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Abstract 

The propagation characteristics of elcctronlagnetic waves in a dielectric-lined rectangular metal wave- 
guide have been studied. The lining on the two side walls (E-plane) together with the air space in between 
them is considered as a homogeneous equivalent dielectric medium whose equivalent dielectric constant 
is derived by using electrostatic theory. The theoretical work is based on the fact that LSE and LSM 
modes can be propagated is a rectangular metal waveguide lined in the two longer sides (H-plane) by 
dielectric lining. The phase constant, guide wavelength, phase velocity, cut-off fiequency, relative inten- 
sities, power flow, attenuation constant and power handling capacity of different LSE,, and LSM,,modes 
have been determined. Experimental verification of the guide wavelength at 'X', ' ku ' 'and ' Ka ' 
bands and cut-off frequency are reported. 

Keymdn: Inhomogenoous waveguide, LSE and LSM modes 

The successful development of microwave techniques and their utilization for micro- 
wave communication created interest in the design and development of various types 
of miorowave components based o n  the properties of inhomogeneous waveguides, viz., 
guides partially loaded with: dielectrics, f&rites, etc. Introduction of dielectrics or ferrites 
in waveguides results in changes of (i) cut-off frequency, (ii) phase constant, (iii) power 
flow, (iv) band width, (v) phase velocity, (vi) attenuation constant, etc., and may in some 
cases permit the use of a guide of smaller cross-section for a given cut-off frequency. 

Previously several workers have studied rectangular waveguides loaded by dielectric 
slabs in the H-plan&-8 and rectangular waveguides loaded by dielectric slabs in the 
E - ~ l a n e ~ - = ~ .  The square waveguide with a dielectric lining has been studied by 
TsandoulaP. In most of these cases, E or H modes and in some cases LSE, LSM and 
E H  modes have been considered. . 
* Electronics and Radar Development Establishment, Bangalore 560 001. 
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In this paper an attempt has been made to make an exhaustive analytical study of as 
many aspects as possible of the problem of propagation of electromagnetic waves in a 
dielectric-lined rectangular metal waveguide and verify experinlentally some of the theo- 
retical results. The theoretical work has been bascd on the fact that LSE and LSM 
modes can be propagated in a rectangular metal waveguide lined on two sides by dielec- 
tric lining.'.'.'. The lining on the two side walls (Cplanc) togcthcr with theairspacein 
between them is considered as a homogeneous equivalent dielecltic medium whose oqui- 
valent dielectric constant has been derived by ucing cleclrostatic theory. The work has 
been motivated by the Fact that there is suEcicnt scope for theoretical and experimental 
work on the propagation characteristics of a dielectric-lined reclangular metal wave- 
guide on which very little information is available in published literatwe, and it is felt 
that this will add to our knowlcdge of thc subject. 

Deriving the field components for LSE and LSM modes u'iing H c r t ~  potentials, and 
ap2lying boundary conditions, the characteristic equations have bccn derived and solved 
n.merically for varying parameters like dielectric constant and thickness of dielectric 
coating. The modal nnalysis shows that the propagating modes can be classified into 
two categories, namely, (i) completely sinusoidal and (ii) partly sinusoidal and partly 
hyperbolic. Rilative intensities of different LSE,, and LSM,. modes, the power flow, 
attenuation constant, cut-off frequency, phase velocity, gror1.p-velocity nnci power handl- 
ing capqity (by two methods) have been determined. Experimental verification of tht 
guide wavelength at X, ' Ku ' and ' Ka ' bands and of the cat-off frequency arc reported. 

2. Geometry of the problem 

The dielectric-lined waveguide (Fig. 1) is divided into five regions and the structure is 
modified (Fig. 2) by using the concept of equivalent dielectric constant as  explained 
later. It is assumed that the walls of the metal waveguide have infinite conductivity. 
the dielectric lining has constants c,,, p, = 1, a = 0, and the eqrivalent dielectric region I 
of Fig. 1. b has constants E ,,,, p, = 1 and CT = 0. 

Considering the three regions 1, 4 and 5 of Fig. 1 as equivalent to three capacitors 
i n  series, the equivalent dielectric constant t,,, of the compositemedium made up of the 
above three media is derived as follows: 

1 - 1 1 1 - -- + - $ ---- 
A I Ale,,, %c,r,, 

a d (u - 2d)  ri 

where A, = area of the capacitor plate 
so '= permittivily of free space 

and d = thickness of  the dielectric lining 

Solving eqn. (1) for s,,,, we obtain . 



FIG. la. Dielectric-hod rectangular wveguide. Fzo. lb. Equivalent of Fig. la. 

d-~ialectric lining thickness; a-Width of the guide; b-Height of the guide;  equivalent 
dii1ectTic constant. 

3. Field components 

~t is known that a rectangular metal waveguide loaded with dielectric lining on the top 
and bottom H-plane faces (Fig. 2), supports LSE and LSM modesV. Each of these 
modes are characterized by five field components with E, = 0 and H, = 0 in the case of 
LSE and LSM modes respectively. The field components of the LSE mode are derived 

3 

in tams of a magnetic type Hertzian vector potential nu and the field components of the 
a 

LSM mode are derived in terms of an electric type Hertzian ve~tor potential &. 

4. LS&. mode C 

r) 

The magnetic-type Hertzian Vector potential n, can be expressed as 
3 3 
n~ = a,* 

where the magnetic scalar potential is given by 

ys = f (x) g Q exp ( jwt - 7 ,~ ) .  
-L -+ 

The eleotric and magnetic field vectors E and H are given by 
3 3 
E = - j w  O W ,  V X n x  
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where go  = permittivity of free space = 4n X lo-' I$enry/mcter. The field components 
derived from eqns. (5) and (6) are given by 

EZt = -  POP, I'M. V ~ M  17) 

EIL = 0 (8) 

Where y, satisfies the scalar Helmholtz equation 

where 

k o = w J G  

i = 1,2,3 indicating the regions 1,2,3 (Fig. 2) 

where k,, and k, denote the transverse propagation constants in the y and x directions 
respectively. The values of k, are discrete and equal to mnlu, where nr = 0,1,2, which 
.are determined by applying the proper boundary conditions that E, := 0 at .r -: 0 and 
at x = a. 

Assuming tbat the guide is lossless the longitudinal propagation constant can be 
written as 

YM,, = jPma 
where p,, should be real for propagation to exist. 

Equation (14) can be written in the form 
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The field components in regions 1,2,3 of Fig. 1 b, derived with the aid of eqns. ( I )  to 
(12), are as follows: 

E,, = wy,P,,, [C, sin k ,  y -b D, CoS ky, ~1 

mn 
sin - x exp (- jj,. z) 

, 
(19) 

H , ~  =.- mn - k,, [C, oos k ,  y - Di sin k,, y] 

H,, = - j&,, k., [C, GOS km, y - D, sin kmi Y] 

mn 
cos - x exp (- jp,. z) 

where i = 1,2,3 respectively in the three regions 1,2,3 and kW3 = k,,. The harmonic 
time dependence e"' has been omitted for the sake of convenience. 

The boundary conditions at the interface of the different regions are: 

Between regions 1 and 2, i.e., at y = ( b  - d) ,  

E,=E,, ,  H,=H, , ,  E,=E,, H,=H,, (23) 

Between regions 1 and 3, i.e., at ); = d, 

E ,=E, , ,  H,=H,,, Em= E"* 

and H,, = He,. (24) 

At y =  b, Em= E,=O (25) 

~t y = O ,  E,= E.)=O. (26) 
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The conditions (25) and (26) give 

Ds = - C, tan (k,, b) (271 

and D, = 0. (28) 

Applying the boundary conditions (23) and (24) and using eqw. (271 and (?ti), wc 
obtain 

C, sin (k,, J>) -t Dl cos (k,,)',) - C:, sin ( k , , , ~ , )  -- 0 (291 

C, kva cos k, y, - Dl kxz sin (k,, yl) - C3 ky, cos (kg. y,) - 0 (30) 

cos (k,, b) [C, sin (k,, ye) + DL cos (k, y2)l f C2 sin (k, ,r l)  = 0 (31) 

cos (k,, b) [C, k, cos (k,, ye) - Dl kt, sin (k,, ye)] - Cp ky, COY J*,) =. 0 (32) 

where yl = d, yz = b - d. 

For a non-trivial solution of cqns. (29) to (32), the followil~g characicristic equation is  
satisfied : 

which on simplification becomes 

k:, cos2 (k,, d )  sin k, (b - 2 4  

$. 2k, k,, cos (k,,d) sin (k,, d) . oos k,,(b - 211) 

- k:, sin2 (k,, d) sin k ,  (b - 2 4  = 0 

where 

and 
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5. LSM,. mode 
The field oomponents are derived in this case with the aid of the electric-type Hertzian 

+ 
VectOl potential n. given by 

+ 
n. = a" Y E  (37) 

where the electric scalac potential W, is given by 

vrr = h (4 I (Y)  exp ( j o ~ t  - y,, 2). (38) 
The magnetic and electric field vectors H and E are expressed as 

where i = 1,2,3 refer to the regions 1,2,3 in Fig. 2. The field oomponents derived from 
eqns. (39) and (40) are given by 

H,, =.ioc, cri Y I ~ "  v6. 141) 
H~~ = o (42) 

H,, =jar, s 
" 6 x  (43) 

Proceeding in a similar way as in the case of the LSE,, mode, the solution of the scalar 
Helmholtz eqn. (13) is of the form 

ys= 1 0  sin ?%exp ( j o t - y , .~ )  

= (G, sin k,, y + H, cos k,, y) sin x exp (jot - y,, z) (47) 

where i = 1,2,3 in the three regions 1,2,3. 

Using eq& (41) to (47), and applying the boundary conditions given by eqns. (23) to 
(26), we obtain the characteristic equation for LSM,. modes as 

E:, k;, cosa (ky, d )  sin k,,(b - 2d) 

+ 2heo E,, ksl ky,cos (k,,d) sin (k,, d )  cos ky, (b - 2d) 

- &, kt, sin2 (kyx d )  sin k,, (b - 2d) = 0 

whore kX and k:, are given by eqns. (35) and (36), 
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6. Solution of the characteristic equations for LSE and LSM nloder 

It is found that the solution of the chal-a~teristic eqns. (34) and (48) tbr LSE,, and LSM,. 
modes respectively, exist only when the transverse propagation conctanr. k,, is real. Bur 
kg* may be real or imaginary, which means that 

In order that k,, is real, but k,, is real or imaginary, the follawing inequality condition 
must be satisfied. 

which means that I lip, 1' is always greater than 1 k,, I ?  Thir is justified as thc computa- 
tion of ex., shows that E,, is always grealer than c ,,,,. 

It is also observed that when k,, is always real and k,, is real, the characteristic equa- 
tionis expressed only in terms of circular trigonon~etric sine and cosine functions. How-  
ever, when k,, is imaginary and k,, is real, the characleristic equation will involve not 
only circular trigonometric functions but also hyperbolic functions. We may dcsiynate 
these solutions of eqns. (34) and (48) as (1) a cornplctcly sinusoidal mode (k,, and k,, 
are both real and positive) designated as Mode I and (2) partly sinusoidal and partly 
hyperbolic mode ( l i ,  is imaginary and k,, is real and positive) designated as Mode 2. 

If, however, k,, is imaginary, or in other words, 

the characteristic equation will involve only hyperbolic functions and the modes obtained 
from the solution may then be identified as completely hyperbolic mode. But when the 
characterislic equation involves only hyperbolic functions it is found that there is no 
solution. Hence it is concluded that the completely hyperbolic modes cannot exist. 
The non-existence of the completely hyperbolic modes can be justified by the following 
msment.  The characteristic equation for this mGde, if it exists, i s  given by: 

k:,, cosha (k,,, d )  sinh (k , ,  (b - 2)) 
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--- M e * *  , - Mod. 2 

" I  , l  I \ 

t r 1  i d ,  (I  1 In, 

F I G  i ~-WO~HAIIIED W I S E  ANO LIROUPVELOCIIIEI YI a * b  1 l D 1 A N 5  FIO L 2 WRWLIZE~ WAY AND -P wmaw w eke a l o t w s  
I porom.,.. b m p  d l  

- Hl lmaI , .C  Dh".. r.iorw --- Rmrnnilrc* v w p  ".lWlt, 
7. Numerical computations for LSL, and 
LSM,, modes 

Numerical computations of the different 
propagation characteristics like the axial 
phase constant p,,, the guide wavelength 
E .,," = 2rr/B,,, the phase velocity v ,a," -- 
w/j,., the group velocity 

aVm" = -- 

a i n  the cut-off frequency fen,",  and attenaation 
constant below cut-off for dominant and 
higher order modes have been made. Figs. 
2.1 to 3.6 present the normalized phase 
constant a &. us. ak, far different LSE and 

--.. LSM modes respectively for various values 
of d and t.,. Figs. 4.1 to 5.2 present the 

<,a t . t~,~v. normalized phase and group velocities for 
1 various LSE and LSM modes respectively 

610 1 I-WRWLSIEO W A Y  WO OXNP V S l O C l T m  YIIIELm'IVS PLRYnTiYn l  vs. ak. for various valucs of d and c,,. 



where k ,  = jk,,, and k,, = jk,, and k,,, and k,,, are real and positive. Equation (52) 
is satkfied if and only if all the terms of this equation are zero at the same time. This 
means that k,, and k,,, simultaneously become ,zero. Since k , ,  and kg,, satisfy the 
equations 

and 

both k,, and k,,, cannot become zero. Hence it can be concluded that the characte- 
ristic eqn. (52) does not have any solution for the complete hyperbolic modes. 

In the case of partly sinusoidal and partly hyperbolic modes the transverse propaga- 
tion constant in region 1 is 

where k,, is a real positive quantity. In tbis case the characteristic eqns. (34) and (48) 
for LSE.. and LSM,, modes respectively become 

. k;, ~ o s e  (k,, d) sin4 (kik,,, (b  - 2d)) 

+ 2 k ,  k,, cos (k , ,d ) ,  sin (k,J cash k",, (b  - 2d) - 

+ k;,, sin2 (k,, d.) .sinh . k , ,  (6 - 2d) = 0 

and 

where 

and k, is given by eqn. (36). 



I.. I,... C., .*nq 
"..a ! --- 8. Cut-off frequency of LSG, and LS&. 

modes 

The cxt-off condition is determined by 
putting /?,. = 0 ineqns. (35) and (36). For 
modes type 1, both k,, and k,, arc real and 
therefore eqn. (35) becomes 

971' 76' kk = 6 P p 0  I(" €" - /!:" - 2 0 

wherc the subscript c indicates the value\ 
FIG. 5.1. Normalized phase and group velocities at cut-off, and 
vs. aka for LSM,n, modc (Parameter being d). kt, = 10:; / r o c ,  

Hence for mode 1, theat-off condition i\ 
given by 

I 1,~"~ w . " l k  - --- 2 ((5) 
<r.o aL 

or 

f r2L '' - 20 J e,., (61) 

Similarly fot modc 2 to exist, k,, io real and 
k, is imaginary, and the cut-off condition 
for the mode is derived from eqn. (35) as 

. .I./.,/.", .-. r.d#sn. 

I., 3 m2 ne k;, = f,, kt,, - -,T 9 0 
FIG. 5.2. Normalized phase and proup velocities 

(62) 

vs. ak, for LSM,, mode. \\here k :  , = t&p, E, 

FIG. 5.3. Nor~lalipd pbaso and group velwitia vs. r, for LSM,. 
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vhich yields 

It is evident that the cut-off frequency for mode 2 is lower than that of mode 1. Equa- 
tions (59) and (62) are solved for obtaining the cut-off frequencies for both LSE,, and 
LS-, modes. 

Figures 6.1 to 7 pesen8 the normalized at-off frequency ak,, vs, filling factor dla for 
LSE,, and LSM,, modes respectively. Figs. 8.1 to 9 present the normalized cut-off 
frequency ak,. vs. relative permittivity E,, for LSE,, and LSM.. modes lespectively. 

9. Bandwidth 

The percentage bandwidth is defined as 

whore'$: = cut-off frequency of the lowest mode 

f .C = cut-off frequency of the. next higher order mode. 

The percentage bandwidth of the LSE,, and LSM, modes has been calculated as afuac- 
tion of dieleotric Wing factor d/a and E,,, and the results are shown in Eigs. 10 and 11. 

10. Attenuation constant below cut-off 

In the region below cut-off the square of the transverse propagation constants kZ, and 
k;, are real, and the modes below cut-off ate non-propagating. y:, can be written as 

a& a,. satisfies the equations 

ma zZ 
k;, = 6, k; 4- a:. - -- !lz (67) 

m2 g2 
= c,,, k: + a:. - - a* (68) 



FIG. 6.1. Normalized cut off frequency 
ak,, vs. filling factor d/a. 

FIO. 6.2. Normalized cut off frequency 
ak,, vs. filling factor d/a. 

The attenuation constant below cuboff a, has 
been calculated for both LSE,, modes and 
LSM,. modes and are shown In Eigs. 12 and 
13 respectively. 

11. Relative intensities of the fidd components 
of LSE,, and LSM,", modes.- 

For LSE,,,, modes, (eqns. (29) to (32)), three of 
the amplihde constants C,, D,, C,, C, can be 
expressed in t e rm of one of them. say C,. and 
hence their relative amplitudes can be calcu- 
lated. Equitlons (27) and (28) give the values of 
D, and D,. It IS similar for LSM,, mode$ 

Using the calculated values of the above 
amplitude constants, the rolat~vc intensities of 
the field cornpononts for LSE,),. and LSM,, 
modes are calculated and prcscnted in Figs. 14. 1 
to 15.2 respectively. 

12. Orthogonal of the fiolds of LSE,, 
and LSM,, modes 

Thc following orthogonal relation holds good 
rdr LSE,. alid LSM,, modes14 in the dielectric- 
lined rectalrgular metal waveguide 

IS El I,") ): Ht I,,,) . a, da = 0 (69) 

where m # p and n # q or both, dnd S denotes 
the cross-section of the lined waveguide, El (,., 
is the transverse electric field for the 'mn'th 
mode. For a lossy medium, Hi (,,) is placed by 
H;(, ,, so that 

{S El i m n )  x Win,, . a, ds = 0. (70) 

Further in the case of LSE,a, modes the transverse electric fields for two different modes 
are orthogonal. The same is also true for the transverse and the longitudinal magnetic 
field components which is as follows : 
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FIG. 7. Nonnalizcd cut off frequency a$, vs. filling factor d/a for LSM,, mode. 

None of the orthogonal properties given by eqn. (71) hold good for LSM,, modes. 
The orthogonal properties of LSM,n, modes can be treated as described by collin14. 

The above orthogonal pxoperties are wed to evaluate the total power flow by the 
summation of the power flow in each region carried by each non-degenerate mode 
individually. 

13. Power flow for LSE,. and LSM,. modes 

The average power flow along the positive longitudinal z-direction is calculated by 
using the relation 

P, = 12 Re j S  I% x Hd . a, dy d x  (72) 

where S is the cross-section of the lined waveguide. The total power flow is the sum 
of the power P, carried inside the region /d< y< (b - d)), the power P., in the region 
2 ( ( b  - d)<y< b);  and the power P,, in the region 3 (0< y<d) (Fig. 2). 

For LSEm, modes, E, = 0 (i = 1,2,3), and hence the total power flow P,, is given by 
a ( a d )  a d 

P,r (,,.I = 3 Re C (E,, Hf dy H dy + J -4 Hz, dyl d.~ - 0 3 )  

Substituting the expressions for the appropriate field components from eqns. (17) to 
(22), we obtain 
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FIG. 8 , I .  Normalized cut off frequent) 
vs. relative permittivity r,=. 

ha. 9. Normalized cut o f  frequency ~k,, vs. 
relativo permittivity E , ~  for LSM," modo. 

B o n d  * I d , "  

Band w l d f n  mr.m 
L S E T ~  and L I E 2 1  - 

F i l i n g  lorlor d l .  
I I l  

Fllhnp fnrloi d i d  
i b l  

ha. 8.2. Normalized cut off frequency FIG. 10. Percentage bandwidih vs. filling factor d/a 
vs. relative permittivity e,. for LSE,, mode. 
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0 I . ,  
0.0131 0.1111 0 2185 

Ftlilog faclar ,  dia 
1.1 

FIG. 11. Percentage bandwidth 
LSM,,,, mode. 

Ibl 

vs. filling factor &/a for 

FIG. '1'2. Normalized attenuation a%,, below cut off vs 
ak, for LSE,, mode. 

FIG. 14.1. Relative field intensity 
along pdirection for LSE,,, mode. 

FIG. 14.2. Relative field..intmity 
along y-dimtion for LSq, mode. 

FIQ. 13. Normalized attenuation constant a h ,  below cut 
off vs. ak, for LS& mode. 

FIG. 14.3. Relative field intemity 
along pdirection for LSBOB, WEL8 
and LShp mods. 
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FIG. 15 .I. Relative field intensity Ro. 15.2. Relatiw field inbxity 
along )~dircction for LSMn and along y-direction for LSMU and 
LSMXl nmdcs 2. LSM,, modes 1 .  

where No is the Nuemann factor given by 

No = 1 when m = 0 

= 2 when nl = 1,2,3 

and 

El = s' cos k,,d 
k", 

F, = sin k,, d 

E, = cos k,,, cos k,  (6 - 2d) - k ~ '  sin k,, d sin k,, (6 - 2d) 
k ,  

F, = cos k,, d sin k ,  (b - 2 4  + sin kt, d cos k ,  (6 - 2 4  
k ,  

Similarly for LSM,, modes, the total powor Row is given by 
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d sin 2k d _d s i n x d  - I - I ~ ~ I { I T ~ I ~ ( ~ - ~ ~ ) + ~ S ~ I  4k, ( 2 +  - 4 k m )  

d sin 2k,, d + p-%r + r; s2) " 1 1 . 2 ~ ~ }  2kv2 -1 1 1 (i + -)] (78) 

where 
H, is an amplitude factor for LSM,, modes corresponding to C, for LSE,, modes, 

T, = - sin k, d 
k,  

S1 == E" C ~ S  ky d 
errs 

T2=-sinX-,,d cos k u , ( b - 2 d ) + b 3  cos k,,d. k, %, 
(79) 

sin k,, (b - 2d) 

T,  = cos k, d cos k,, (b - 2d) 

- kg, - "" sin k,, d . sin k ,  (b - 2d). 
X-,, .,, (80) 

The variation of the total relative power and the relative power in regions 1, 2 and 3 for 
some of tlie LSE,, and LSM,, modes are shown in Figs. 16.1 to 17.2 respectively. 

FIG. 16.1. Relative power flow is regions 
1, 2 and 3 and total relative power flow vs. 
ak, for LSE,, moQe. 

Frc.16.2. Relative power flow in 
regions 1,2 and 3 and total relative power 
flow \a. ak, for LSE,, mode 2, 
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FIG. 17.1.  Relative power flow ~n 
regions 1, 2 and 3 and total relative power 
flow vs. ak, for LSM,, mode 1 .  

,'+"-;i'a +--' ..+ 
*." ". .". ,.,,oa, 

FIG. 17.2. Relative power flow in 
regions 1, 2 and 3 and toid rcli~tive 
power flow vs. ak0 for LSM,, mode 2. 

14. Power loss and attenuation eonstants for'LSE,,, iind LSM,, modes 

There are two types of power losses, namely, (i) power loss in the dielectric media and 
(ii) ohmic loss due to the finite conductivity of the metallic walls. Both these types of 
losscs are cnlsulated to calculate the attenuation constant in the dielectric-lined wave- 
guide. 

In the previous sections it was assumed that the dielectric mata:ial used for the lining 
is peifect (zero conductivity) and the metallic wall of the waveguidr: is a perfect cqductor 
(in future, conductivity). However, in practice, the power loss in the dielectric-lined 
waveguide is caused by the finite value of the loss tangent of the material, and by thc 
finite conductivity of the metal walls, and consequently, the axial propagation constant 
becomes complex. 

In the presence of loss, the power transport along the waveguide decreases exponen- 
tially according to the factor exp (- 2uJ. where u is the attenuation constant. If P,, 
1s thf, power flow at z = 0, when P, = Po exp (- 2 4  is tht power flow a t  z = z in the 
z direction. The rate of decrease of the power transport is then given by 1141 

Ii The relative permittivity of the dielectric lining is given by 
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Where . . 

Be, = tan 6, 
the power loss P per unit length in the dielectric material is given by 

pd=; j j  I E I . I J I d a  
S 

where J = u,, E = o e ,  E; E the conduction current density 

adi = finite conductivity of the medium (i = 1,2,3 denoting the regions 1,2,3) 
S = cross-section of the guide transverse to the direction of propagation. 

Equation (83) becomes 

in the different regions 1,2,3, 

tan 6, = loss tangent of medium i (i = 1,2,3). 
If the dielectric lining is lossy and its dielectric constant is 

e,, = ere - j (85)  
where tan 6, = E,$c,), then the equivalent dielectric constant e,,, is also complex and 
is given by 

GeQ = crac - j ~ ' ~ ~ ~  (86) 

(using eqns. (2) and (85)). Therefore 

and 



As tan + 0, eqn. (88) reduces lo eqn. (2). The total power loss P,,,,,,,, in tile 
dielectric mcdia for the LSE,,,  mode i u  the suin of the po\\er ioi\c\ I",,,, P,,, ; ind P,,, 
in ragion? 1, 2 and 3 respeclively. Hence 

pdT (LSE) - P'!l 4- P d l  1 .  P d I  

0 0-l)  

= +u(,* [ ; (1 E* l 2  -1- j Esx -I- 1 E:* 1') [I]' (1.y 

where udl = u, !~  is the finite conductivity of the dielectric regions 2 and 3. n,, i s  the finite 
conductivity of the equivalent dielectric region, and Lr ,  = I for all the regions. Making 
use o f  eqns. (17), (18) and (19), 

where the amplitude constants A,, A,. R, and B, ,are given in tern?$ of C,, C':, D, and D, 
by, the two equations: . . 

C, = A, 60s k,, y, + R,, sin k ,  y* 

where k = 1,2. 

the attenuation constant o, Tor LSE,,,, mode can bc calculated as 
. , ,  

( ' ~ $ j  Per c r s ~ t : .  ad ( L S E ,  = ncpers per cw 
xT- (LSE) ,  ' ' 
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whore P,, c L S B ,  is the power Aow given by eqn. (74). 

Due to the finite conductivity of the waveguide metallic ~vall also, the electromagnetic 
field is attenuated. The surface current density 5, in the metal wall is given by 

J, - n x FI. 
Hence the power loss per unit length of the metal wall is given by 

P, = t Re Z, f 3, .  JSr dl 
wall 

where 

n, being the finite conductivity of the metallic wall, 2, the surface impedance of the metal 
wall, and R, = l/nJ is the surface resistance of the metal wall, and 6 = (2,'wp,uJ:' 
is the skin depth. Hence 
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(b  - 2d)  sin 2k,, (b - 
x ( ~ + s ~ ) + ~ ~ J ~ ' ~ k v % ~ (  2 + 4kz3 

4- IBi 1 ' 1  kIIa  

(!!+ '&%?!?!? 4k, + 1 B2 1' k,, I"(-!!!.$&) 

- (A,B,* + A:B,) / k, 1% sin' k*l (b  - 2d) 
21', 

(97)  

where Al,  B,, A,, B, are given by eqns. (92) and A, = C,, and B, - D,. and A,. A,. 
B, and B, are related to A, by the following equations . 

B, = A, sin k,d = A,F, (98) 

A, = A, 5 ~ c o s  k ,  d = A,E, 
k,  

(99) 

2d) -k sin k,,d cos k,,, (6 - 2d) = A 8 2  I 
(100) 

A, = A ,  pfi kv,d cos k,% (b - 2d) 

- 5 sin kosd sin k ,  (b  - 2d)]  = A,E2, 
k,, 

The attention constant c r m t r s s )  for LSE,, mode is given by 

%,,,,) = nepers per cm 
#T(LSHI 

= 8'686 p m ~ ~ ~ ~ ~ ,  db per ,.In. 
~ P , T C L S , ,  (102) 

The total attenuation constant for LSE,,,, mode is given by 

ado,1 + aml,,l (103) 
using eqns. (93) and (102). 

Similarly the total attenuation constant a,,,,,, for LSM,, modes is given by 

artrsm = aairsm + amcrsa) (104) 
where 



- P,ZLSM' nepers per cm 
a m o s w  - 2P"d[LSM) 

= 8 686 ~ M L  db per cm 
2 P I ~  I L S M )  

(107) 

where 

P ~ T I L S P )  

= 5 [ w z  6; $ + ~ 2 )  et. { ( i  H, la + 1 G, sin kv2d + H. cm ~d 1%) 

+ W ~ ; ~ { ~ H , ~ ~ ( ~ + - )  "I + e : ~ ~ ~ l ~ 2  



- , 1 8 . 5!G!@ + , ( , ; , ] ]  (Ill*, 
4k,, j R,, 

The total attenuation constants for different LSE and LSM modes 7s.  nk, %re shnwn 
in Figs. 18 and 19 respectively. 

FIG. 18:0. T m l  alleluiation COllstant 0, (LSE) PIG. 19.0. Toial ntronuation consrant a, (LSM) 
\.s. ak,. vs. aka. 

15. Power handling capacity 

The power handling capacity of the dielectric-lined waveguido is calculated by wing the 
fo[lowim two methods : 

(i) Breakdown electric field 

(ii) Temperature rise in the dielectric. 

The power handling capacity calculated by the first method determines the power 
oapabiljti6s within the limits of the elsctric breakdown of the dielectric medium free from 
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obstacles and discontinuities3JE. This provide? the maximum transmi~sihle power o n  
the basis of the highest allowable electric field strength. 

However, the power transmission through the dielectric nsaterials is accon~panied by 
heating, and since the dielectric matcrials soften a t  high temperatnns, the maximum 
possible degree of overheating ha$ to be determined. This is done by the second mefhod 
which determines themaximum power handling caparity by the dielectric-lined wave- 
guide. 

15.1. Breakdown electric fLld method 

The maximum transmissible power in the dielectric-lined waveguide is calculated by 
knowing the highest pern~iss~ble value of the electric Aeld which causes the breakdcwn 
at the interfaces of the equivalent dielectl-ic and the dielectric material. 

For LSE,,,, modes, in the case of the mode [or which m = 0, it is evidcnt fiom the 
field components of various regions (eqns. (17) to (22)) that only the E, component exists 
and therefore thc maximum value of E a t  the interface of the two media will decide the 
dielectric brcakdown. At I; = y,, with the aid of eqn. (17), the maximum electric Eleld 
is given by 

and using eqn. (98), we have 

so that 

The breakdown electric field strength for air is 2.9 X lo4 volts'cm. If the dielectric 
lining of the waveguide i s  thin, the thickness of the equivalent dielectric region will be 
large and the dielectric dens~ty small. In  the limiting case when d-+ 0, the waveguide 
is completely sled with air ( e ,  = I), and its diclcctric breakdown is 2.9 x 104 volts/cm 
under normal temperature dad pressure. 

Considering the intrinsic breakdown of the dielectric with pulses of short duration 
and a t  sufficiently low temperatures where heating effects are avoided, the n~axi~num 
electric ficld that can be applied to dielectric matcrials depends mainly o n  the discharge 
jnceptiou Geld and thus o n  the permittivity of the  material.  heref fore since ere, > 1, 
the equivalent dielectric material withstands a greater breakdown field than air (6, = 1 ) .  

The breakdown field for the equivalent dielectric material can also he assuined to be 
2 .9  x lo4 volts/cm at normal temperature and pressure I-Ience 
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Therefore from eqn. (110), we have 

(putting p, = 1). 

Substituting eqn. (112) in eqn. (74), the maximum power handling capacity for tho LSE,, 
modes can be calculated. 

The variation of the maximum power handling capacity P, ,c~sa, , l  ,,sld. with freqocnw 
and dielectrio lining thickness d for some LSE,, modes of type 1 are shown in Fig. 20 
for en = 2.08 and s,, = 2.56. 

For LSE, modes for which m > 0, there are two electric field components E,  and 
E,. Assuming the dielectric breakdown at the interrace y = d, it is necessary to iind 
the greater of the two field components E, and. E,. The component thus found deoi~ies 
the breakdown field of the equivalent dielectric material. 

From eqns. (17) and (19), and from the houndary conditions (23) to (26l, i1 tian be 
seen that at y = d = fi, 

ms 
E,, = jwp,p, -;; A, sin k,d sin !?.! x.  

E, is maximum at n = 0 and at x = u/na along the interface y = 11. 

Therefore 

En, (,,, = wop,Bm.A3 sin k,,d (11.3 

and E ,  is maximum at x = n/2m along the interface. This gives 

Equation (119) can he used in eqn. (74) to find the maximum power handling capacity 
for the WE,, ( m  > 1 )  modes. 

The variations of maximum pow= handling capacity Ps, cw,,) ml./a"ith frequency 
and dieleotrio lining thickness for LSE, and LSB, modes of type 1 are shown in Fig. 21. 
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FIG. 20. Maximum power handling capaiity FIG. 21. ~axi tnum power handlhg c&& 
vs. ak, for LSE,. (n = 1 and 2) modc 1 .  vs. ak, for LSE,, (n = 1 and 2) mode 1 .  

. . 

For LSM,, modes the electric field components at y = d = y, can be written as follows: 

E., = - ~ , k , ,  ';sin /c9,dcos z x  (120) 
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when up,, > mn. 

Hence the maxilnuln power handling capacity is calculated by putting E,, ,as.) = 
2.9 x 101 volts/crn which gives 

az 2 '9 x 104 volts,/c~n H3 = L e u  7---- _ 
E , ~  (a a, + m2 nZ) cos kihd ' 

(126) 

Using eqn. (126) in eqn. (78), the lnaximum power handling capacity for LSM,, modes 
is found. The variation of Pa, ,,,, (,,,,,/a2 with frequency and dielectric lining thick- 
ness for some of the LSM,,, modes of type 2 are shown in Fig. 22. 

d ' 

I., , **I  me,%", 
I 

FIG. 22. Maxinum powor handlins capacity vs. ak, for LSM,, (m = 1 and 2) mod0 2. 

15 .2 .  Method using tcrttperatuve raise in the dielectric 

The power lost per unit length is expressed as follows: 

wherc P, is thc axial power flow and u is the attenuation constant in decibels per unit 
length. 

The heat is mostly developed in the dielectric itself as the field is concentrated in the 
dielectric materials of higher permittivity at high frequencies. 

The general equation of heat conductioll is given by [24, 251 

A -(IQ = k ,  - (T, = T2) kilocalories per hour 
dt do. (124) 

where dQ!rlt = rate of heat flow 

A, = sarface area at right angles to the heat flow in (cln)" 

do = length of the conducting path in cm 
.,. k, = thermal conductivity of the dielectric in kilvt.dlories/hour (a) PC), 
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TI and T, u e  tempeiatures in 'C  on the t a o  faces of thc iiiterface between two dielec- 
trics (in this case T, is in air and T, is in the dielectric lining) 

Thc thermal resistance R, is deffwd a i  

The power loss per unit length is given by [24] 

ilE, dQ . dz - 1.1633 - in watts 
dr 

(1 kiloca! hour = 1 ,1633 watts) 

From eqns. (126) and (123j, we obtain 

The followizg assumptions zre made for calculating the avsrage power flow based on 
the softening temperature of the diclectric lining material: 

(i) that there is no air gap betaeen the dielectric lining and the metal wall; and 

(ii) the heat transfer by convection from the metallic surface is negligible. 

Considering that t i e  heat developed in the dielectric flows through the outer surface 
of the dielectric lining uniformly, the total rate of heat flow [25j is: 

where 

T ,  - I, = temperature difference between the two faces of the dielectric linillg 
in "C 

T,  - T ,  = temperature difference between the two faces of the metallic wall 

, - - =the  thermal resistance of the dielectric 
- (d3 

ka = tbe thermal conductivity of the dielectric lining in kilocal (hour) 
(cm) rc) 

A d  = average dielectric area in ( ~ m ) ~  

d = dielectric thickness in cm 

= the thermal resistance of the metal surface 

1, = the thermal conductivity of the metal in kilocali(hi) (crnj ("C) 

A, = average metallic area in ( ~ m ) ~  

4 = metallic wall thickness in cm 



and the avcrage metallic area in (cm)"is 

where 
A ,  - surface area of the air-diclectrjc boanda~y - 2 (a -1- b - 411) in (an)' 

A, = surface ama of the dielectric-mclal boundary = 2 (a -1- b) in (cm)' 
and 

A,, == surhtie area of ihe outer metal surface - 2 (a + b -1- 411,) in (ma)'. 

Then eqn. (130) can bc written as 

Maximum tran?miscibIc power limited by the dielectric overheating in thc diclectric- 
lined wavcguidc i? givm by: 

where 
(T,  - T,),,, == max~mum Lelnpcratare diffcrense belweon the inner diclectric 

srrrface and the outer metallic surface 

Similarly for LSM m o t h ,  
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. . 
I lmP LE, rr. "ladi '1 L;;:py 

mn a,. o m 0 4  
7- r-ilbRC 

0 a 

_I I 

23. Maximum power hrudliug caracity (Temp. rise) vs. ak, for LSE,, (e - 1 aud 2) mode 1. 

where a ,,,,,, and a ,",,,,, are given by eqns. (103) and (107) respectively. The power 
handling capacity has been cal~ulated in the two cases of dielectric lining, viz., perspex 
and teflon for both ISE and LSM modes using eqns. (134) and (135). The heat 
conductivity K, for perspex, teflon and brass are taken to be equal to 0.11 16 x 10P 
kilocall(hr) (cm) I" C), 0.1666 x lo-% kilocal (hr) (cm) I' C ) ,  and 0.9360 kilo a1 (hr) 
(cm) I" C) respectively. The softening temperature T, for pcrspex and tcflon are 78" C 
and 327" C respectively. The anlbient temperature T, o r  thc guide wall is taken to be 
25" C ,  and the metallic wall thickness is dl = 0 127 cm. The variations of power 
handling capacity P&,, ,,, with frcquenay and dielectric lining thickness are sholvn 
in Figs. 23 and 24 for two values 2.08 and 2 '56  OF the relative dielectric constant for 
some of the LSE,, modes. Fig. 25 shows the variations of P,,,,,,,,, with freqven~y 
and d for some LSM,, modes of type 2.  

Fro. 24. Maximum power handlmg 
capacity (Temp. rise) vs. ak, for 
LSE, (E = 1 and 2) mode 1. 

FIG. 25. Maximum power haudl~ng 
capacity (Temp. rise) vs. ak, for 
LSM,, (m = 1 and 2) mode 2. 



16. Experimental work 

An experilnental sludy of the following ha, bccn i!one 

(i) Guide wavelength of LSM,, mode type 2 nl: .Ir-ixrnd (S.O.-i2.4 GIl/):  

Ku-band (12.4-18.0 GHz) ; and 

&-band (26.5-30 .O GHz) 

(ii) CuL-off frequency of the LSM,, mode iype.2 

The wavepidc used is a11 X-halid ((1 = 2.266 cm, h 1 .016 C I ~ )  \jt,iLcil ii~lc-:.cti~it~~ 
with unifonn dielectric; lining on the iuride 011 nil Tow bides with pcr\pcx ~ c l l ~ ~ n  <,l' 
different thicknessei. 

Table III gives the cut-err frequency for LSM,! III& lypc 2 fos pcsqc\ ;inJ lollon 
for two dielectric coating thicknesses. 

17 .l. The validity of  the theory 

The approximate theory for the dideclric-lined rczla~rgol~is xavcg~ridc 11:~s beon dcrived 
by using the concept of thc cquivaielrt dielectri- conslonl as given by cqizs. ( I )  and (2). 
The experimenlal verification of Ule theoretical values of 1110 g d c  1vav~lc11gt1l i ~ i ~ i l  CLLL- 

off frcqucncy proves the accuracy of the approximaie thoory. 

17.2. The charactevistic cguation 

rzn 
tan (k,b) = 0 or I<, =: - 

b (136) 

whcu d = 0 for the air-filled waveguide so that c,,, - 1 and 

(from eqn. (54)). 

which is satisfied by the TE,, and TM,, modes of the air-filled waveguide 

When the waveguide is completely filled with tho diclcctric malcriai (e,,) ,  i.e., when 
d = b/2, eqn. (34) reduces to 
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Table I: 

Freqnency-guide wavelength characteristics 

Frequency : X-band (8.0-12.4 GHz) 

Frequency Theoretical g in cm Measured 
in GHz g in cm 

LSMi, LSMn 

Mode 1 Mode 2 Mode 1 Mode 2 

8.3594 4.2799 4.5600 
9.4093 3,4898 3.6400 

10.4493 2.9744 3.100 
11.4942 2.6045 16.0050 2.7400 

-- .- - .- -. -- 
(b) 6,- =2.08; d=0.15cm 

8.3594 4.4828 4.700 
9.4033 3.6307 3.800 

10-4433 3.0843 3.200 
11.4942 2.6961 2.800 

-- ---- - -- - -- 
(c) c , ~  =2,08; d=O.Zcr)l 

8.3594 4.2960 4.36 
9.4093 3.4467 3.54 

10,4493 2.8620 2.96 
11,4942 2-4813 2.60 

(d )  e,#=2,56; d=0 .3cm 
. -. .- . - -- . -- 

8.3594 3.3383 3.62 
9.4093 2,8041 3.04 

10.4493 2,4289 6.2043 2.58 
11,4942 2.1475 3.6930 2.32 

(el e,,-2.08; d=0.03cm 
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Table II 
Frequency-gnide wavelength characteristics 

Frequency: Ku-band (12.4-18.0 GHz) 

Frequency Theoretical gin  crn Measured 
in GHz - in g. cm 

LSMil LSMn 

Mode 1 Mode 2 Mode 1 Mode 2 

(0) cm=2.56;  d=0,15cm 

13,6107 2.0994 3 - 4633 2.160 
14- 6577 1,9169 2.7881 1.000 
15.7077 4.2022 1.7643 2 - 37.20 1.820 
16,7517 2.2805 1.6345 2.0S15 1 - 680 
17,7956 2.2991 1,5224 4.6769 1.8635 1.500 

- ---- -. ., . . . . . . . . . . . . . - 
(6) q l = 2 . 0 8 ;  d=0.15crn 

13.6107 2.1708 3-8158 2.24 
14.6577 1.9824 3.0022 2.02 
15.7077 5,2790 1.8254 2.5271 1.84 
16.7517 3.2831 1.6923 2.2050 1.72 
17.7956 2.5513 1.5777 9.9442 1.9678 1.58 
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Table 111 
Cut-off frequency for LSWI mode type 2 

Material of Thickness of Theoretical Measured 
lining lining in cm cut-off fre- cut-off fre- 

quency of quency in 
LSM,, mode 2 GHz 
in GNz 

Perspex 0.15 5,9285 5.60 
( E , ~  = 2.56) 

Perspex 0.30 5.5447 5.20 

Teflon 0.20 5.7420 5.50 

Teflon 0.30 5.38 5.30 

and then 
m2 z2  n2 na PA" = +; - - - - 

na ba 

(from eqn. (53)). 
The above results are true for LSM,, modes also. 

17.3. Improper modes 

ICn the case of partly sinusoidal and partly hyperbolic LSE,, modes the transverse propa- 
gation constant k ,  (in region 1) is imaginary. Futting k,  = jk,,, where k,, is a real 
quantity, eqn. (54) becomes 

k:, = pi,) + mG - Er,a k;. (140) 

For the propagation of partly sinusoidal and partly hyperbolic mode, the following 
condition must be satisfied by eqn. (140) 

ma z z  
Ic,:, = fl:, f -;;;. - €,,,k; 2 0. (141) 

At cut-off, a"= 0, and hence the cut-off frequencies of the partly sinusoidal and partly 
hyperbolic mode satisfy the following inequality : 

~2 aa - re& 210 
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where c = l/,/zo 

from m = 0, at cut-off, we obtain 

kz, (cut-off) = - u): p , , ~ ,  E , , E , ~ . Q .  (143) 

From eqn. (143) it is evident that k,,,, (cut-off) cnnn 3t beccwe posilivc. Tharebw partly 
sinasoidal and parlly hyperbolic LSE,, modcs calm at propilg:lk in llie ~~icli'ctric-litled 
metal rectangular waveguide, and hcnce arc i!i proper modes. 

17.4, Propagatbra chavactcvistics o l  LSE,,,, and LSW,,,, 111or1r.s 

(i) It is obs,crvcd from Figs. 3. 1 t.1 4.6 that (cr) t l~c  r ~ l , , , , ~  vs. d, ,  oI~: i~~: ic t~r i \ t i~ '~  of 
both LSE,,,, and LSM,,,,, modes vary alinosi in a sirnilor fd l ion:  (h) in btltl~ typcs 
of modes the cut-oif hquency increases with the modc intics / ? I  :mti ordcr of 
appearance 11 of modes; (c) generally LSM,,,,, mndcs of type 2 :ukI LSF,,,, n i~des  o f  
type 1 propagate fdr a larger frt:qucncy range for nll vnincs <)f (1: ((1) I.Shtt, rnw.1~ type 2 
is the dontinant mode (wilh lt~wcsb cut-off ficquoncy); (c) in the caw% ol' ail inodcs o f  
varioul typos, at high kcquencies, ilk, vS. L&,, curves for tilc diclcuiric-linai w:kwguitlo 
approach towards the phasc comtant vs. frequency curve o f  the ccmnplotely fiilcti n m c -  
guide. The energy is then coiloentratcd pmcticaliy in the dieleclric lining t~nd tlie 
inhomogeneous waveguide can bo used as a dicloclric guidc. As :r remit the k~~!.cs in tho 
dielectric-lined waveguide increase at high frequency. 

(ii) At high fsequencios the phar,c velocity and the group velocity appro:ioh wympt~t i -  
cally 11% times the vel~city of light (Figs. 5.1 to 6.3). rind the product u,,v,/C'"~*, 
both LSE,,, and LSM,,, modes approach I /r,, for all d and nk,, :IS sliuwn i t ,  Teble I V .  

Table IV 

Product of normalized phase and group velocities 

% lie,,  Dielectric 
lining 
thickness 
d in cm 

us ul/c2 

LSMn LSMs 
made mode 
type 2 type 2 .- . - 
0.389 0.390 
0.388 0.388 
0,389 0.390 
0.390 0.390 
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(G) The percentage bandwidth in the dielectric-lined waveguide cannot be more than 
66.6% which happens to be the bandwidth between the TE,, and TE,, modes of the air- 
filled waveguide. 

(iv) In the case of all the modes of LS&, and LSM,, types, the total attenuation con- 
stanta, vs ak, curves tend to infinity near cut-off frequency, and then most of thecurves 
pass through minima and than approach infinity again at very high frequencies (Figs. 18, 
19 and 26). Thls shows that at high frequencies all the energy is concentrated almost 
in the dielectric lining which introduces high losses. The attenuation constant of 
higher order modes helps to assess the order of mode rurity. It may be said that the 
higher the attenuation of the higher order modes the greater is the mode purity of the 
dominant LSM,, mode type 2. . .. 
It is also observed that the total ,px2 
attenuation constant in the case 
of LSM,, and LSM,, modes of 2 

type 2 is minimum at ak, = 4.0 
and ak, = 7.82 reqmctively at 2 

d=0,15cm. 

(v) It is interesting to find " 
that the power handling capacity 
(temp. rise method) is maximum " 

at the points where the attenua- 
tion constant is minimum of the g 
various modes (Table V). 

(vi) From Figs. 24, 25 and 26 
it is evident that the power I ,, 
handling capacity of the domi- 8 , 
nant LSM,, mode type 2 due to 5 ,, 
method 2 is higher than that of t 
any other mode for all values of g ,, 
d and G,~, though the maximum = 
power handling capacity of the 
higher ordm LSE,, and LSM,, 
modes is not significantly less than , 
that of the LSM*, mode type 2. 

(vii) The maximum transmis- 
sible powec decreases with the 
increase of frequency, ie., with 
the increase of field concentration 
and dielectcic-lining thickness, 
and this can be explained by the I ~ I  
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(viii) The phase shift in the dielectric-lined waveguide with respect to tho air-filled 
waveguideis calculated from the relation: 

Table VT gives the phase shift as a function of freq~lcncy for f , ,  - 2 56 m d  d - 0 .3  cm. 

(ix) The experimental determination of guide wavelengtl~ A, verifies ithe esiaicnce of 
the LSM,, mode type 2. The discrepancy between thoorclic;li and cspcrin~cnvol valocz. 
of and cut-off frequency f, is very sinall and it may be ascrihud to tiiu :ippriisi~nn- 
tions involved in the theory. 

Table V 
Frequency at which power handling capacity is maximum and 
total attenuation is minimum for LSM,, mode iypc 2 
- - 

Maximum power Minimum .iltenu.~tiun 
handling capacib 

- 
%a 

Dielectrrc ok, in md~ans ak0 in radians 
limns thick- 
ness d In LSM,, LSM,, LSM,, LSM,, 
cm nlodo modo mode mode 

type 2, type2 type2 t y ~ o  2 

Table V I  

Phase shift-frequency relation LSMn mode 2 
(r,,  = 2.56; d = 0.3 m) 



DIELECTRIC-LINED RECTANGULAR METAL WAVPGUWE 169 

The investigations on the dielectric-lined metal rectangular waveguide lead to the follow- 
ing conclusions : 

(i) LSMll mode type 2 is the dominant mode. 

(ii) LSE,,, LSE,, and LSE21 modes of type 1 are improper modcs as they do not 
satisfy the proper boundary conditionr at y = b for all d and q., 

(ili) Complctcly hyperbolic modes of either LSEmn or LSMmn typm CaMOt emt in 
such a structure. 

(iv) In general, LSM,, mode type 2 has a lower attenuation constant than any other 
modes. 

(v) The ~naximum bandwidth that can be achieved between the dominant LSMll 
mode and tlie next higher order mode LSM,, is 66.6 per cent which is thc same 
as that of an airlilled rectangular metal waveguide. 

(vi) Thc power handling capacity due to temperature rise method m the case of the 
dom~nant LSM,, mode type 2 1s generally f i e  highest for all values of d and all 
ftcquencies 

(vii) The power handling capacity (temperatuxe rise method) is maximum when the 
total attenuation is minimum, though this i s  less than that of the TE,, mode 
in an airfilled waveguide. 

(viii) The power handling capacity calculated hy the method of lemperatura rise; is 
lower than that obtained by the breakdown field method. 

(ix) The measurement of guide wavelength ig establishes the existence of the domi- 
nant LSM,, mode type 2 at X- and Ku-bands. 

(x) Measurement of Ig at Ka-band proves the existence of higher order LSM,, 
rnodes especially of type 2. 

(xi) There is a fair agreement between the theoretical and experimental results of the 
wide wavelength at all frequencies. 

(xii) Experimental values of cut-off frequencies agree well with the theoretical values 
for LSMll mode type 2 for various values of d and erg. 

(xiii) The dielectric-lined metal rectangular waveguide may find application as a 
&ace shifter, slow-wave structure and probably as a high frequency transmission 
line. 

Further work is being carried out on the characteristics of such structures with very 
thin dielectric linings and also on the coupling between modes. 
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The registration fee per participant is Rs. 5,000, which covers board and lodging 
at  Hotel Arhoka for eight days and lecture material. The last date for registration is 
November 30, 1979. 

participants desirous of contributing original papers to the seminar should send 
'immediately a 300-word synopsis to the Centre. 

Further particulars can be had from the Indian Seminar and Research Centre, 
g-2-248/B/l, Journalist Colony, Road No. 3, Banjara Hills, Hyderabad 500034. 


