Jour. Ind. Inst. Sc. 61 (A), Sept. 1979, pp. 195-207 Printed in India.

The dielectric-coated conducting sphere excited in the symmetric transverse magnetic mode—resonant characteristics

PARVEEN WAHID AND R. CHATTERJEE

Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560 012

Received on July 13, 1979.

Abstract

The complex resonant frequencies have been determined for a few TM_{en} modes by solving the characteristic equation obtained by using boundary value methods. The real part of the resonant frequency is lower for large values of the inner radius and decreases with increase in diclectric coating thickness for any particular mode. The imaginary part of the resonant frequency is found to increase with increase in coating thickness for a particular mode. The Q of the resonant frequency is found to increase with increase in coating thickness for a particular mode. The Q of the resonant frequency. The effect on the Q values by considering, (i) the energy loss due to radiation only, (ii) the energy stored in the dielectric and m the reactive field has been studied.

Key words : Dielectric-coated metal resonator, complex resonance frequency.

1. Introduction

The electromagnetic resonances of free dielectric samples have been the subject of study since the last few years¹⁻⁴. Resonators made of high dielectric constant materials with a low dissipation factor have high Q values and have many different applications.

In this paper, the resonant characteristics of the dielectric-coated conducting sphere have been studied by solving the characteristic equation obtained by using boundary value methods. The peak energy stored, the dielectric loss, the power loss by radiation and hence the Q values of the resonator have been studied theoretically.

2. Characteristic equation

Figure 1 of ref. 5 shows the geometry of the structure. The dielectric-coated conducting sphere is excited in the symmetry TM mode by a delta-function electric field source $E_{ve^{-vet}}$ applied normally over an annular ring of radius $b \sin \theta_1$ and width $(b-a) \sin \theta_1$ assuming that $(b-a) \ll a$ and $\ll b$. Let the delta-function E_0 have components E_{r_0} and E_{θ_0} in the r and θ directions respectively, and be given by

$$E_{0} = -\frac{V}{b \bigtriangleup \theta \sin \theta_{1}} \quad \text{for} \quad \theta_{1} - \frac{\bigtriangleup \theta_{2}}{2} < \theta < \theta_{1} + \frac{\bigtriangleup \theta_{1}}{2} \tag{1}$$

PARVEEN WAHID AND R. CHATTERJEE

$$E_{\theta} = 0 \quad \text{for} \quad \theta < \theta_{1} - \frac{\bigtriangleup \theta_{1}}{2} \quad \text{and} \quad \theta > \theta_{1} + \frac{\bigtriangleup \theta_{1}}{2} \tag{2}$$

where V is the excitation voltage applied across the gap $b \triangle \theta \sin \theta_1$ over the annular ring. The field components are³

Region $a \leq r \leq b$:

$$E_{r}^{i} = -\sum_{n} n (n+1) P_{n}(\cos \theta) \frac{1}{k_{2}r} \left[L_{on} j_{n}(k_{2}r) + M_{on} y_{n}(k_{1}r) \right] e^{-i\omega t} + E_{r_{0}}$$
(3)

$$E_{\theta}^{i} = -\sum_{n'} P_{n}^{\prime}(\cos \theta) \frac{1}{k_{1}r} [L_{\theta n} [k_{1}rj_{n}(k_{1}r)]^{\prime} + M_{\theta n} [k_{1}ry_{n}(k_{1}r)]^{\prime}] e^{-j\omega t} + E_{\theta \theta}$$
(4)

$$H_{\phi}^{i} = \frac{k_{1}}{j\omega\mu_{1}} \sum_{n} P_{n}^{\prime}(\cos\theta) \left[L_{en} j_{n}(k_{1}r) + M_{en} y_{n}(k_{1}r) \right] e^{-j\omega t}.$$
(5)

Region $r \ge b$:

$$E_r^e = -\sum_{n} n \left(n+1\right) N_{en} P_n\left(\cos\theta\right) \frac{h_n^{(1)}\left(k_{er}\right)}{k_{er}} e^{-j\omega t}$$
(6)

$$E_{\theta}^{t} = -\sum_{n} P_{n}^{\prime}(\cos\theta) N_{on} \frac{1}{k_{o}r} \left[k_{or}h_{n}^{(1)}(k_{o}r)\right]^{\prime} e^{-j\omega t}$$
⁽⁷⁾

$$H_{\phi}^{\theta} = -\sum_{n'} \frac{k_0}{j\omega\mu_0} P_n'(\cos\theta) N_{on} h_n(k_0 r) e^{-j\omega t}$$
(8)

where

$$k_1 = \omega \sqrt{\mu_1\left(\epsilon_1 + j \frac{\sigma_1}{\omega}\right)}$$
 and $k_0 = \omega \sqrt{\mu_0\left(\epsilon_0 + j \frac{\sigma_0}{\omega}\right)}$

 ω -angular frequency, $P_n(\cos \theta)$ is the Legendre polynomial, $j_n(k_1r)$, $y_n(k_1r)$ and $h_n^{(1)}(k_0r)$ are the spherical Bessel, Neumann and Hankel function of the first kind respectively. L_{en} , M_{en} and N_{en} are the amplitude coefficients.

Applying the boundary conditions:

 $E^{\epsilon}_{\theta} = E^{i}_{\theta}$ and $H^{\epsilon}_{\phi} = H^{i}_{\phi}$ at r = b and $E^{i}_{\theta} = 0$ at r = a; (9) we obtain the equations⁵

$$\frac{1}{k_1 b} \left[L_{on} \left[k_1 b j_n \left(k_2 b \right) \right]' + M_{on} \left[k_1 b y_n \left(k_1 b \right) \right]' \right] + \frac{C_{on} \left(b \right)}{k_1} \\ = N_{on} \frac{1}{k_0 b} \left[k_0 b h_n^{(i)} \left(k_0 b \right) \right]'$$
(10)

$$\frac{k_1}{\mu_1} \left[L_{o_n} j_n(k_1 b) + M_{o_n} \gamma_n(k_1 b) \right] = \frac{k_0}{\mu_0} N_{o_n} b_n^{(1)}(k_0 b)$$
(11)

and

$$\frac{1}{k_1 a} \left[L_{en} \left[k_1 a j_n \left(k_1 a \right) \right]' + M_{en} \left[k_1 a y_n \left(k_1 a \right) \right]' + \frac{C_{en}(a)}{k_1} = 0.$$
(12)

Let z_n be the determinant of the coefficients of the amplitude coefficients, *i.e.*,

$$z_{n} = \begin{vmatrix} \frac{1}{k_{1}b} [k_{1}bj_{n}(k_{1}b)]' \frac{1}{k_{1}b} [k_{1}by_{n}(k_{1}b)]' - \frac{1}{k_{0}b} [k_{0}bh_{n}^{(1)}(k_{0}b)]' \\ \frac{k_{1}}{\mu_{1}} j_{n}(klb) \frac{k_{1}}{\mu_{1}} y_{n}(k_{1}bY) - \frac{k_{0}}{\mu_{0}} h_{n}^{(1)}(k_{0}b) \\ \frac{1}{k_{1}a} [k_{1}aj_{n}(k_{1}a)] \frac{1}{k_{1}a} [k_{1}ay_{n}(k_{1}a)] 0 \end{aligned}$$
(13)

Then, the condition $z_n = 0$, leads to the characteristic equation given below:

$$\frac{\left\{\frac{k_{2}b_{n}(k_{1}b)'_{1}\left[k_{1}b_{y_{n}}(k_{1}a)\right]'}{k_{1}b} - \frac{[k_{1}b_{y_{n}}(k_{1}b)]'_{1}\left[k_{2}b_{y_{n}}(k_{1}a)\right]'_{1}}{k_{1}a}\right\}}{\left\{k_{1}j_{n}(k_{1}b)\frac{[k_{1}ay_{n}(k_{1}a)]'_{1}}{k_{1}a} - k_{1}y_{n}(k_{2}b)\frac{[k_{1}aj_{n}(k_{1}a)]'_{1}}{k_{1}a}\right\}} = \frac{[k_{0}bh_{n}^{(1)}(k_{0}b)]/k_{0}b}{k_{0}h_{n}^{(1)}(k_{0}b)}.$$
(14)

The characteristic equation is complex and transcendental and the roots of the equation determine the characteristic or resonant frequencies of the modes of oscillation of the dielectric-coated conducting sphere. The complex radian frequency is

$$\omega = \omega' - j\omega'' \tag{15}$$

where ω' gives the free oscillation frequency of the system and $1/\omega''$ gives the relaxation time. Since ω is complex, the propagation constants k_0 and k_1 are also complex, and are given by

$$k_0 = k'_0 - jk''_0 = (\omega' - j\omega'')\sqrt{\mu_0\epsilon_0}$$

$$k_1 = \sqrt{\epsilon_r} k_0.$$

3. Determination of the resonant frequencies

From eqn. (14), the complex resonant frequencies of the dielectric-coated conducting sphere excited in the TM_{so} mode have been determined. The value $\epsilon_r = 2.56 + j0$ corresponding to the case of perspex has been used for the calculations.

The iterative method was used to determine the resonant frequencies. The real part of the complex frequency was kept fixed at values in the range 1.0 to 20.0 GHz and the imaginary part was varied from 1.0 to 5.0 GHz.

FIG. 1. Variation of the resonant frequency f_{r^ecl} - jf_{amag} , with inner radius 'a'.

The complex resonant frequencies $f_{reat} - jf_{unre.} = (\omega' - j\omega')/2\pi$ of the dielectriccoated conducting sphere have been determined for the values of *a* varying from 1.0 to 5.0 cm and for values of (b - a) = 0.1 cm and 0.2 cm. The variation of the complex resonant frequency with *a* for the two cases mentioned above for the $TM_{on,s}$ modes, *s* being the order of the root of the characteristic equation is shown in Fig. 1.

4. Theoretical Q-factor of the resonator

The quality factor Q of the resonator is defined as 2π times the ratio of the peak energy stored/cycle to the energy dissipated/cycle.

4.1. Peak-energy stored in the resonator

At resonance, the time average electric and magnetic energy stored in the system are equal. The magnetic field component is given by eqn. (5). The peak energy stored in the system is

$$W_{s} = \frac{\mu}{2} \int_{\sigma} |H_{\phi}^{s}|^{2} dv$$

= $\mu_{\theta} \pi \left(\frac{k_{1}}{j\omega\mu_{1}}\right)^{2} \int_{r=a} [L_{os} j_{s} (k_{l}r)]^{2} r^{2} dr \int_{\theta=0}^{\theta_{1}} [P_{s}'(\cos\theta)]^{2} \sin\theta d\theta.$ (16)

4.2. Total power radiated

The total power radiated, W_R , is obtained by integrating Poynting's vector over a large sphere which surrounds the dielectric-coated conducting sphere, and is given by

$$W_R = \frac{2\pi}{\eta} \int_{\theta=0}^{\pi} |E_\theta|^2 \sin \theta \, d\theta \tag{17}$$

where $|E_{\theta}|$ is the radiation field given by⁶ $E_{\theta} = -\frac{j}{2\lambda_{\theta}r} [2\pi b^2 \gamma_{\theta} \frac{k_{\theta}}{j\omega\mu_{\theta}} N_{en} h_{n}^{(1)} (k_{\theta}b) \exp\left[j(k_{\theta}r - \omega t)\right]$ $[j \cos \theta \int_{\theta'=0}^{\theta_{1}} J_{1} (k_{\theta}b \sin \theta \sin \theta') \exp\left(-jk_{\theta}b \cos \theta \cos \theta'\right)$ $P_{n}' (\cos \theta') \cos \theta' \sin \theta' d\theta' - \sin \theta \int_{\theta'=0}^{\theta_{1}} J_{0} (k_{\theta}b \sin \theta \sin \theta')$ $\exp\left(-jk_{\theta}b \cos \theta \cos \theta'\right) P_{n}' (\cos \theta') \sin^{2} \theta' d\theta'\right]$ $+ 2\pi j b^{2} N_{en} [k_{\theta} b h_{n}^{(2)} (k_{\theta}b)]' / k_{\theta}b. \exp\left[j(k_{\theta}r - \omega t)\right]$ $\frac{\theta_{1}}{\theta_{1} - 0} J_{1} (k_{\theta}b \sin \theta \sin \theta') \exp\left(-jk_{\theta}b \cos \theta \cos \theta'\right)$ $P_{n}^{*} (\cos \theta') \sin \theta' d\theta'\right]$ (18)

4.3. Expression for the Q-factor

Using eqns. (16) and (17), we have

$$Q = \omega' \frac{W_s}{W_R}$$

$$= \omega' \left[\pi \mu_0 \left(\frac{k_1}{j \omega \mu_1} \right)^2 \int_{r=a}^{b} \left[L_{on} j_n \left(k_1 r \right) + M_{on} y_n \left(k_1 r \right) \right]^2 r^2 dr$$

$$\int_{\theta=0}^{\theta_1} \left[P'_n \left(\cos \theta \right) \right]^2 \sin \theta \, d\theta \right] / \frac{2\pi}{\gamma} \int_{\theta=0}^{\pi} |E_0|^2 \sin \theta \, d\theta$$
(19)

Using eqns. (16) and (17), the peak energy stored in the resonator and the total power radiated have been computed at the real resonant frequencies determined above for a few $TM_{in_{x}}$ mcdes. The Q of the resonator has been determined using eqn. (19). The results obtained are given in Appendix I.

4.3 Effect of the dielectric losses on the Q-factor

The total power loss in the dielectric, W_L , is given by

$$W_L = \frac{\sigma}{2} \int\limits_{v} |E^i|^2 dv$$

where σ is the conductivity of the dielectric and $|E^i|$ is the electric field in the dielectric. The electric field components in the dielectric are given by eqns. (3) and (4). From the definition, the Q of the resonator is given by

$$\begin{aligned} Q &= \frac{\omega' W_{S}}{W_{L} + W_{R}} \\ Q &= \omega' \left[\pi \mu_{\theta} \left(\frac{k_{1}}{j \omega \mu_{1}} \right)^{2} \int_{r=e}^{b} \left[L_{vs} j_{n} (k_{1}r) + M_{\theta n} y_{n} (k_{1}r) \right]^{3} r^{2} dr \\ \theta^{\dagger}_{r=0} \left[P_{n}^{*} (\cos \theta) \right]^{2} \sin \theta \, d\theta \right] / \left[\pi \sigma \left[n^{2} (n+1)^{2} \right] \\ \int_{r=e}^{b} \left[\left(L_{ns} + C_{\theta n} \right) \frac{j_{n} (k_{1}r)}{k_{1}r} + \left(M_{\theta n} + D_{\theta n} \right) \frac{y_{n} (k_{1}r)}{k_{1}r} \right]^{2} \\ r^{2} dr \int_{\theta=0}^{\theta_{1}} \left[P_{n} (\cos \theta) \right]^{2} \sin \theta \, d\theta \right] + \pi \sigma \left[\int_{r=e}^{b} \left[\left(L_{on} + C_{en} \right) \frac{\left[k_{1}r j_{n} (k_{2}r) \right]'}{k_{1}r} \right] \\ + M_{en} \frac{\left[k_{1}r y_{n} (k_{1}r) \right]'}{k_{1}r} \right]^{2} r^{2} dr \int_{\theta=0}^{\theta_{1}} P_{n} (\cos \theta) \right]^{2} \sin \theta \, d\theta \end{aligned}$$

THE DIELECTRIC-COATED CONDUCTING SPHERE

201

$$+\frac{2\pi}{\eta}\int_{\theta=0}^{\pi}|E_{\theta}|^{2}\sin\theta \,d\theta\bigg].$$
(20)

The Q of the resonator has been computed using eqn. (20) at the computed real resonant frequencies for a few TM_{ea} modes for various dielectric-coated conducting spheres. The results are given in Appendix 11.

4.4. Calculation of Q including the reactive energy stored

The Q of the resonator has been calculated by considering the peak energy W_s stored in the field inside the resonator and the peak energy W'_s stored in the reactive field outside⁷. That is, Q is given by

$$Q = \frac{\omega' \left[W_s + W_s' \right]}{W_R} \tag{21}$$

where $W_s = \text{peak}$ magnetic energy stored in the region a < r < b

 $= \frac{\mu}{2} \int_{r=a}^{b} \int_{\theta=0}^{\theta_1} \int_{\phi=0}^{2\pi} |H_{\phi}^s|^2 r^2 \sin \theta \, dr \, d\theta \, d\phi$

 W'_s = peak magnetic energy stored in the region r > b

$$= \frac{\mu}{2} \int_{r=0}^{2^{r} \to 0} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} |H_{\phi}^{e}|^{2} r^{2} \sin \theta \, dr \, d\theta \, d\phi$$

and W_R is given by eqn. (17).

Some of the values are reported in Appendix 3 for the sake of comparison with the Q values calculated earlier at the real resonant frequency ω' by ignoring W'_t .

It is observed that $W'_{a}(r > b) \ll W_{a}(a < r < b)$ in practically all the cases and hence the change in the Q values is not significant.

5. Conclusions

The above study leads to the following conclusions:

(i) The real part of the complex resonant frequency is lower for large values of a and any coating thickness (Fig. 1). Also, the real part of the complex resonant frequency is found to decrease with increase in coating thickness for any particular mode except for a few cases. The imaginary part of the complex resonant frequency is found to increase with increase in a for a particular TM_{ong} mode.

PARVEEN WAHID AND R. CHATTERJEE

(ii) From the values of Q obtained when the dielectric losses are neglected (Appendix I) it is seen that the variation of Q with a is oscillatory for any particular $TM_{on,a}$ mode. The variation of Q for the individual modes is different for different orders of s for both the cases (b - a) = 0.1 cm and 0.2 cm considered.

(iii) It is seen that the dielectric loss is of a much smaller magnitude compared to the loss due to radiation in a few cases (Appendix II) and of the same order of magnitude as the total power radiated in some cases (Appendix III). In the first case, the change in the Q values as compared to the case when dielectric losses are neglected is inappreciable and in the latter case, the Q values are much lower than those obtained when dielectric losses are neglected.

The dielectric perspex was considered for the above study. In the case of low lcss dielectrics such as teffon or polythene, the dielectric loss will be very small and the energy loss due to radiation will predominate.

(iv) The energy stored in the reactive field is very much less than that stored in the dielectric. Hence there is no significant change in the Q values obtained by considering the reactive energy stored and those obtained by neglecting the stored reactive energy.

(v) A study of the values of the peak energy stored and the total power radiated given in Appendix I shows that they vary in an oscillatory manner for each $TM_{on,s}$ mode with the value of a.

6. Acknowledgement

The authors are grateful to Dr. S. Dhawan, Director of the Indian Institute of Science for providing facilities for the work and to the Council of Scientific and Industrial Research for the sanction of a scheme on this subject.

References

1.	GASTINE, M., COURTOIS, L. AND DORMAN, J. L.	Electromagnetic resonances of free dielectric spheres, IEEE Trans. 1967, MTT-15, pp. 694-700.
2.	OKAYA, A.	The rutile microwave resonator. Proc. IRE, 1960, 48, 1921.
3.	RICHTMEYER, D.	Dielectric resonator. J. Appl. Phys., 1939, 10, 391-398.
4.	OKAYA, A. AND Barash, L. F.	The dielectric microwave resonator. Proc. IRE, 1962, 50, 2081-2092.
5.	Wahid, P and Chatterjee, R .	The dielectric-coated conducting spheremodal and near-field characteristics, Jour. Ind. Inst. Sc., 1979, 61 (A), 105-125.
6.	WAHID, P. AND CHATTERJEE, R.	The truncated dielectric-coated conducting sphereradiation and gain characteristics, Jour. Ind. Inst. Sc., 1979, 61 (A), 175-194.

 COLLIN R. E. AND Evaluation of antenna Q', IEEE Trans. 1964, AP-12, 23-27, ROTHSCHILD, S.

APPENDIX I

Appendix 1.1: (b - a) = 0.1 cm; $\epsilon_r = 2.56$; Mode = TM_{anye}; s = order of the root of the eharacteristic equation.

a cm	Mode TM _{on,8}	Characteristic frequency (GHz)	Stored energy W_s (watts)	Total power radiated, W_R (watts)	$Q = \omega' W_s / W_R$
1	2	3	4	5	6
3.0	TM ₀ ,	14.3-14.85	0.1649×10^{-13}	0.6832 × 10-5	0.217×10^3
-	TM ₀	16·7-j4·80	0.9643×10^{-14}	0.9505 ~ 10-6	0.106×10^{4}
	TM ₀ ,a	19.1-14.7	0.6198×10^{-12}	0.5033	0.148
	TM.03.	15.0-j4.6	0.2782×10^{-14}	0·6751 × 10 ⁻⁸	0.388
	TM _{02,2}	19·1-j4·55	0.1616×10^{-8}	$0.3699 \le 10^{-2}$	0.525×10^{5}
	TM _{03,1}	16·7-j4·3	0.4563×10^{-14}	0.2976×10^{-2}	0.160
	TM.0323	19·9-j4·25	0.1919×10^{-12}	0.5513×10^{-3}	0.435×10^{2}
	TM 04,1	19·3– <i>j</i> 4·10	$0\cdot3487\times10^{-15}$	$0.7944 imes10^{-4}$	0.532
3.5	ΤM _{0,1}	9·5-j4·55	0.5595×10^{-14}	0.1125×10^{-5}	0·296 ×103
	TM.1.2	13·0-j4·55	0.1614×10^{-14}	0.1208×10^{-3}	0.109×10^{1}
	TM ₀₁₂₃	15.6-14.80	0.3371×10^{-13}	0.9535×10^{-3}	0.347×10^{1}
	TM.02.	11·8-j 4·3	0.1173×10^{-14}	0.6633×10^{-1}	0.131×10^{1}
	TM0822	14·8-j4·3	0.1131×10^{-14}	0.3164×10^{-2}	0.332×10^{-1}
	TM. 02.3	16.4-14.25	0.8971×10^{-13}	0.1789×10^{-1}	0.516
	TM.03.1	13.8-j4.05	0.4056×10^{-15}	$0.1949 imes 10^{-3}$	0-180
	TM.03>2	16.8-3.95	0.6463×10^{-13}	0.2718	0.251×10^{-1}
	TM 03-3	17·4– <i>j</i> 4·0	0.6164×10^{-14}	0·3687 × 10 ⁻¹	0.183×10^{-1}
4-0	TM.,,	7·1-j4·3	0.4959×10^{-15}	0.3802×10^{-6}	$0.581 imes 10^3$
	TM 01,2	10·8-j4·6	0.1053×10^{-13}	0.6898×10^{-4}	0.104×10^{2}
	TM.,,3	13·4-j4·25	0.6196×10^{-13}	0.1524×10^{-1}	0.342
	$TM_{03,1}$	9·5-j4·10	0.2969×10^{-14}	0.1321×10^{-4}	$0.128 imes 10^{2}$
	TM.2.2	12.0-14.0	0.4413×10^{-14}	0.4253×10^{-3}	0.782×10^{-1}
	$TM_{02,3}$	14·3-j4·0	0.1923×10^{-11}	0.1118×10^{1}	0.155
	TM.03.1	11·5-j 3·75	0.8613×10^{-15}	0.6508×10^{-5}	0.957×10^{-1}
	TM.63.2	14·3-j 3·70	0.5252×10^{-13}	0.9478 10-1	0.505×10^{-1}
	$TM_{03,3}$	15·0-j3·75	0.2171×10^{-12}	0.2444×10^{-1}	0.836
	$TM_{04,1}$	13·2-j 3·05	0.8717×10^{-15}	0.3262×10^{-4}	0.221×10^{-1}
	$TM_{04,2}$	16·0-j 3·50	0.3035×10^{-15}	0.1043×10^{-4}	0.292×10^{-1}
	$TM_{04:3}$	16·7-j 3·55	0.2115×10^{-13}	0.6212×10^{-3}	$0.357 \times 10^{\circ}$
4-5	TM.01,1	6·2-j3·95	$0.1594 imes 10^{-18}$	0.2073×10^{-3}	0.298×10^{4}
	TM.01.2	9·4-j4·0	0.1518×10^{-13}	0.2877×10^{-6}	$0.312 \times 10^{\circ}$
	TM.,3	11-8-j4-15	0.1198×10^{-12}	0.3144×10^{-2}	0.282×10^{6}
	TM.02.1	7·8-j5·2	0.4139×10^{-13}	0.1128×10^{-5}	0.179 × 10"
	TM.02,2	10·3-j3·75	0.5131×10^{-14}	0.1109×10^{-3}	0.299×10^{4}
	TM_{02+3}	12·8-j3·85	0.2345×10^{-11}	0.1465	0.129 × 10 ⁴
	$TM_{03,1}$	9.0-3.7	0.1633×10^{-13}	0.7202 >. 10-3	$0.128 \times 10^{\circ}$

1	2	3	4	5	6
	TM ₆₃₁₂	11.4-/3.35	0.9452×10^{-13}	0.6299×10^{-2}	$0.108 imes 10^1$
	TM ₀₃₅₃	13.6-13.5	0.3288×10^{-14}	$0.6542 imes 10^{-3}$	0.429
	TModal	10.6-13.2	0.8693×10^{-18}	0.4287×10^{-7}	0.135×10^{1}
	TM _{04.2}	13-2-13-1	0.9274×10^{-15}	0.4029×10^{-3}	0.191
	TM.04.3	14.6-j3.25	0.4213×10^{-15}	0.3121×10^{-4}	0.124×10^{1}
5.0	TM _{01,1}	5-2-13-75	$0.5150 imes 10^{-15}$	0·1169 × 10-5	0.201×10^3
	TM.01,2	8·0-j3·75	0.1174×10^{-14}	0.1487×10^{-5}	0.629×10^{2}
	TM01.3	10.6- <i>j</i> 3.8	0.2879×10^{-13}	0.5414×10^{-1}	0.354×10^{-1}
	TM.02.1	6·5-j3·3	0.2942×10^{-15}	0.7581×10^{-7}	0.158×10^3
	TM02.2	8·8-j 3·5	0.4251×10^{-15}	0.1473×10^{-3}	0.159
	TM ₀₃₂₃	11·6-j 3·55	0.6757×10^{-13}	0.2065	0.238
	TM.03.1	7·1-j 3·20	$0.1441 imes 10^{-15}$	0.8960×10^{-6}	0.717×10^{1}
	TM.03.2	9·8-j3·15	0.3157×10^{-16}	0.8821×10^{-4}	0.188
	TM.0313	12·2-j 3·35	0.4649×10^{-12}	$0.4744 imes 10^{-3}$	$0.750 imes 10^2$
	TM04,1	9·0-j 3·01	$0.2153 imes 10^{-15}$	$0.5479 imes 10^{-6}$	0.222×10^{2}
	TM04,2	11.0-j2.9	0.5608×10^{-17}	$0.5750 imes10^{-6}$	0.674×10^{-1}
	TM.4,3	13·0- <i>j</i> 3·15	0.6325×10^{-16}	0.7534×10^{-5}	0.545

Appendix 1.2: (b-a) = 0.2 cm; $c_r = 2.56$; Mode = TM_{on,s}; s = order of the root of the characteristic equation.

1	2	3	4	5	6
2.0	TM _{01.1}	19·1-j4·8	0.2401×10^{-13}	0.2821×10^{-2}	0·102 × 10 ¹
3.0	TM.1.1	12·0-j4·67	0.7372×10^{-14}	0.7559×10^{-3}	0.735
	TM.1,2	19·1-j 3·90	0.3143×10^{-12}	$0.5936 imes 10^{-1}$	0.635 × 10-3
	TM.2.1	14·3-j4·3	$0.7223 imes 10^{-14}$	0.4719×10^{-3}	0.137×10^{1}
	TM _{03,2}	15.5-j4.0	$0.1955 imes 10^{-13}$	0.1673×10^{-2}	$0.114 imes 10^{1}$
3·5	TM _{el,1}	9-2-14-25	$0.2594 imes 10^{-13}$	$0.1884 imes10^{-4}$	$0.796 imes 10^2$
	TM.1.2	12.8-13.65	0.3413×10^{-14}	$0.1058 imes10^{-3}$	0.259
	TM _{01,3}	13·7-j 4·4	$0.4041 imes10^{-14}$	$0.1384 imes10^{-3}$	0.251×10^{1}
	TM02.1	11-1-j4-0	0.3679×10^{-13}	$0.1549 imes10^{-2}$	$0.166 imes 10^1$
	TM.2.2	14.2-13.3	$0.9506 imes 10^{-12}$	0.3767×10^{-2}	0.225
	TM.2.3	15·8-j4·1	0.3189×10^{-12}	$0.3567 imes 10^{-1}$	0.887
	TM.3.2	12.3-13.7	$0.2747 imes 10^{-14}$	0.6921×10^{-4}	0.307×10^{1}
	TM. 3.2	16.5-13.0	0.1499×10^{-11}	0.1583	0.982
	TM.818	18.0-13.1	0.7204×10^{-15}	0.1745×10^{-3}	0.467×10^{-1}

1	2	3	4	5	б
4-0	$TM_{03,11}$	7·5–j4·5	$0.3828 imes10^{-1.3}$	0-9991 × 10-4	0.181×10^{3}
	TMalsz	10·6-j 3·2	0.3602×10^{-13}	$0.7234 imes 10^{-4}$	$0.329 imes 10^2$
	$TM_{0L_{2}}$	11·9-j4·5	$0.7828 imes 10^{-13}$	0.1114×10^{-1}	0.525×10^{3}
	TM.02,1	9·5-j3·7	0.1775×10^{-13}	0.5238×10^{-3}	$0.202 imes 10^1$
	TM.02.2	12·0-j 3·0	0.3334×10^{-13}	$0.3387 imes 10^{-1}$	0.741×10^{-1}
	$TM_{\theta 2},_3$	14·3j3·8	0.8179×10^{-11}	0.5259×10^{-1}	0.391×10^{2}
	TM_{03-1}	10·2-j2·95	0.3319×10^{-13}	0.3851×10^{-3}	0.552×10^{1}
	$TM_{03,2}$	14 · 1–j 2 · 7	0.4554×10^{-13}	$0.8236 imes10^{-1}$	0.489×10^{1}
	$TM_{23,3}$	16·3-j3·3	0.5231×10^{-11}	$0.1214 imes 10^1$	0.441
4•5	TM.1.1	6·6-j 3·85	$0.2820 imes 10^{-13}$	0·7777 × 10-4	0.150×10^{2}
	$TM_{\theta 1,3}$	9·8-j 3·05	$0.2503 imes 10^{-14}$	$0\cdot3377 imes10^{-3}$	0.470
	TM01,3	11·1-j3·80	$0.1054 imes10^{-12}$	0.1323×10^{-3}	0.557
	TM.02.1	7·8-j3·5	0.1254×10^{-12}	0·1657 × 10~3	0-369
	$TM_{32,2}$	10·6-j 2·75	$0.1899 imes10^{-13}$	0·3419 × 10-1	0.371
	TM _{02,3}	12·2-j3·4	0.1120×10^{-12}	0.1809	0.476×10^{-1}
	TM.03,1	8·9-j3·2	0.3630×10^{-13}	0.2879×10^{-3}	$0.721 imes 10^{1}$
	TM,0372	12·1-j2·45	0.3659×10^{-12}	0.3135×10^{-2}	$0.887 imes10^{1}$
	TM _{03,3}	13·5j2·85	0.3358×10^{-13}	0.1753×10^{-1}	$0.163 imes 10^{-2}$
•0	TM.1.1	5.9-j3.6	$0.2065 imes 10^{-13}$	0·5617 × 10-₄	$0.136 imes 10^2$
	TM _{01>2}	9-2-j2-7	$0.4357 imes 10^{-14}$	0.4480×10^{-3}	0.561
	TM _{01,3}	10·4-j 3·5	0.6721×10^{-14}	0.5329×10^{-3}	0.824
	TM.02.1	6·5-j3·2	$0.3466 imes 10^{-14}$	0.1685×10^{-4}	0.839×10^{12}
	$TM_{02,2}$	9·6-j2·45	0.4344×10^{-14}	0•9924 × 10 ⁻³	0.264
	TM _{62>3}	11 · 3 j 3 · 05	$0.3933 imes 10^{-11}$	0.3578×10^{1}	0.281×10^{3}
	TM.03,1	7-1-j2-95	$0.8776 imes 10^{-15}$	0.1173×10^{-3}	0.333
	TM _{03.2}	11·0-j 2·25	$0.8727 imes 10^{-13}$	0.1983×10^{-1}	0.304
	TM _{03,3}	12·1–j 2·5	0.2522×10^{-11}	0.5802×10^{-1}	0.330×10^{1}

APPENDIX II

Appendix 2.1

a cm	b cm	Mode TM _{on.s}	Characteristic frequency (GHz)	Stored energy, W_j (watts)	Dielectric loss, W_L (watts)	Total power radiated, W_R (watts)	$Q = \frac{\omega' W_s}{W_L + W_R}$	$Q - \omega' W_s / W_R$ (from Table I)
1	2	3	4	5	6	7	8	9
3.0	3 · 1	ТМ _в ,3 ТМ ₆₃ ,	19·1- <i>j</i> 4·7 16·7- <i>j</i> 4·3	0.6198 :: 10-12 0.4563 :: 10-11	$\begin{array}{c} 0\cdot 2426 > 10^{-2} \\ 0\cdot 1531 > 10^{-3} \end{array}$	0.5033 0.2796 ~ 10 ⁻²	0·147 0·160	0 · 148 0 · 160
4·0	4 · 1	TM _{01,3} TM _{02,3}	13·4- <i>j</i> 4·25 14·3- <i>j</i> 4·0	$\begin{array}{l} 0.6196 \times 10^{-13} \\ 0.1923 & 10^{-11} \end{array}$	0·4424 : 10 ⁻⁵ 0·7937 : 10 ⁻⁴	$0.1524 \ge 10^{-1}$ $0.1118 = 10^{1}$	0·342 0·155	0-342 0-155
5.0	5+1	TM _{02,3} TM _{02,3}	10·6-/3·8 11·6-/3·65	0·2879 :: 10→13 0·6757 :: 10→12	$0.9728 > 10^{-6}$ $0.5586 > 10^{-3}$	0.5414×10^{-1} 0.2065	0+354 × 10 ⁻¹ 0+378	0 354 10 ⁻¹ 0 378
3 • 0	3.2	$\mathrm{TM}_{as,1}$	15·5–j 4·0	$0\cdot1955\times10^{-13}$	0.2258 \times 10^{-4}	$0.1673 > 10^{-2}$	$0.112 imes 10^{1}$	0·114 :: 10 ¹
4.0	4.2	TM _{02,2} TM _{93,2} TM _{93,2}	12·0- <i>j</i> 3·0 14·1- <i>j</i> 2·7 16·3- <i>j</i> 3·3	0.3334×10^{-18} 0.4554×10^{-18} 0.5231×10^{-11}	0.1985×10^{-4} 0.5258×10^{-6} 0.4369×10^{-2}	$\begin{array}{c} 0.3389 imes 10^{-1} \\ 0.8236 imes 10^{-1} \\ 0.1214 imes 10^{1} \end{array}$	0.742×10^{-1} $0.613 > 10^{-1}$ 0.441	0.747×10^{-3} 0.489×10^{3} 0.441
5.0	5.2	TM _{02,3} TM _{02,2}	11 · 3 <i>j</i> 3 · 05 11 · 0 <i>j</i> 2 · 25	$\begin{array}{l} 0\!\cdot\!3933\times10^{-11} \\ 0\!\cdot\!8727\times10^{-13} \end{array}$	0.2529×10^{-3} 0.2393×10^{-4}	$\begin{array}{c} 0.3578 \times 10^{1} \\ 0.1983 \times 10^{-1} \end{array}$	$\begin{array}{l} 0.780 \times 10^{-1} \\ 0.304 \end{array}$	0·281 > 10 ³ 0·204

Appendix 2.2

a cm.	b cm.	Mode TM _{0n,s}	Characteristic frequency (GHz)	Stored energy, W_s (watts)	Dielectric loss, W_L (watts)	Total power radiated, W_R (watts)	$Q = \frac{\omega' W_s}{W_L + W_R}$	$Q = \omega' W_s / W_R$ (from Table I)
3.0	3 · 1	TM.01,1 TM.02,2	14·3-j4·83 19·9-j4·25	0.1649×10^{-13} 0.1919×10^{-12}	0.7485×10^{-6} 0.1791×10^{-3}	0.6832×10^{-5} 0.5513×10^{-3}	0.104×10^{3} 0.328×10^{2}	$0.217 imes 10^{3} \ 0.435 imes 10^{2}$

4.0	4•1	TM ₀₂₊₁ TM ₀₂₊₁	9·5–j4·10 11·5–j3·75	0.2969×10^{-34} 0.8613×10^{-35}	0.2322×10^{-4} 0.5239×10^{-5}	0.1321×10^{-4} 0.6508×10^{-5}	0.486×10^{1} 0.529×10^{1}	0.128×10^{2} 0.957×10^{1}
5.0	5,1	ТМ _{01,2} ТМ _{08,3}	8·0-j 3·75 12·2-j 3·35	0.1174×10^{-14} 0.4649×10^{-12}	$\begin{array}{c} 0\cdot 4819 \times 10^{-5} \\ 0\cdot 2336 \times 10^{-3} \end{array}$	$0.1487 imes 10^{-5}$ $0.4744 imes 10^{-3}$	$\begin{array}{c} 0 \cdotp 936 \times 10^{1} \\ 0 \cdotp 502 \times 10^{2} \end{array}$	0.629×10^{2} 0.750×10^{2}
3.0	3.2	TM _{01,2}	19·1–j 3·90	$0\boldsymbol{\cdot}3143\times10^{-\!12}$	0.1379×10^{-1}	0.5936×10^{-1}	$0\boldsymbol{\cdot}516\times10^{-1}$	0·635 × 10-1
4.0	4•2	TM _{01,2} TM _{01,3}	10•6-j 3•2 11•9-j 4•5	$\begin{array}{c} 0.3602 \times 10^{-13} \\ 0.7828 \times 10^{-13} \end{array}$	0.2407×10^{-4} 0.3512×10^{-4}	0.7234×10^{-4} 0.1114×10^{-4}	0.249×10^{2} 0.127×10^{2}	0.329×10^{2} 0.525×10^{3}
5-0	5.2	TM.02,1	6·5-j3·2	0.3466×10^{-14}	0·1144 × 10⊸	0.6685×10^{-4}	0.501×10^{1}	$0.839 imes 10^1$

....

APPENDIX III

a cm	<i>b</i>	Mode Real frequency	Peak energy stored (watts)		m t	0 -	$Q = \omega' W / W$	
	cat	l Wlon,s		W _s	W _s '	radiated W_R (watts)	$\omega' \frac{(W_s + W_s')}{W_R}$	(from Table I)
3.0	3.1	TM _{03•1}	0.1049×10^{12}	0.4563×10^{-14}	0·7026 × 10 ⁻¹⁸	$0.2976 imes 10^{-2}$	0 ·161	0.161
4.0	4-1	TM.02.2	0.7539×10^{11}	0.4413×10^{-14}	0.4953×10^{-18}	$0\cdot4253 imes10^{-2}$	0.782×10^{-1}	0.782 × 10-1
5.0	5 · 1	TM _{92,3}	0.7286×10^{11}	0.6757×10^{-12}	$0\boldsymbol{\cdot}3412\times10^{-17}$	0-2065	0-338	0.338
4.5	4.7	TM _{92,2}	0.6660×10^{11}	0.1899×10^{-13}	0.9862×10^{-17}	0.3419×10^{-4}	0.371	0.371
5.0	5.2	ТМ ₀₃ ,,	0·4461 × 10 ¹¹	0·8776 : 10 ⁻¹⁸	0·1229 × 10 ⁻¹⁸	0;1173 × 10-3	0.334	0.334