Jour. Ind. Tast. Sc. 61 (B), Oct. 1979, Pp. 163-176
@& Printed in India.
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Abstract

A direct technigue is presented for solving the problem of diffraction by a strip undef niixed bousdary
conditions. Taking account of correct edge conditions, the problem is reduced to two pairs of coupled
integral equations by means of a method due to Jones in the theory of Wiener-Hopf technique. The
first approximation to the solution of these coupled integral equations is obtained for large values of
the width of the strip. An expression for the quantity represenmting the sum of the absorption and
seattering coefficients of the strip has bzen obtained by using the appreximate solntion., Highet oxder
appreximations are avoided because of the complications in the presentation of the results.
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1. Introduction

The Wiener-Hopf technique provides an exiremely powerful weapon for attacking two-
dimensional diffraction problems. Ouat of all possible approaches towards the reduc-
tion of the physical problem at hand to a problem of Wiener and Hopf, Jones™ method
is the most saitable one as it is direct and straightforward. A beautiful account of
Jone’s method ean be found in the books of Jones' and Noble®, As is well known?
the Wiener-Hopf technique provides an exact solution to the problem of diffraction
by haif-planes under unmixed boundary conditions, whereas the problem of diffrac-
tion by a strip leads to a set of integral equations when Wiener-Hopf fechnique
is applied. The literature of the Wiener-Hopf technique and its application is vast
now and references to most of the work in this direction can be found in the hooks of
Jones' and Noble®. .
Whilst the theory of the Wiener-Hopf technique has become quite well known aad

handy at present for solving diffraction problems under unmixed boundary conditions,
net smuch effort was made to tackle mixed boundary value problems in diffraction theery
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by this teshnigue, until Rawlins® published his paper in 1975 where he presented a new
teshaigue of solving certain coupled integral equations. In his paper Rawlins solved
the probiem of diffraction of plane waves by a soft-hard half-plane through a technique
which he calls * Ad-hoc *. The reader is referred to Rawlins’ paper for previous refer-
enzes and the origin of such mixed boundary value problems in diffraction theory.

fn the present paper, we have demonstrated how JYones’ direct method of solving
swo-dimensional diffraction problems can be applied 1o the present type of mixed
boundary value problems for a strip.  We find that the problem of diffraction of a
plane wave by 2 sofi-hard strip can readily be reduced to two pairs of coupled integral
eqations of the kind which is very different, as is expected, from the integral equations
of the unmixed strip probiem described in Jones’ book®. However, once a technique of
finding che solution of the coupled integral equations occurring in the half-plane problem
is dissovered (of. Ref.3), the coupled integral equations of the sirip problem can very
well be handled for their approximate solutions when the width “7° of the strip is Jarge
We have obtained a frst approximation to the solutions of these equations for general
angle of insidence. Higher order approximations can also be derived by the technique
of Jonest for finding approximate solution of the unmixed strip problem. The results
of these approxi nations will be published at a later stage.

In Sestion 2. we demonstrate the technique applied to our strip problem where we
find an exoression for the far-ficld by the method of steepest descent, by using the
first approximation to the solution of our integral equations. Finally, we derive an
expression for the sum of the absorption and soattering coefficients of the mixed strip
by usinga forntula of Jonest. The derivation of the integral equations has been shown
for any general incident wave, whereas solutions of these integral equations have been
ottaingd under the assumption that the incident wave is a plane wave.

2. Formulation and reduction to integral equations

o

Assuming that the soft-hard strip occupies the portion — I<< x < 0 of the plane y =0,
the matheatizal problem of determining the scattered feld v (x, 3) is that of solving

the partial differential equation
(24w =0. 2.1

Here k is the wave number and a time-dependent factor ¢ is dropped throughout the
paper.
Under the boundary conditions :
v (x,0%) = — 1, {x, 0)

Colx, 07} fuy(x,0)
& cy

(=l x<0) 2.2)
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w, (%, ¥) representing the known incident field and o (x,¥) the total fleld, the continuity
conditions :
v (x,0%) = v (x,07)
G0 (307 _ v (%07
dy ay

(—oo<ag — 1 1< v < ) 2.3)

and alsy the radiation condition at infinity and the edge conditions (cf. ref. 3) at edges
x == —{ and x = O resjectively, which are given by

v (%, 0) ~ 0 (x*4), {31%,2) ~O (), as x> 0F

To solve this problem by the Wiener-Hopf technique, we assume k = k, — ik, (k; > 0)
until un to the end when we put k, =0, and define the following transforms ;

Vis,y) = V.(5,5) + Vi (5,%) + Vi (5, ) -
©.4)

o
= [ v{x e de
-0 "
and
P(s, )= P_.(5,9) + P (s, ) + P:(s5, %)
f°° e, @.5
== T (3
J oy
-0
whete

Vo= [ el Vi) = | o0p)evds
-t -1
o0

Vils, )= [ v(xy) e dx,

with similar definitions for P_, P, and P..

We now note that the functions ¥, and P; are analytical functions of 5, whereas because
of the edge conditions?, V.~ 0(e%/55/4) and P_~ 0 (e#/s19) as |s| — coin the left
haif plane o < k;, and V. ~ 0(1/55/%) and P ~0 (1/5%/%) as | 5 | = oo in the right half
plane, ¢ > —k,. We also note that V; and P, are 0 (¢®)as | s | - oo in the right half
plane, whereas they are 0(1) as | s | - oo in the left half plane.

Procedures adopied here, in deriving the integral equations, are similar to that of
Jones' for the unmixed strip problem, with slight modification, and the readeris constantly
referred to Jones” book for details. Writing the solution of the transformed p.d.e.
(2.1) as (since Imx < 0)

Vis,y)=de*, p>0 2 ‘
4 : K = f (2 + k2 2.6,
= B i, y<0} ¢ \/( + k) @9
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and taking limits as y — 0%, we obtain
A=V (5,00 + V_(50) + V1 (5,09,
B =V (5.0) + V_(s,0) = V1 (5,07},
—ixAd = P_(5,0) = P_5,0) 4+ P (5,0%),
KB = P.(5,0) 4 P_{s5, 0y 1 Py (5,07}, 2.7
after utilizing the continuity conditions (2.3). Eliminating 4 4 B and 4 — B from
equation (2.7), we obtain
& [V (5,07) = Vi(5,0)]
== 20[P; (5,0) + P-(5,0)] + i [P1 (5, 0%) + Py (5,07)] (2.8)
and
[PL1s,07) — Pi(s507)]
= 2ix [F(5,0) + V. {5,001 + ix [V (5, 0%) - Vi (s, 07)]. 2.9
Eqsations (2.8) and (2.9) will be handled through the Wiener-Hopf technique and we
shall make use of the following identities which are the 4 and B eliminants from (2.7)
or which can be obtained from (2.8) and (2.9).
Pyis,07) = — ix [V (s5,0) + P (s,0) + V1 (s, 0%} |
— [P~ (5,0) + P (5, 0)] I
and 1 v 2.10)
P1(8.07) = = [Pa(5,0) + P_(5,0) + P1 (5,07)] “
~ V5.0 + V(50 J

We have selected that branch of the square root for which
(5 — #)2 = — (s -+ YV @2.11)

As described in Jomes® book! (pp. 602-4), we now write the equatiois (2.8) and
(2.9 in two different forms each, split the necessary funceions by the sphitting technigue
of {ones‘ and use Liouville’s theorem to obtain
P, 0) = — (s YR XL (s)

e®P_(5,0) = — (s — ) Y_(5) B

Vi(s,0) = — (s + iy 12 Lo (s) s 2.12)
and

e IV_(5,0) = — (s ~ iky V2 M_(s)
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where
()= — L fwao (w -+ )P (w, 0) ;_é(sPl (1, 0 -+ Py (w, 0-))] .
(@ > a)
00 — +
y(@—%ﬂf:wQL%2~i-mqmm+;wdmmy+ﬂwwmdm
(g < b)
B == g [ CEBIR r. 0 3040009+ 3 000
(¢ > a)
and

MX@“*jﬂgw—mw%wUWM@LHHWWﬁ+KW0mﬁ
(c< b (2.13)

V-0

Next, changing wto — w in X, (s) and L. (s), and st0 —§ in Y. {s) and M_(s), taking
b = — a, noting the result (2.11) and defining

1) = B 0) P (— 5.0 )
H ()= P:(5,0)— @ P (= 50), | \ 0.1

Fo () = Vi (s,0) + €% V. (— 5,0),
@m:m@m—wnpwm.J

We obtain, from (2.12), the following integral equations which are valid fora > — b :

CHRLE = GO+, [ R

bt iy
(s + iy M2 HL(5) = Qa(9) — 21n . :: u w—*—-————ﬂ;} - xH* 09) gt gy,

1ee (- YR n, 2.15)

GHRPERQ =P g [T

and

Boo (g~ JE)/2 G, (W)

e+ dw,
B—ic0. w s ’

(3 V) = Pol) +
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where

RSNy A V5.1 . .
m@=ﬁﬁfwmigﬂ4mwwwwmwmw'

Y CC W s
4 (Vi (—w, 07 3 ¥y (— w, 0] dw,
Lo (v k)7

I’g(s)zz—zg7 i [V (1w, 04) + Vi (e, 07)) e
— (Vo (= w, 07) = ¥y (— w,07))] dhw,
0= [ O p (1,0 PO 0

+ (P (~ w,07) -= Py (— 1w, 0 )] aw,

[(Pl (,0%) 4 Py (w, 07)) e

— (P (— w,0%) + P, (— w,07))] dw

e

(2.16)

We note that the functions Py, P,, Oy and @, are not completely known for the type
of boundary value problem we are handling. However, if we make use of (2.10) in
(2.16) and evaluate some of the integrals by closing the contour in appropriate half-
planes and combine the results with the left hand sides of the equation (2.15), the

equation (2.15) can be expressed as:

(s + Y2 L. (5) = Ry ()

.1 otiw dw

7 i W

(s -+ Y2 F(5) = S, (s)

1 [ohio gy

[I% (W) (4w — iRy 2™ — (w4 kP2 FL{— w)],

~ 9 L LE ) (v — ik)V2 e — i (w - k2 L (— )],

bgzo W 8
(s -+ Ry MEH () = Ry (5)

1 [udix dw
2R S pegoc W -

{s -+ IRV G (5) = Sy (s)

H 490 i

i

i [fL () (v — k) V2 9 L (w - VG (— W),

-+ = = LG (W) (w — k)% ef'”' +1 (w + k)12 H,(— W),

betog W S

(2.17)
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where,

1 (o0 dw . N
R =75, S — ik (P (9, 0) e 4 Py(— 0, 0)

b-too Wt S

— (i -+ i)YV (W, 0)e ™ - V3 (—w, 09,

p—ioo W S

— i (w R (Vy (w, 07) e = Vo (—w, 01))],

R = = [P B o B (0,07 = P (= .0

Lo dw e > el e O
Sy (8) = .’Zﬁj ps B F j|_(w K2 (V1 (w, 0y et 4= T3 (~ w0, 0%)

0 TR (B O, 09 % o Py (= 0, 0D,
and
0 = [ i (7, (09 6 P (= 0,09

peico W }ft?
— i (w 4 Ky (Py (w,07) et — Py (— w, O))] (2.18)
The funstions Ry, Ry, Sy, S, in (2.18) are completely known by means of the boundary
conditions (2.2) and the equations (2.17) are the desited pairs of coupled integral equa-
tions for our strip problem. These equations are best solved by the method of succes-

sive approximation. In what follows, we shall obtain the first approximation to the
solution of the equations (2.17) in the case of incident plane wave, assuming / to be

large.

3. Approximate solution—Incident plane wave
We now assume that the incident wave is a plane pulse, given by :

(v, ¥) = exp{ — ik (xcosdy - rsingy)l, (0« do << w/2). 3.1
We then have

1 .
Vi (s, 09) = TFTEcoh [1 —exp (s | ik cos ¢g) 11

and 3.2)

iksing, o
T ecos, [1 — exp (s -+ ik cosde) I

Py(s.07)= —~
Then choosing b == ¢, where k, > ¢ > k; cosg, we can evaluate all the integrals
involving the known functions multiplied by (w - ik)1/2 or (w -+ ik)™? by closing
the contours on the left.
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Hence, if we take the new unknowns as:

N e 1 exp (ikicos
L) = I(s) — ik sindhy <s L7k cos gy + sp—(z‘kcosi:)
_ 1 ., exp ikl cosdo)
e ()= P (s} + s-ikcosd, | 5§ —ikcosdy
\ 1 exn (iklcos go))
v ()= H.-{s) — e singy ks fkcosg, s — ikcosg,
1 exp (tklcosdo)

0. (s) = Gufs) = 2 Tikcosg, 5 —ikcosd,

the integral equations (2.17) take the following forms :

s L1 rese gy
(=R () = k() + 5 f Y L — iy

e=ico W+
R A-(w) et —i(w -F iR 2 pe (— w)l,
efion
ewico W + s

—i{w H ik (— W),

s+ ik} ps sy = L (s) — 2,{ [Ow — 1% py (W) e

(5 LYy () =my (s) — e [(W — kYR, (w) et

e~it0 W

+i(w ik 0. (— w)l,

and
. 1 ferio gy
e = ity (8) - — _aw ANV Ry
(o HPE0 () =my(©) gz [ ST [ 0 () e
+ Qe+ 2 v (— W),
where
——___ b h!
h)= s~ rk cos gy 5T ikcosgy ’ i
. b |
L= 5+ zkcoszﬁo Ty —Tkcosdy !
P a; N b
™) = Cikeasdy T T TReospy
- . . b :
w. (5) = sikcosd, ' 5— ikcosgy | )

(3.3)

(.4

(3.5
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with
172 e PO \
a = — (2k) 2 cos P = ]
2 f
p |
b, = — (2ik)/2 sin %? 5 exp (ikicosgpy) = — b j
!
ay == (kP sin % ° = a) f 6.6
and l

by = - k)2 cos(b" exp (iklcos dy) = — b

ﬂ

/ -

We note that »z == 0 = m, when ¢, = n/2. The equations (3.4) are in their most
convenient forms (or finding the approximate solutions for large L. When [ is large,
theintegrals in (3.4) involving the factor e can be expected to be very small (see Watson’s
Lemma') and neglesting such small terins, the first approximation to the solution
of the equations (3.4) can be obtained by solving the following integral equations,
once again coupled :

G =19 + 5 [ B o e i,

—orito W —

6+ ) = () - f 0D 6 s i,

—epico W
1 =i f) (w)
172y, — o TeAWl e, I i
(s k2 v, (8) = m, (5) 37 ) oo W= g(u k)2 dw,
and
R0 = mas) + e [ 20D 6 gyare gy, 6.7
27 J —epico W — S

We now assume that the solutions of (3.7) can be expressed as (¢f. vef. 3) :

AP | M (s

Ael) = s ikcosd, ik cosdq

(TR | (SR
sLikcosdy ' s--ikcosdy’

v (s) = V(/,__Vt@ P (\/5'1' )
Fikcosgy | s—ikcosdy

O (JsFiky | (s ik) (3.8)

i (s) =

Bi(s) =3 +ikcosp, | 5 —ikcosd,
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Then, proceeding in a way similar to the one described in Rawling’ paper® and remem~
bering that k, > ¢ > k; cos¢,, the problem of solving the integral equation (3.7) can be
reduced to the following problem of determining the functions 1%, 1%, etc.
To solve
et ==y ST RE (-, (3.9
where y == (s -~ ik)'/? and the pair of functions p. () and X. (y) are to be replaced by

the pair (i i () 1 G G2 G 1 6D, O @), 00 (7)) and (4 (), 037 () For the
purpose of writing the equations for these unknowns. We also have to satisfy the
following conditions relating the umknown functions :

P (JIEsin o) = @ Qi)Y Esind o = — ik singhy
i (J20E cos S o) = by (2ik)1 2cos by
= — ik sing, exp (fklcos ¢)

19 (J2ik sind o) = @i sin & ¢y ixn e =

1 (VTR <08 160) = ol
== ik sin ¢y oxp (ik{ cos ¢hy)
and
¥ (2 sind o) = &) Qik)V2sind Py = — ik sing,
v f3ikcos L) = B, 2ik)V2cos o = ik singhy exp (ik [ cos y)

&
09 (J2ksinkdg) — T @ sin L ¢y
o (T cos o) ~ @’1@1—/1)‘@3@; = — ik singg exp (klcosdy).  (3.10)

A method of obtaining the solution of (3.9) satisfying (3.10) and the edge-conditions
has been described in (4). Leaving aside the details, we obtain the unique solution
of the equation (3.9) as

) =AY+ 40 91 J (v + SR,
.ll+) O =149 — 42 Ally Jo + J20].
W) =48 + 4P G T YT,
18 () =AY — 42 1y Vo + J2RL

v () =1BY 4 B 91 (v + 2K,
09 () =[B2 — B® Ay & + VR,
0) = [BY + BY 31 JO + JI),
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and
o0 ) =[BY ~ BE 9y J (0 + 2R, (3.10)
where the comstants 49 and B (i=0, 1; p=—1,10), deterntined by the relations
(3.10) are given by )
s = g B G VI
2L (& + J2UR

ooabe o
AP _250[\/(50 J2i%) ay J(Eo \/27]()],

AL = 1 [ b + by J(ng + \/ZT)]

Vo + x/7’k)

by IR
AP = |:‘._._—_1—0 — by \J(ng + lzlk)] s
2% W/(—-_T—Wo IRVICTIS SN ,
BY = A9, B = AP, .
BY = — 4%, B® = — AP, (3.12)

where the c-onstams a,, @, by and b, are those given in (3.6) and

&y = (k2 sin 34y
and

- g == (2K cos S b : (3.13

The transformed field can now be detenmmed by means of the relation (2.6) and the
results

24 = (8} + 04 (8) + e Lo (— 5) —~ O (— )]
and

2ikB = Ay (s) + v4 (8) + € [Ae (— 5) — v (— 9] (3.14)

which are derived from our earlier substitutions.

We now proceed further to determine the quantities 4 and B. We have the followmg
results:

G+ op gy =222 AL
7 @+ 2k

KR+ 0P @) =0,

K @) v ) = 2042+ ] o+ 2R

RO+ () =0,

00 (Y — 1P Wy =0,
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0 () = 1 () = = 2 (48] — 4P UG o' + VIR
WEY—ARGY=0,

VG = 28 ) = — 248+ 48 ) VO R, (3.15)
where ¥ = (— 5 + k)2 = i(s — ik)/%. Then, the usknowns 4 and B are finally
cbtained in the following form :

1 [_AY — 4y (43 — 49 9" e“] )

A= T = = 3.1

(s + ik cos o) Ly SO+ V2R JO+ Y2k @.15)

and
1 fy st
B = e raasg A + 40 D) JO + J2i0)
— et (48 + AP ) J G + V2B (.17

These cxpressions can be cast into the forms involving the constants ar, 4o, b, and 3,
by wusing (3.12) and (3.13). However, we do not give these forms here, and in the
next sestion, we determine the symptotic expression of the far field. Finally, the sum
of the absorprion and siattering coefficients has been determined by using a formula
due to Jones!.

4. The far-field and the scattering coefficients

Using (3.16), (3-17), (2.6) and the Mellin’s inversion formmla for the bilateral Laplace
transform we determine the following expressions for the diffracted far-field, for large
kr, after writing x=rcos¢ and |y | =rsing, 0 <d < n):

/2
vy (%, p) ~ A (— ik cosd) . (2%' sin? (1))1 e T (5 5 g) .1
and
ko, N\
(X, W~ M(—ik cos ) (Zﬁ‘smz 4,) e~ /ey ™y < 0} 4.2)

where
% - I (48 — 40 £
’4("‘“"Sq’)_ik(cowwcos@[g\/(H\/2,-—;1)

(A%} — 4l 4) ,
7 Jo exp(—i coscﬁ)] 4.3)

and

M~ ikeosg) = — 0Dy 14 gy i+ 2

— (A% + AP 1) Jon + Ry o (— ikt cosd) “.4)
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where
£ = JAksingf2, m= J2ikcosp/2.

We note that, by using (3.12) and (3.13), we have
A =} [fo Vo + 2k — 7@0%‘;59/2:@
ar = AV + ],

49 = &H S + J2ik) - Wé,,‘gw /zm)] exp (ik 1cosdy)

AP 0= — Y mg VO F TB) 4 £gne/ V(o + J2ik)] exp (ikIcos ). (4.3)

Using (4.5), the expressions (4.3) and (4. 4) can be written down completely.

We shall now obtaiu the ssattering coefficient of the strip under the mixed conditions,
considered here, by using Jones® formula (6) (pp. 454-5)':

. LT 61),, dup\ 7
Os + 04 = kllnuf =+, a;z>d5_|’ (4.6)
<

where u,(x, y) is the incidental field, v (x,¥) is the scattered field and stars denote
complex conjugates. In (4.6), s is the scattering coefficient, whereas a; is the
absorption coefficient of the strip, and C is a large circle which completely encloses
the strip.

Following Jones® techmique involving the method of statiomary phase and using the
two expressions (4.1) and (4.2) on the top and bottom halves of the circle C, respectively
we obtain :

R —Qf%ﬂke[li(fikcosd;o) & M (— ik cosgol, “.n

Gg 1 Cx

where by A(—ik cosqﬁ‘,})- and M (— ikcosg,), we mean the limiting values of the
expressions (4.3) and (4.4) as ¢ tends to do.

After using {4.5) and after some manipulations, we obtain the following expression
for the * sum of the absorption and scattering coefficients of the mixed strip’

Og 04 = 4sing, (4.8)

Fer the purpose of comparison, we quote the corresponding expression for the soft

strip, derived in Jomes’ book!:
“-S=4sin¢u, (49)
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obtained by using only the first approximation to the solution of Jones’ integral equa-

tions for the strip-problem.
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