i n} \operatorname{siln} k_{y \mathrm{~s}} d}=C_{3} \tag{110}
\end{equation*}
$$

The breakdown electric field strength for air is 2.9×10^{4} volts' cm . If the dielectric lining of the waveguide is thin, the thickness of the equivalent dielectric region will be large and the dielectric density small. In the limiting case when $d \rightarrow 0$, the waveguide is completely filled with air ($\epsilon_{r}=1$), and its dielectric breakdown is 2.9×10^{4} volts/cm under normal temperature and pressure.

Considering the intrinsic breakdown of the dielectric with pulses of short duration and at sufficiontly low temperatures where heating effects are avoided, the maximum electric field that can be applied to dielectric materials depends mainly on the discharge inception field and thus on the permittivity of the material. Therefore since $\epsilon_{\text {res }}>1$, the equivalent dielectric material withstands a greater breakdown field than air ($\epsilon_{r}=1$).

The breakdown field for the equivalent dielectric material can also be assumed to be 2.9×10^{1} volts $/ \mathrm{cm}$ at normal temperature and pressure. Hence

$$
\begin{equation*}
E_{x_{2}(\max)}=2.9 \times 10^{4} \text { volts } / \mathrm{cm} \tag{111}
\end{equation*}
$$

Therefore from eqn. (110), we have

$$
\begin{equation*}
A_{\mathrm{s}}=\frac{2 \cdot 9 \times 10^{4} \text { volts } / \mathrm{cm}}{\omega \mu_{0} \beta_{m n} \sin k_{y_{9}} d} \tag{112}
\end{equation*}
$$

(putting $\mu_{r}=1$).
Substituting eqn. (112) in eqn. (74), the maximum power handing capacity for the $L S E_{u n}$ modes can be calculated.

The variation of the maximum power handling capacity $P_{a r\left(L S E E_{o n}\right) \text { nassa }}{ }^{2}$ with frequency and dielectric lining thickness d for some LSE $_{\text {on }}$ modes of type 1 are shown in Fig. 20 for $\epsilon_{r_{2}}=2.08$ and $\epsilon_{r 2}=2.56$.

For LSE $_{m \rightarrow 1}$ modes for which $m>0$, there are two electric field components E_{s} and E_{z}. Assuming the dielectric breakdown at the interface $y=d$, it is necessary to find the greater of the two field components E_{x} and E_{3}. The component thus found decides the breakdown field of the equivalent dielectric material.

From eqns. (17) and (19), and from the boundary conditions (23) to (26), it cun be seen that at $y=d=y_{1}$,

$$
\begin{align*}
& E_{w_{t_{1}}}=\omega \mu_{0} \mu_{r} \beta_{m A} A_{3} \sin k_{y_{2}} d \cos \frac{m \pi}{a} x \tag{113}\\
& E_{r_{\alpha}}=j \omega \mu_{0} \mu_{r} \frac{m \pi}{a} A_{3} \sin k_{\mu_{2}} d \sin \frac{m \pi}{a} x . \tag{114}
\end{align*}
$$

$E_{a_{1}}$ is maximum at $x=0$ and at $x=a / m$ along the interface $y=d$.
Therefore

$$
\begin{equation*}
E_{a_{1}^{\prime}(\mathrm{nax})}=\omega \mu_{0} \mu_{r} \beta_{m i \hbar} A_{3} \sin k_{y_{2}} d \tag{115}
\end{equation*}
$$

and $E_{x_{1}}$ is maximum at $x=a / 2 m$ along the interface. This gives

$$
\begin{equation*}
E_{x_{1}(\max)}=j \omega \mu_{0} \mu_{r} \frac{m \pi}{a} A_{s} \sin k_{y_{3}} d \tag{116}
\end{equation*}
$$

Comparing equs. (115) and (116), it can be seen that $E_{x_{1}(\operatorname{maz})}>E_{z_{1}(\max)}$ when $\beta_{m n} a>m \pi$.

Hence $\quad E_{a_{4}(\max)}=2.9 \times 10^{4}$ volts $/ \mathrm{cm}$
which again gives

$$
\begin{equation*}
A_{3}=\frac{E_{i_{1}(\mathrm{pax})}}{\omega \mu_{0} \beta_{m \pi} \sin \left(k_{w_{\lambda}} d\right)} \tag{I19}
\end{equation*}
$$

Equation (119) can be used in eqn. (74) to find the maximum power handing capacity for the $\operatorname{LSE}_{m}(m>1)$ modes.

The variations of maximum power handing capacity $P_{g x(2 s s m n) ~ m a x ~} / a^{2}$ with frequency and dielectric lining thickness, for LSE_{11} and LSE_{18} modes of type I are shown in Fig. 21.

Fig. 20. Maximum power handling capacity
Fig. 21. Maximum power handling capacity vs. ak ${ }_{o}$ for $\operatorname{LSE}_{l n}(\mathrm{n}=1$ and 2) mode 1 .

For $\operatorname{LSM}_{m n}$ modes the electric field components at $y=d \Rightarrow y_{1}$ can be written as follows:

$$
\begin{align*}
& E_{x_{1}}=-H_{n} k_{y_{2}} \frac{m \pi}{a} \sin k_{y_{2}} d \cos \frac{m \pi}{a} x \tag{120}\\
& E_{y_{1}}=H_{3} \frac{\epsilon_{r_{2}}}{\epsilon_{\text {req }}}\left(\beta_{m n}^{a}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \cos k_{y_{2}} d \frac{\sin m \pi}{z} x \tag{121}\\
& E_{k_{1}}=j H_{3} k_{y_{y}} \beta_{m n} \sin k_{y_{x}} y \frac{\sin m \pi}{a} x . \tag{122}
\end{align*}
$$

When $x=0$ or a

$$
\begin{equation*}
\left(E_{x_{2}}\right)_{\operatorname{lisx}}=H_{3} \frac{m \pi}{a} k_{y_{\alpha}} \sin k_{y_{2}} d \tag{123}
\end{equation*}
$$

When $x=a / 2 m$,

$$
\begin{equation*}
\left(E_{y_{1}}\right)_{m a x}=H_{3} \frac{\epsilon_{\mathrm{ra}}}{\epsilon_{\mathrm{ten}}}\left(\beta_{\mathrm{man}}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}\right) \cos k_{y_{a}} d \tag{124}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(E_{\gamma_{1}}\right)_{m b x}=j \beta_{m \times n} H_{\mathrm{a}} k_{y_{g}} \sin k_{y_{g}} d_{.} . \tag{125}
\end{equation*}
$$

Therefore $E_{y_{1}(\mathrm{max})}>E_{E_{1}(\mathrm{mas})}>E_{x_{1}(\mathrm{max})}$
when $a \beta_{m n}>m \pi$.
Hence the maximum power handing capacity is calculated by putting $E_{v_{1}(\text { naz })}=$ 2.9×10^{4} volts/om which gives

$$
\begin{equation*}
H_{3}=\frac{\epsilon_{\mathrm{rgq}} a^{2} 2 \cdot 9 \times 10^{4} \text { volts } / \mathrm{cm}}{\epsilon_{\tau_{2}}\left(a^{2} \beta_{m n}^{2}+m^{2} \pi^{2}\right) \cos k_{k_{k}} d} . \tag{126}
\end{equation*}
$$

Using eqn. (126) in eqn. (78), the maximum power handling capacity for LSM $_{n+1}$ modes is found. The variation of $P_{i T}(\operatorname{ssm})$ (mans) $/ a^{2}$ with frequency and dielectric lining thickness for some of the LSM_{m} modes of type 2 are shown in Fig. 22.

Fig. 22. Maxinum power handing capacity vs, ak for $\mathrm{LSM}_{m 1}(\mathrm{~m}=1$ and 2) mode 2.

15.2. Method using temperature raise in the dielectric

The power lost per unit length is expressed as follows:

$$
\begin{equation*}
\frac{d P_{z}}{d z}=\frac{2 a P_{z}}{8.686} \tag{123}
\end{equation*}
$$

where P_{s} is the axial power flow and a is the attentation constant in decibels per unit length.

The heat is mostly developed in the dielectric itself as the field is concentrated in the dielectric materials of higher permittivity at high frequencies.

The general equation of heat conduction is given by [24, 25]
$\frac{d Q}{d t}=k_{h} \frac{A}{d_{0}}\left(T_{1}=T_{2}\right)$ kilocalories per hour
where $d Q / d t=$ rate of heat flow
$A_{1}=$ surface area at right angles to the heat flow in (cm) ${ }^{2}$
$d_{0}=$ length of the conducting path in cm
$\therefore k_{\text {h }}=$ thermal conductivity of the dielectric in kilocalories/hour (cm) $\left({ }^{\circ} \mathrm{C}\right)$.
T_{1} and T_{2} are temperatures in ${ }^{\circ} \mathrm{C}$ on the two faces of the interface between two dielectrics (in this oase T_{1} is in air and T_{2} is in the dielcotric lining).

The thermal resistance R_{T} is defined as

$$
\begin{equation*}
R_{T}=\frac{d_{0}}{k_{i}^{*} A_{1}} . \tag{125}
\end{equation*}
$$

The power loss per unit length is given by [24]

$$
\begin{equation*}
\frac{d P_{z}}{d z}=1 \cdot 1633 \frac{d Q}{d t} \text { in watts } \tag{126}
\end{equation*}
$$

$$
\text { (} 1 \text { kilocal hour }=1 \cdot 1633 \text { wats })
$$

From eqns. (126) and (123), we obtain

$$
\begin{equation*}
\frac{d Q}{d t}=\frac{o P_{z}}{5 \cdot 037} . \tag{127}
\end{equation*}
$$

The following assumptions are made for calculating the average power flow based on the softening temperature of the dielectric lining material:
(i) that there is no air gap between the dielectric lining and the metal wall; and
(ii) the heat transfer by convection from the metallic surface is negligible.

Considering that the heat developed in the dielectric flows through the outer surface of the dielectric lining uniformly, the total rate of heat flow [25] is:

$$
\begin{equation*}
\frac{d Q}{d t} \stackrel{\left(T_{1}-T_{2}\right)+\left(T_{2}-T_{3}\right)}{R_{d}+R_{m}}=\frac{T_{1}-T_{3}}{R_{a}+R_{m}} \tag{128}
\end{equation*}
$$

where
$T_{1}-T_{2}=\begin{aligned} & \text { temperature difference between the two faces of the dielectric lining } \\ & { }^{\circ} \mathrm{C}\end{aligned}$ $T_{2}-T_{3}=$ temperature difference between the two faces of the metallic wall $R_{d}=\left(\frac{d}{k_{\dot{d}} A_{\vec{a}}}\right)=$ the thermal resistance of the dielectric
$\begin{aligned} k_{a} & =\begin{array}{l}\text { the thermal conductivity } \\ (\mathrm{cm})\left({ }^{\circ} \mathrm{C}\right)\end{array}\end{aligned}$
$A_{d} \quad=$ average dieleatric area in $(\mathrm{cm})^{2}$
$d \quad=$ dielectric thickness in cm
$R_{p m}=\left(\frac{d_{1}}{k_{m} A_{m}}\right)=$ the thermal resistance of the metal surface
$k_{m} \quad=$ the thermal conductivity of the metal in kilocal/(hr) (cm) (${ }^{\circ} \mathrm{C}$)
$A_{m} \quad=$ average metallic area in $(\mathrm{cm})^{2}$
$d_{1} \quad=$ metallic wall thickness in cm
I.I.Sc.-5

Equation (128) can be written as

$$
\begin{equation*}
\left(T_{1}-T_{3}\right)=\frac{d Q}{d t} R_{d}+\frac{d Q}{d t} R_{n t} \tag{129}
\end{equation*}
$$

which for LSE $_{\text {ma }}$ mode becomes

$$
\begin{equation*}
\left(T_{1}-T_{3}\right)=\frac{P_{s T}(\underline{S S 5)}}{5 \cdot 037}\left(\frac{d_{a}(L S E)}{K_{a} A_{11}}+\frac{d_{1} a_{m(\text { (sse })}}{K_{m} A_{m}}\right) \tag{130}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{d(t s s)}=\text { dielectric attemuation in dib/cm given by eqn. (93) } \\
& a_{n(\text { LsE })}=\text { metalicic a atenuadion in } \mathrm{db} / \mathrm{m} \text { given by eqn. (102) }
\end{aligned}
$$

The average dielectric area in (om) is

$$
\begin{equation*}
A_{3}=\frac{A_{b_{1}}+A_{b_{3}}}{2}=2(a+b-2 d) \tag{131}
\end{equation*}
$$

and the average metallic area in (cm) ${ }^{2}$ is

$$
\begin{equation*}
A_{m}=\frac{A_{d_{1}}+A_{m_{1}}}{2}=2\left(a+b+2 d_{1}\right) \tag{132}
\end{equation*}
$$

where
$A_{a_{1}}=$ surface area of the afr-diclectric boundary $=2(a+b-4 d)$ in (mm) ${ }^{2}$
$A_{c_{1}}=$ sarface area of the diejectric-metal boundary $=2(a+b)$ in $(\mathrm{cm})^{2}$
and

$$
\begin{aligned}
A_{m_{1}} & =\text { surface area of the outer metal surface } \\
& =2\left(a+b+4 d_{1}\right) \text { in }(\mathrm{cm})^{2} .
\end{aligned}
$$

Then equ. (130) can be written as

$$
\begin{equation*}
P_{s T(L S E)}=\frac{5 \cdot 037\left(T_{1}^{\prime}-T_{a}\right)}{\frac{d \alpha_{d}(\operatorname{Lss})}{K_{d} A_{d}}+-\frac{d_{1} \alpha_{m}(S E)}{k_{n s} A_{m}}} . \tag{133}
\end{equation*}
$$

Maximum transmissiblo power limited by the dielectric overheating in the dicfectriclined waveguide is given by:
where

$$
\begin{aligned}
\left(T_{1}-T_{3}\right)_{\mathrm{max}}= & \text { maximum temporature differense between the inner diclectric } \\
& \text { surface and the outer metallic surface }
\end{aligned}
$$

Similarly for LSM modes,

Fug. 23. Maximum power handing capacity (Temp, rise) vs. $a k_{a}$ for $\operatorname{LSE}_{\mathrm{of}}(\mathrm{n}=1$ and 2) mode 1.
where $a_{d(\operatorname{ssm})}$ and $a_{m(\operatorname{Lsm})}$ are given by eqns. (103) and (107) respectively. The power handing capacity has been calculated in the two cases of dielectric lining, viz., perspex and teflon for both LSE and. LSM modes using eqns. (134) and (135). The heat conductivity $K_{\tilde{\sigma}}$ for perspex, teflon and brass are taken to be equal to 0.1116×10^{-2} kilocal $/\left(\mathrm{hr}\right.$) (cm) (${ }^{\circ} \mathrm{C}$), $0.1666 \times 10^{-2} \mathrm{kilocal}(\mathrm{hr})(\mathrm{cm})\left({ }^{2} \mathrm{C}\right)$, and 0.9360 kilo al (hr) (cmi) (${ }^{\circ} \mathrm{C}$) respectively. The softening temperature T_{1} for perspex and teflon are $78^{\circ} \mathrm{C}$ and $327^{\circ} \mathrm{C}$ respectively. The ambient temperature T_{3} of the guide wall is taken to be $25^{\circ} \mathrm{C}$, and the metallic wall thickness is $d_{1}=0.127 \mathrm{~cm}$. The variations of power handling capacity $P_{z T(s e) \text { mas }}^{\prime}$ with frequency and dielectric lining thickness are shown in Figs. 23 and 24 for two values $2 \cdot 08$ and $2 \cdot 56$ of the relative dielectric constant for some of the LSE $_{m n}$ modes. Fig. 25 shows the variations of $P_{n \pi(x, s m)}$ max with frequency and d for some LSM $_{m_{n}}$ modes of type 2 .

Fig. 24. Maximum power handling capacity (Temp. rise) vs. ak_{0} for $\operatorname{LSE}_{d n}(n=1$ and 2$)$ mode 1 .

Fig. 25. Maximam power handling capacity (Temp. rise) vs. ak_{0} for $\operatorname{LSM}_{\text {in }}$ ($m=1$ and 2) mode 2 .

16. Experimental work

An experimental study of the following has been chone:
(i) Guide wavelengtin of LSM_{11} mode type 2 at X - band ($8 \cdot 0-12 \cdot 4$ (iHz)

Ku-band ($12 \cdot 4-18 \cdot 0 \mathrm{GHz}$) ; and
Ku-band ($26 \cdot 5-40 \cdot 0 \mathrm{GHz}$)
(ii) Cut-off frequency of the LSM_{11} mode typeri2.

The waveguide used is an X-band ($a=2.286 \mathrm{~cm}, b \cdot 1 \cdot 016 \mathrm{~cm}$) shuted fint-section with uniform dielectrio lining on the invide on all Cour sides with perspex or tellon of different thioknesses.

Tables I and II give the frequency-guide wavelength oharateristic; in X - and K h -hands respectively.

Table III gives the cut-off frequency for LSM 11 modo type 2 for perepes atal coffon for two dielectric coating thicknesses.

17. Discussion

17.1. The validity of the theory

The approximate theory for the dielectric-lined rectangular wavegaidic fas been derived by using the concept of the equivalent dielectris constant as given by eqns. (1) and (2). The experimental verification of the theoretical values of the guide wavelength and cutoff frequency proves the accuracy of the approximate theory.

17.2. The characteristic equation

The chatacteristic equation for LSE $_{\text {wn }}$ modes as given by eqn. (34) reduces th

$$
\begin{equation*}
\tan \left(k_{y_{1}} b\right)=0 \text { or } k_{v_{1}}=\frac{n n \pi}{b} \tag{136}
\end{equation*}
$$

when $d=0$ for the air-filled wavegnide so that $\epsilon_{\text {rea }}=1$ and

$$
\begin{equation*}
\beta_{m n}^{2}=k_{0}^{2}-\frac{m^{2} \pi^{2}}{a^{2}}-\frac{n^{2} b^{2}}{b^{2}} \tag{137}
\end{equation*}
$$

(from eqn. (54)).
which is satisfied by the $\mathrm{TE}_{m n}$ and $\mathrm{TM}_{m n}$ modes of the air-filled waveguide.
When the waveguide is completely filled with the dielsetric material ($\epsilon_{r_{2}}$), i.e., when $d=b / 2$, aqn. (34) reduces to

$$
\begin{align*}
2 \tan \left(k_{y_{2}} \frac{b}{2}\right) & =0 \text { or } \\
k_{y_{3}} & =2 n \pi / b \tag{138}
\end{align*}
$$

Table I

Frequency-guide wavelength characteristics

Frequency : X-band (8.0-12-4 GHz)

Frequency in GHz	Theoretical	g in cm	
	LSM_{11}		LSM_{81} Mode 1

(a) $\epsilon_{r_{2}}=2.56 ; d=0.15 \mathrm{~cm}$

8-3594	-	$4 \cdot 2799$	-	-.	4. 5600
9.4093	.	3.4898	-	\cdots	$3 \cdot 6400$
10.4493		2.9744	.	\cdots	$3 \cdot 100$
$11 \cdot 4942$	-	$2 \cdot 6045$.	16.0050	$2 \cdot 7400$
(b) $\epsilon_{r_{2}}=2.08 ; d=0.15 \mathrm{~cm}$					
$8 \cdot 3594$.	$4 \cdot 4828$	-	.	$4 \cdot 700$
$9 \cdot 4033$.,	$3 \cdot 6307$	\cdots	\cdots	$3 \cdot 800$
10.4433	.	$3 \cdot 0843$	\cdots	-	3.200
11.4942	\cdots	$2 \cdot 6961$	\cdots	-	2.800

(c) $c_{\mathrm{r}_{2}}=2.08 ; \quad d=0.2 \mathrm{~cm}$

8-3594	-	$4 \cdot 2960$.	.	4.36
9.4093	-.	3.4467	\cdots	.	$3 \cdot 54$
10.4493	-	$2 \cdot 8620$.	.	$2 \cdot 96$
11.4942		2.4813	.	-	$2 \cdot 60$
(d) $\epsilon_{r a}=2.56 ; d=0.3 \mathrm{~cm}$					
8.3594	..	3-3383	*	-•	3.62
9.4093	.	2.8041	-	-	3.04
$10 \cdot 4493$.	$2 \cdot 4289$	\cdots	$6 \cdot 2043$	$2 \cdot 58$
11.4942	\cdots	2-1475	\ldots	3.6930	2.32

(e) $\epsilon_{f}=2.08 ; d=0.03 \mathrm{~cm}$

8.3594	\ldots	3.6523	\ldots		
9.4093	\ldots	3.0431	\ldots	\cdots	3.95
10.4493	\ldots	2.6254	\ldots	25.28	3.26
11.4942	\cdots	2.3166	\ldots	4.8328	2.50

Table II

Frequency-guide wavelength characteristics

Frequency: Ku -band ($\mathbf{1 2} \cdot 4$-18.0 GHz)

Frequency in $\mathrm{GH} z$	Theoretical	g in cm			Measured in $g \mathrm{~cm}$
	LSM $_{12}$	$\mathrm{LSM}_{2 \mathrm{I}}$			
	Mode 1	Mode 2	Mode 1	Mode 2	
(a) $\epsilon_{r a}=2.56 ; d=0.15 \mathrm{~cm}$					
$13 \cdot 6107$.	2.0994	-	3.4633	$2 \cdot 180$
14.6577	\cdots	1.9169	.	$2 \cdot 7881$	2.000
15.7077	4.2022	1.7643	:	2.3720	1.820
16.7517	2. 2805	I. 6345	. .	2.0815	1-680
17.7956	$2 \cdot 2991$	1.5224	4. 6769	1.8635	1.560

(b) $\epsilon_{r_{z}}=2.08 ; \quad d=0.15 \mathrm{~cm}$

13.6107	\ldots	2.1708	\ldots	3.8158	2.24
14.6577	\ldots	1.9824	\ldots	3.0022	2.02
15.7077	5.2790	1.8254	\cdots	2.5271	1.84
16.7517	3.2831	1.6923	\cdots	2.2050	1.72
17.7956	2.5513	1.5777	9.9442	1.9678	1.58

(c) $\epsilon_{y}=2.08 ; \quad d=0.2 \mathrm{~cm}$

13.6107	\ldots	2.0612	\cdots	2.9612	2.14
14.6577	\because	1.8814	\cdots	2.7612	1.92
15.7077	6.52	1.7216	\ldots	2.4212	1.76
16.7517	3.92	1.6624	\ldots	2.0312	1.68
17.7956	2.86	1.4324	\cdots	1.7616	1.48

(d) $\epsilon_{t_{2}}=2.56 ; d=0.3 \mathrm{~cm}$.

13.6107	3.4838	1.7478	\ldots	2.3323	1.84
14.6577	2.4869	1.5994	7.4171	2.0104	1.69
15.7077	2.0119	1.4739	3.1080	1.7766	1.48
16.7517	\ldots	1.3662	\ldots	1.5967	1.37
17.7956	\ldots	1.2726	\ldots	1.4525	1.34

(e) $\epsilon_{r_{2}}=2.08 ; \quad d=0.3 \mathrm{~cm}$

13.6107	6.6017	1.8844	\ldots	2.6911	1.94
14.6577	3.3748	1.7257	.	2.2806	1.76
15.7077	2.5194	1.5922	8.4446	1.9962	1.61
16.7517	2.0755	1.4781	3.3585	1.7840	1.49
17.7956	1.7911	1.3792	2.4383	1.6176	1.39

Table III
Cat-off frequency for $\mathbf{L S M}_{11}$ mode type 2

Material of lining	Thickness of Tining in cm	Theoretical cut-off fre- quency of LSM mode 2 in GHz	Measured cut-off frem quency in GHz
Perspex $\left(\epsilon_{73}=2.56\right)$	0.15	5.9285	5.60
Perspex	0.30	5.5447	5.20
Teffion	0.20	5.7420	5.50
Teflon	0.30	5.38	5.30

and then

$$
\begin{equation*}
\beta_{m,}^{2}=\epsilon_{r_{2}} k_{0}^{3}-\frac{m^{2} \pi^{2}}{a^{2}}-\frac{n^{2} \pi^{2}}{b^{2}} \tag{139}
\end{equation*}
$$

(from eqn. (53)).
The above results are true for $\operatorname{LSM}_{n n}$ modes also.

17.3. Improper modes

In the case of partly sinusoidal and partly hyperbolic $\operatorname{LSE}_{m n}$ modes the transverse propagation constant $k_{y_{2}}$ (in region 1) is imaginary. Putting $k_{y_{1}}=j k_{y_{1} r}$, where $k_{y_{2} g}$ is a real quantity, eqn. (54) becomes

$$
\begin{equation*}
k_{\mathrm{min}}^{2}=\beta_{m, s}^{\circ}+\frac{m^{2} \pi^{2}}{a^{2}}-\epsilon_{\mathrm{roq}} k_{0}^{2} \tag{140}
\end{equation*}
$$

For the propagation of partly sinusoidal and partly hyperbolic mode, the following condition must be satisfied by eqn. (140)

$$
\begin{equation*}
k_{y i r}^{2}=\beta_{m n}^{2}+\frac{m^{2} \pi^{2}}{a^{2}}-\varepsilon_{\mathrm{req}} k_{0}^{2} \geq 0 \tag{141}
\end{equation*}
$$

At cut-off, $\beta_{m s}=0$, and hence the cut-off frequencies of the partly sinusoidal and partly hyperbolic mode satisfy the following inequality :

$$
\frac{m^{2} \pi^{2}}{a^{2}}-\varepsilon_{\mathrm{xeq}} k_{o}^{2} \geq 0
$$

or

$$
\begin{equation*}
\frac{\omega_{c}}{2 \pi}=f_{0} \leq \frac{m \pi c}{a \sqrt{\epsilon_{\mathrm{r} \theta Q}}} \tag{142}
\end{equation*}
$$

where $c=1 / \sqrt{\mu_{0} \epsilon_{0}}$
from $m=0$, at cut-off, we obiain

$$
\begin{equation*}
k_{3 / 1}^{2}(\text { cut-oft })=-\omega_{d}^{2} \mu_{0} \mu_{r} \epsilon_{n} \epsilon_{\mathrm{req}} \tag{143}
\end{equation*}
$$

From eqn. (143) it is evident that $k_{y_{1}}$ (eat-off) cann t become positive. Therefore partly sinusoidal and parly hyperbolic $\operatorname{LSE}_{\mathrm{an}}$ modes cann t propagate in the diefectic-lined metal rectangular waveguide, and hence are in proper modes.

17.4. Propagation characteristics of $L S E_{\text {ani }}$ and $L S M_{\text {an }}$ modes

(i) It is observed from Figs. 3.1 to 4.6 that (a) the $a f$ san ws, wheneteristiss of both LSE $_{\text {man }}$ and LSM $_{n \rightarrow n}$ modes vary almosi in a similar fishon: (h) in buth types of modes the cut-off frequency increases with the mode inatox mand order of appearance n of modes; (c) gencrally $\mathrm{LSM}_{p 3}$ modes of type 2 and LSis min $_{\text {modes of }}$ of type 1 propagate for a larger frequency rage for all values of d : (6) LSM t_{t} mode type 2 is the dominant mode (with luwest cut-off froquency); (d) in the eases of all nodes of various types, at high frequencies, $a k_{0}$ vs. $a \beta_{m a}$ curves for the dielectric-lined waveguide approach towards the phase constant vs. frequency curve of tho completely filled waveguide. The encrgy is then concentrated practically in the diclectric lining and the inhomogeneous waveguide can ba used as a dielectric guice. As a result the krsees in the dielectric-lined waveguide increase at high frequency.
(ii) At high frequencios the phase velocity and the group velocity approach asymptotically $1 / \epsilon_{r g}$ times the velocity of light (Figs. 5.1 to 6.3), and the product $v_{p} v_{p} /{ }^{\prime \prime}$ fiv both LSE m_{m} and $\operatorname{LSM}_{m n}$ modes approach $1 / \epsilon_{r_{2}}$ for all d and $a k_{0}$ as shown is Table IV.

Table IV
Product of normalized phase and group velocities

$\epsilon_{r_{3}}$	$1 / \epsilon_{r z}$	Dielectric lining thickness d in cm	$v_{p} v_{s i} / c^{2}$	
			LSM_{11} mode type 2	LSM SI^{2} mode type 2
$2 \cdot 56$	$0 \cdot 390$	0.15	0.389	$0 \cdot 390$
		$0 \cdot 30$	0.388	$0 \cdot 388$
		0.40	0.389	$0 \cdot 390$
		$0 \cdot 50$	0.390	0×390
9.0	$0 \cdot 111$	0.15	0.110	0.111
		$0 \cdot 30$	0. 109	0.110
		$0 \cdot 40$	0.111	0.111
		$0 \cdot 50$	$0 \cdot 110$	0.109

(iii) The percentage bandwidth in the dielectric-lined waveguide cannot be more than 66.6% which happens to be the bandwidth between the TE_{20} and $T \mathrm{E}_{10}$ modes of the airfilled waveguide.
(iv) In the case of all the modes of $\operatorname{LSE}_{m n}$ and $\operatorname{LSM}_{m n}$ types, the total attenuation constant α_{T} vs. $a k_{0}$ curves tend to infinity near cut-off frequency, and then most of the curves pass through minima and then approach infinity again at very high frequencies (Figs. 18, 19 and. 26). This shows that at high frequencies all the energy is concentrated almost in the dielectric lining which introduces high losses. The attenuation constant of higher order modes helps to assess the order of mode rurity. It may be said that the higher the attenuation of the higher order modes the greater is the mode purity of the dominant $L_{S M} M_{11}$ mode type 2. It is also observed that the total attenuation constant in the case of LSM $_{11}$ and LSM $_{21}$ modes of type 2 is minimum at $a k_{0}=4 \cdot 0$ and $a k_{0}=7 \cdot 82$ respectively at $d=0.15 \mathrm{~cm}$.
(v) It is interesting to find that the power handling capacity (temp. rise method) is maximum at the points where the attenuation constant is minimum of the various modes (Table V).
(vi) From Figs. 24, 25 and 26 it is evident that the power handling capacity of the dominant LSM $_{11}$ mode type 2 due to method 2 is higher than that of any other mode for all values of d and ϵ_{rg}, though the maximum power handling capacity of the higher order $\operatorname{LSE}_{m_{n}}$ and LSM $_{m_{n}}$ modes is not significantly less than that of the LSM_{11} mode type 2.
(vii) The maximum transmissible power decreases with the increase of frequency, i.e., with the increase of field concentration and dielectricmlining thickness, and this can be explained by the faot that the power losses in the dielectric increase with d and $a k_{n}$.

Fig. 26. Total attenuation constant vs, $a k_{g}$ for LSE $_{m n}$ and $\mathrm{LSM}_{\text {ran }}$ modes (Parameter being d).
(viii) The phase shift in the dielectric-lined waveguide with respect to the air-filled waveguideis calculated from the relation:

$$
\begin{equation*}
\phi_{\mathrm{shUt}(\text { deg } \mathrm{em})}=\frac{2 \pi \times 180}{\pi}\left(\frac{1}{\lambda_{g}(\text { ddelectry } 1)} \frac{1}{\lambda_{g}(\mathrm{atr})}\right) . \tag{144}
\end{equation*}
$$

Table VI gives the phase shift as a function of frequency for $\kappa_{\gamma_{1}}=2.56$ and $d=0.3 \mathrm{~cm}$.
(ix) The experimental determination of guide wavelength λ_{g} verifies the existence of the LSM_{12} mode type 2. The discrepancy between theoretiona and experimental yalues of λ_{s} and cut-off frequency f_{s} is very small and it may be aseribed to the approxina tions involved in the theory.

Table V

Frequency at which power handling capacity is maximum and total attenuation is minimum for LSM $_{\text {min }}$ mode type 2

$\epsilon_{r_{2}}$	Dielectric lining thickress d in cII	Maximura power handling capacity		Minimum attenuation	
		$a k_{0}$ in radians		$a k_{p}$ in radians	
		LSM_{12} node type 2	LSM_{31} mode type 2	$\mathbf{L S M}_{13}$ mode type 2	LSM_{21} mode type 2
2.56	0.15	4.0	7.82	4.0	7.82
	$0 \cdot 30$	3.62	6.58	3. 62	6.6
	0.40	3.18	$6 \cdot 2$	3.15	6.0
	0.50	$3 \cdot 0$	5.6	$3 \cdot 0$	$5 \cdot 6$

Table VI
Phase shift-frequency relation LSM_{11} mode 2
$\left(\epsilon_{r_{z}}=2.56 ; d=0.3 \mathrm{~cm}\right)$

Frequency in GHz	$\begin{gathered} g^{(\text {didecectric) }} \\ \mathrm{LSM}_{\mathrm{IL}} \text { mode } 2 \end{gathered}$	$g^{(\text {ainfilled })}$ TE_{20} mode	in deg/mm

8.355	3.3383	5.80	45.79
9.399	2.8041	4.45	47.48
10.444	2.4289	3.68	50.40
11.488	2.1475	3.18	54.43
12.533	1.9266	2.80	58.28
13.577	1.7478	2.51	63.21
14.620	1.5994	2.29	68.11

18. Conclusions

The investigations on the dielectric-lined metal rectangular waveguide lead to the follow ing conclusions:
(i) $\operatorname{LSM}_{\mathrm{LL}}$ mode type 2 is the dominant mode.
(ii) $\operatorname{LSE}_{01}, \mathrm{LSE}_{11}$ and LSE_{21} modes of type 1 are improper modes as they do not satisfy the proper boundary conditions at $y=b$ for all d and $\epsilon_{r_{2}}$.
(iii) Complately hyperbolic modes of either $\operatorname{LSE}_{m n}$ or LSM $m n$ types cannot exist in such a structure.
(iv) In general, LSM $_{\text {II }}$ mode type 2 has a lower attenuation constant than any other modes.
(v) The maximum bandwidth that can be achieved between the dominant LSM_{31} mode and the next higher order mode LSM_{31} is 66.6 per cent which is the same as that of an airfilled tectangular metal waveguide.
(vi) The power handing capacity due to temperature rise method in the case of the dominant $L S M_{11}$ mode type 2 is generally the highest for all values of d and all frequencies.
(vii) The power handling capacity (temperature rise method) is maximum when the total attenuation is minimum, though this is less than that of the TE_{10} mode in an airfilled waveguide.
(viii) The power handling capacity calculated by the method of temperatare rise is lower than that obtained by the breakdown field mathod.
(ix) The measurement of guide wavelength i_{g} establishes the existence of the dominant LSM $_{11}$ mode type 2 at X - and Ku -bands.
(x) Measurement of λ_{g} at Ka-band proves the existence of higher order $\mathrm{LSM}_{m n}$ modes especially of type 2 .
(xi) There is a fair agreement between the theoretical and experimental results of the guide wavelength at all frequencies.
(xii) Experimental values of cut-off frequencies agree well with the theoretical values for LSM mode $_{11}$ mpe 2 for various values of d and $\epsilon_{r_{2}}$.
(xiii) The dielectric-lined metal rectangular waveguide may find application as a phase shifter, slow-wave structure and probably as a high frequency transmission line.

Further work is being carried out on the characteristios of such structures with very thin dielectric linings and also on the coupling between modes,

References

1. Frank, N. J.
2. Pincherle, L .
3. Montgomery, C. G., Dicxe, R. H. and Purcell, E. M.
4. Van Bladel, J.
5. Van Bladel, J. and Higans, T. J.
6. Weeks, W. L.
7. But Van, R. E. and Gagne, R. R.J.
8. Bur Van, R. E. And Gagne, R. R. J.
9. Marcuvitz, N.
10. Chambers, L. I. G.
11. Malinovsky, K, V. and angllakos, D. J.
12. BERK, A. D.
13. Collin, R. E. and

Valluancourt, R. M.
14. Collan, R, E.
15. Vartintau, P. H. AyRes, W. P. and Helgesson, A. L.
16. Bland, G. F. AND Franco, A. G.

17, Seckelmann, R.

Waveguide Haudbook, M.I.T. Radiathon Luboratory Report 9 , Cambridge, Mass., U.S.A., 1942.

Electromagneice waves in metal tabes fillol lemstubhanle with two dielect:cs, Dhys. Rer.. 10,44, 65, His 130.
 Series, McGraw-Hill, New York, 1948, 8, 355-3.3s.

Expandability of a waveguide field in tems of womail modes, J. Appl. Plyys, 1951, 22, 68 69.
 J. Appl. Phys., 1951, 22, 329-334.

Propagation constant in rectugglar wiseguide filed whit fente, I.R.E. Twass., 1959, MTT 9, 294-295.

Propagation of wave in rectangular wawgides chataining dider. tric layers in the H-plane, L.N.T.J. Likmmics, 1972, 32, 353 360.
 I.E.E.E. Trans., 1972, MTT 20, 611-623.

Waveguide Hondbook, MoGraw-Hill Book Co, New York, 1951, pp. 387-393.
Compilation of the propagetion constunts of an inhomegene ously filled waveguide, Brit. Journ. Appt. Phys., 1952, 3, 19.21 .

Propagution ia inhomogeneonsty filled Ruides, Univorsity of Catim formia, Berkeley, Calif, USA, Lostituic of Engincering Reseurh, 1959, Series No. 60, Isste No. 125.
Variational principles of electronagnetic resonatue and wive guides, I.R.E. Trans., 1956, AP-4, 104-111.
Application of Rayleigh-Ritz method to dielectric steps in waveguides, I.R.E. Trons., 1957, MTT-5, 177-189.

Field theory of guides, McGraw-Hill Book Co., Inc., New York, 1960, pp. 22-27; 104-118; 127-128 and 170-181.

Propagation in diclectric slab loaded rectangular waveguide, I. R.E: Trans, 1958, MTT-6, 215-222.

Phase shift characteristics of dielectric-loaded wavoguide, $Z . R . E$. Trans., 1962, MTT-10, 492-496.

Propagation of TE modes in dielectric-loaded waveguides, I.E.E.E. Trans., 1966, MATX-14, 518-527,
18. Cintrimse, S. K. and Chatmbar. R.
19. Howhird, R, Wht, Rith E. BLS ANW PrICE, E. L.
20. Eberhardtr, N.
21. GABDHOL, I. I.
22. Findakly, T, K, ANo HASkAL, H. M.
23. Tsampoulas. G. N.
24. BARCHLY, T. C.
25. JACOB, M. AND

Hawkins, G. H.

Dielectric-loaded waveguides; review of theoretical solutions, Jourt, Inst. Electronic and Radio Engineers, 1965, 30, Pp. 145160; 195-205; 259-588 and 353-364.

Propagation characteristics of waveguides containing parallel sheets of finite conductivity, I.E.E.E. Trans., 1967, MTT-15, 232-234,

Propagation in the offentre E-plane dielectrically-loaded waveguidos, L.E.E.E. Trans,, 1967, MTT-15 (5), 282-289.

Higher order modes in dielectrically-loaded waveguides, L.E.E.E. Tians, 1968, MTT-16 (13), 919-924.

On the design of the dielectric-loaded waveguides, I, E.E.E. Trans: 1976, MTT-24 (1), 39-43.

Propagarion in dielectric-fined square waveguides, I.E.E.E. Trans., 1975, MTT-23, 406-410.

Design of cylindrical surface waveguides with dielectric and magnetic coating, Proc, l.E,E, 1961, 108, pt, C, 386.

Eloments of Fleat Transfer, John Wiley and Sons Inc., New York, 1957, p. 157.

Seminar on 'Management of R \& D in Industry'

The Hyderabadmased Indian Research and Seminar Centre is organising an cight-day seminar on 'Managentent of R \& D in industry' at Hotel Ashoka, Bangalore. Slated to start on January 1,1980, this course will cover the philosophy, planning and functioning of $R \& D$, selection of $R \& D$ personnel, finance and evaluation, tools and processes, new industrial products and technological problems and is likely to be useful to all involved in $R \& D$,

The faculty, according to the Centre's press release, are drawn from established and reputed institutions. The convener of the seminar is Dr. Anand Khare.

The registration fee per participant is Rs. 5,000, which covers board and lodging at Hotel Ashoka for eight days and lecture material. The last date for registration is November 30, 1979.

Participants desirous of contributing original papers to the seminar should send immediately a 300 word synopsis to the Centre.

Further particulars can be had from the Indian Seminar and Research Centre, 8-2-248/B/1, Journalist Colony, Road No. 3, Banjara Hills, Hyderabad 500034.

[^0]: * Electronics and Radar Development Establishment, Bangalore 560001.

