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Abstract

Results of computer-aided caleulations for the power carried by surface waves, attenuation, surface
impedance and the effects of modulation index on the radial field decay, spatial barmonics, elc., are
reported, Stability of surface wave modes confirmed by experinient is discussed with the felp of stabi-
lity charts drawn for the modulated structures,
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1. Imtroduction

The paper presents a report on the numerical computations of the characteristics for
cosinusoidally spatially modulated circular cylindrical metallic corrugated structures
excited in E, mode based on the theoretical analysis by Chatterjee et 4/*~3. [t is shown
that spatially modulated surface wave structures with low values of modujation index
(6 < 1) can. support more strongly bound surface waves than uniformly corrugated

surfase wave structlures,

2. Equivalent dielectric constant &

The corrugated region for an uniformly corrugated rod excited in E, wave is simulated,
as a homogeneous dielestric region of equivalent dielectric constant & = f(s, b, a)
where s, b and a denote respestively the spacing between any (wo adjacent discs, radins
of disss and radius of the central supporting rod. Since it has been proved? that the
refative amplitudes (4,,) of Floguet harmonics satisly the inequality relation 4, (ms 0)/
4,{m = 0) < 1, therefore, ¢ for the fundamental mode (m = 0) is calculated by using
the relation
& = f2/k2 M
. 1
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where, the phase constant f, for the fundamental mode i determined Frony the solution
of the following equation®
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Figure | shows that

(i) the allowed values of ¢ can be defined for only certain combinations of 5 und b,

for a particular value of ko, the valve of « being held vonstant (¢ 0-25cm).

(ii) ¢ is 4 decreasing function of s for a lixed value of groove deplh (& - «).

(i) For a groove depth ~ nly/2, & approaches the vatue of anity which is the value

vy

<

for the external medium (air). This implies that a modilied * Hames-Gouba’
line approaches ‘ Sommerfeld * surface wave line when the groove depth for a
spatially modulated line apmroaches the vajue of integral multipie (2. 1,2,3...)
of half wavelength (1,/2).

Ft is evident that increase of & is associated with increase of fi,. Therefore, a
straciure with higher values of &* can support more strongly bound surface wave
which i in conformity with the case of Harms-Govbau line.

¢ insreases will ko, ie., with increasing frequency of excitation for allowed
values of b and 5. Hence, for a surface wave structure with a modified surface,
more strongly bound surface wave can be supported. with increasing frequency.
This is also in conformity with the conventional H-G line.

Hence, it may be consjuded that the evolution of the equivalent diefectric concept for
the corrugated region for the purpose of analysis is justified.

3. Modulation of s*

Since & == f(s, b) with the parameter a held constant, spatial or depth modulation 1
achieved by varying s or b respectively and keeping the other parameter constant. I
this case, spatial cosinusoidal modulation is studied,

s(z) =g (l ~6cos—2-2—z *®
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where the modulation index § is defined by
s Y T30
& = max mE{.l. (

Bumu '}' 8"1:.\511 3

-

The s9a°ing 5 is varied over a cell of length L in the direction {z) of pm;mg,aiion The
design of the structures depends on the profile (s-profile or b profile) cquations®. The
variations of s and henze ¢ (z) over half a period ate shown in Fig. 2 which are based

on the assumptions Kot < 1, kb == 1, 7b < 1 and kea < 1, kolr <2 1, jrob <o 1 vespec-
tively.

4. Radial propagation constants
Using the following mixed boundary condition®
[E QE,3p)* [H (2Hpsf2p)* ~
(3 E..op%) o=t *

0% Ha/20%) |, @
(e Gy I‘ (22— 0" JL
? 32 Ealo? p=1 Lo sy

GH, ¢1/ DPE)
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and appropriate field components for the two media the following characteristic equa~

tion® is obtained
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The solution of (5) with
K = K+ T~ e (3]

The following observations may be made regarding &y and ky:

@ k>

0.26

{6)
yields the values of ky and k, as £(8) for fixed values of « (Fig. 3), a1z -~ 0. Figure 4
shows the variation of &, and k, at different locations of the structure over a half period.

Figure 5 shows a comparison between ki, and &y, (p: order of modes) betwoen two
successive higher order modes.

tures wnh et == |t 062 1293 and 1523, ky > ky over only a limited range of d.

(D)
along the cell length L.

ks and e (z) and hence § ate slowly varying functions of 2rz/L. j.e., the locations

(ili) The different natare of vaciation of , and ko with 2rz/Z, for the - two modes
signifies that the two modes behave differently with regard to radia} field decay

at different locations of thc structures,



MODULATED SURFACE WAVE STRUCTURES 9

4.0 ] i 1
o] 1.0, 2.0 3.0

ZITZ/L B

Fi0. 44, Variation of ki, ky with 8 for ¢ = 1-523 over the period 27z/L.

3.8

3.0 t ¢ L
[¢] 1.0 2.0 3.0

2TzfL -
Fia. 4 5. Variation of k;, ky with 8 (or € = 1-062 over the period mzfL.

(iv) Theconstants ky,, kg, and f, in the two media for p modes are related as follows
B2 = k%, -+ kE (7) First medium (med. 1)
and
B = ki, ki «(2) (8) Second (modulated) medium (med. 2).
The equalities ky, = kg, Kgy = Ky 2t 2 = 2°35 L[2n signify that the two modes
become indistinguishable (B, = B
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(V) The equality kiq ~= kg signifies that
~ B =13 Le (D) — 1] ©
which means that f, > £, since « (2} > 1, or in other words, vy, -« v, Hence,

the higher order mode is more qlrongly bound and consequently its rate of
radial decay is faster than that of the first mode.

(vl) The equality ke, == k;, = kqq signifies not only the indistinguishability of the two
modes in medium 1 but also that 1, < v,

(vii) The phenomenon of mode crossing observed in some cases is possibly due to
coupling of modes afising due to spatia] modulation of corrugations.
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5. Phase constant (f}}

The problem of the propagation of E, wave in spatially modulated surface wave struc-
tures is formulated in the form ol Hill’s equation, the solution of which yields the
following relation!

2 " v
B=" arc sin {ﬁb [01 sm‘ b }

(1
where the determinant
sin® Ezﬁ
2[0] = (10 a)
sin? w0
2
and involves &, (n +~ 0,1,2, ...} where
Ay kN 358 1
(L @ T
€ 3/ koLN\*® , L3
= G I (RS T
5 , OF
03 = Z 52 - ._;.
#y = 8% 4 3 3"‘
04 :'1’654 ‘|‘Z'$5, elc. “01’)

Where the length of a cell L == f(J, ¢} which can be determined from Fig. 2. The
variation of 6, (up to n —= 4) with respect to § is shown in Fig. 6. The variation of 2 [0]
with & is shown in Fig, 7.

6. Radial field distributions

The field components in the two media are given by?¥

Med I bgp< oo

.24 .
Hp= ~ i 02 Ky ()

24,
Ba=—ingse Theq Ko lkup)

Ey = gy 7[;17 —K-; (kyp) (i1 a)
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Where y and x* involve the Fourier gap coefficients ¢, (f).

The field distributions (E, and H,, with p) in both the media are shown in Figs. 8 an
9. The following conclusions are of interest,

(i) The radial field desay in the ouiside medium for modulated (5 > 0) structure
is faster than for an uniform (3 = 0) structure, Hence the surface wave is mox
tighily bound in the case of modulated structures with low modulation inde
compared to the case of an uniform structvre.

(i) The end-fire property of surface wave modulated structures depends not only o
a proper choice of § but also of L. The fast that better end-fire property canbe
atlained by stow rate of variation of s, Le., €(2) is also supported by Billstroint,

(iif) The higher modes dezay faster in med. 1 than {he lower order modes, since ks >
ki > k. The greater concentration of energy towards the interface Jead to
greater Joulean heat loss for higher order modes than the first order mode.
Consequently, the first order mode will be guided to a longer distance along
the strusture.  Hence for a finite length modulated struciure, the end-fire radia-
tion will consist mainly of the first order mode,
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7. Fourier gap coefficients
The Fourier gap coofficients ¢, for uniformly corrugated rod is given by®

_Fy (ko) Sin Busf2
CO=FGn o2 @

whee §, = f, -+ 2"

where { is the length of a period and 7: 0, £ 1, | 2, i 3 order of forward () and
backward (—) space harmonics, F, (ko2)/F, (kob) takes into acconnt the nature of the
field variation in the radial direction. For a particular value of ¢, == f (fu8/2). It is
found that over the region 8,5/2 == 0 to 04 ¢, is a very slowly varying funstion of s.
Hence, in the case of ihe spatially modulated structure, the variation of ¢, may be consi-
dered to be inappreciably small. Hence, ¢, () for the modulated structure may be
considered to be the same as ¢, in the case of uniform structurs without introducing any
appreciable error, provided & is small.
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The histograms of Cy,, are shown in Fig. (0. [0 is observed that

() for structures with ¢ »= 1531, 1-408 and U179, ¢y, (£ 0)fe, > | wheress,
for structures with ¢ = 1-062, 1-293, ['523 and " 144 ¢ "o 0

(i) All ¢y, (n# O) in the case of structures with ¢ -. 1531, 1408 and 1" 179 are
less than cg, (ns 0) for structures with « . 1'062, 1-293, ' 523 and 1- 144,
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The power flow outside () and inside (P') the modulated medinm in the z-direction
are given by the [ollowing relutions®

0. A4 D% "K"(/\ ab)
s e 2K b K kb K2 Gy b)]f B U3
Pl= — a4 K (Atlf) K3 (kob) __M:‘
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i 3 A
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and

2] oo
£l = [:F 223 sin 277':5 z e (fcosth z Cp(fl) sin ]
00 A OO

+ <1 — oos ”‘)( (j{ﬂ [z‘ {(Fycos ¢ zc,(ﬁ)coso
__Z cu(fysind z Y] ﬁml)] ( I —dcos 2—?)

Fhem OO
[ ;‘ (B)cos ¢ Z dc, (ﬂ) sin @ - 2( {/)’) sin ()z dc"(ﬁ) cOos [ll
-
Hm—e OO . T
e [B e D
Tl 1 —~dcos i [ ¢ (/K)Z'Ecos ¢ > c,(Breostt
L .
B SV DAL S
0 %,
Z e (B) J‘}‘ sin Z ¢ () sin n] (142)
o 50 B0
2anz lﬂnﬁ.
Where ¢ =y (14 b)

Since f, is a slowly varying function of z, it does not vary significantly over a period
L. Hense, c,(B) does not vary significantly over a period L. The order of smaliness
of variation may be estimated as (WKBJ approximation).

de, ¢, dec,

L] .ll
g =L dp I

cﬂ

and hencc can be replaced by 7 * which is equivalent to replacing - e P " by - 7

dﬁ

The relative intensities of spatial harmonics f,, (n 5 0)[f, for strustures with different
values of & and & shown in Fig. 11 in the form of histograms lead to the following
conclusions.

(@) fun (1 O)ffo << 1 for all structures.

(i) For all structures with any value of & £, > fi;, but fi, (n > 1} > £, (0 > 1) for
the corresponding values of .

(il For a structure with a particular value of , 3 has very little influence on
Jin (n# 0)(f, within the range of § =002 10 5 =01
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(iv) fa > # 0. n# 1) for all the structwres within the range of § = ¢ 1.

falr=1) . / U O and 2 8]
0 3 :

The variation of the ratio of P2/PT%0 with respect 1o & and 2 =L, where PT == Po - P
presented in Fig. 12 show that
() P/PzT = f13) and abo depends on the alowed values of f, 7., the stabitity
of modes.

(it) PyYPT tends (o inerease as 4 -+ 00 Inoother words the consequence of modulat-
ing the s.racture s W constrain more power 1o flow in the modulated medinm,
thus ensuring o more Huhtly bound surface wave.

(iii) (P2/PT)  for the lirst mode aswociated with the first root of kb and kb is
slightly less than (£ °P7), for the second maode assoviated with the second root
of kb and Kb at different fovations in a eell. This is probably due to the
functional nature of the roots,

[ e i e S
[ o e : BRTUTTN G esos
20.0f B | 1 /k,b $:0.02
! ! = kb
? 196k i ! = 5002
R i X hgb $:0.04
i 2.4
*EN : Y : ;z kb b-0.04 kb 5:0.02
oR 19.21 L8004 ; o : /
C;?.q:hww_&_ : _,__;A.,..«,_.c:;;’::‘
TV g : & zr kb 52004
s ! i kb & 001
b, ek . { 2.01 e L L
0 1 2 3 L “ 0 1 1 3 4 5
2MzfL - Mz JL e

Fia. 12 (a). P
—— Ist root,

Tovs ezl for b - 1323 Puo 13, kb and kb vs DmzfL for €8 == 10523,
- 2nd oot <+ Ist root, -~ Ind reot.

9. Power lost in the moduolated medivm

The power Jost in the second (modulated medium) is given by?

LT 1 i .
P, = T v B Y 2Lk, x
R VA P RIETS [Ritea{ -1
I e) 2y () 1, )
o) e - 1k, b))

4 _; <]‘r (]\"(’) 2-’0 (k»;\l}a[z (k r“) - 1?(:(:&1))}
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- r e o R BRIPISED k)
I\”(k)(l) 2K.|(k2(1)[(‘ ({\'211) . B!
-y ( o hot Kith0) ;

-
& 1o (ked) Ko Uz ~A—“’] »
where
i
ot =1 oo )zl..(/f)exlz(....rmz:n(/f ), (154
AR Fiomemane I3

Hence P, = f(5, &.b, g) and f8 which is involved in (.

Fa. 12 (). PRT wvs 2mzll for
g% . < 1-062 {Ist root).
i

zg.or’ .
S=006

1 23.5 0.02
B
L]
o 0.0
& o 0 4
o
\ J
22. 5\_' i . .
1 2 3 4 5
212/ L -
20
b= o 4
2
N4 "* 0 04
{N 9 = 0.02
Q
& .
Fig. 12 (d). PY/RT vs 2a2/L for e 1:523
16 with & as parameter (Ist T001).

TTZ/L et
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Fic. 124g). Kb vs 292/L for & = 106y
(Ist root).
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MODULATED SURFACE WAVE STRUCTURES 27
10. Attenuation constant

The attenuation constant (o) calculated by the power lost method for the fundamental
{n = 0) component of the wave is given by?

8 { K, (kib) 1®
T\, (e Ky Ueg) — 1 (kgtt) Ko (eah)$

[188 [CIIRVIS RS

{KU’*' (st} « [ (kott, kb)Y - 13 (koa) . g (Kot Kob)

)

b

Ty () Ko () ©

o (nepersim) = —— - —
fo(KEGRD) 2 . "
I}i b“{ > ,\,é + b Ky (kib) K, (k B) — K} (l(]_z,)}
{]1 (kob) 4 i) K, (kzb)} o LAz,
b —ay I,(ka) -
- T ITUTEJ)} 4ﬂ0032n/}—‘ (16
where
. U (15 (ka) 20, (ko) T (g .
I o, ki) = b “ {(—_%CLTW - ki?i‘-’*("“("t') — It (/\'211)}
1, (13 Cksb) 24y (had) 1, (kb
3 {_ﬁ‘) - '“'*'Z’,;z;z;f WD (kzb)}:] (164)
and
gy | Lo [ KBS CRab) | 2K, (keb) Ky (kb)Y o,
sl k) = | 5t { LD o - K2 ()}
1o (K (ko) | 2K, (haa) Ky (kped)
_.,.za { oazz e k2a21 & *Kf(kga)}] 16 5)

() As 8 0, ie., ehae = €2y I.¢.. the modulated structure tends towards a wniform
structurs, o is determined with the understanding that the transverse propagation con-
stants k, and k, and the axial propagation constant § have the values corresponding
to the values of a structure with uniform spacing bul with the same values of b and a.

(i) As b — abut (b — &)+ 0, i.e., for small depth of corrugation, the terms involving
(b — a)fk, in (16) can be neglected and hence « reduces to
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0.08
r é =o.crl

T 0.06 #0085
§ T 0.2
= ‘ .08
3 o 04‘, 0.4
0.0/ , N _ ‘ . , ,
1 2 3 4 5 6 7 8
2mz/L —

G, 13 (b). @ vs 2rz/L for different ds for €° = 1-523.

Ky (J5) !
188 ey T {10 B By Get) = TRV K, (kab)}
;e(;gm) = (K Uha0) [ (kaa, keb) A I3 (k) & (ko ko))
IR L e
—-a b
b 18 (kya)
N L1 CL R { Flhya, kob) - X (,: a)g(kgn, kb}}
]\11 (b} + TTK k) }

(n

(i) The variation of  vs 2nz/L (Fig. 13) shows that d,., — a,,, is much less for lower
values of § =002, 0-04 than for higher values of &,

(i) o, for all values of & is attained at 2nz/L =n.

(ili) @, (3% 0) (Table I) calculated by considering values of « at 1/16th interval
over ong period is greater than o (§ = 0).

(iv) ay, (8 0) > o (§ = 0) is justified since
P Py
Fi% @ =0)>5% (6> 0)
The outside medium, being air, islossless. Hence the loss for the guided wave
is contributed by only the. physical properties of the moduiated medium.

(v} For shailow grooved stevstures o vs 2nz/L (Fig, 14) shows that (Table ) ay~2
is higher compared to that given in Table I,
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Table I
1> (nEPELS CTN)

= 1082 [a (9 = 0) - 0-001 nepersiem)]

5 -02 -04 06 08 01
a 00582 0-0565 0-0501 0-049  0-0481
o —a  DOST2 00555 0-0491 0-0436  0-04707

.

& = 1+523 fu (3 = 0) == 0-002 nepersjent]

0-0494. 0-0481 0-0476 004758 0-04757
00

U 0-0474 00461 9-0456 0-04558

Table 11
a,, — ¢ for shallow grooved structures

¢ = 1062

& 0-02 004 0-06 0-08 0-1

Gy~ @ 0-5512 0-5424 05396 0-5308 0-5292

ay—a 07931 07927 0-7915 0-7901 0-7891

Since the corrigated line approaches Sommerfeld line as b — @, ohmic dissipation giving
rise to Joule heat foss is mainly responsible (radiation loss being neglected in both the
cases) for supporting surface waves, it is reasonable to expect that

a(shallow grooved line) > a (b > 4)

b-a

1. Surface impedance
The real and imaginary paris of surface impedance are given in the following dimension-
less forrm3

2mb R, bib

1 N ”
i Z :?(Nz') [alb]n 089 (a2 b® 4 b2 5?2 — byb arc tan ab (18 a)
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<

(185)

8
1.0
T ] 5= 0.02
5 o S _o.04
< . [
= = —~——0.08
¥ 06 =02
0.4 v L L 1 L L L
0 1 2 3 4 5 6 1 8
2wz /L —=
FiG, 14 (b). a vs 2az/L for different ds for e®==1-523.
and
2nh X, b.b s psvisy
TZ=" i:alb are tan ﬂ? bbb 1o 0°89 (a2 b - b3 b-)”-:’
where ky =g, —ib, and b, = 2
G = T — o2~ k) & V= TR A py,

The radial field desay and attenuation depend respectively on X, and R, which are

inflienced by 8. Figure 15 provides design data for developing a structure characte-
rised Dy a rapid radial fleld decay and with minimum attenuation. ¥t is desirable to
have high positive surface reactance (inductive) and low surface resistance. X, =1, (Z)
R, = Re(Z) are (5, &) and lozation (2) along the structure, hence the average values
are plotted in Fig. 15. The average values have been calculated by considering the vajues

of the parameters at 1/16 interval over a whole period.
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Fi6. ls(a—d) (@) Ry(u/Zovs dfor ¥ =1-062 and e =1-523. (B) a,nimysd for e =1-523
and ¢ =1-062; (c) Xjay/Zo Vs & for & =1-062 and & =1-523; (d) Z,(,y/Z vs & for
€ = 1-062.

We conclude from Fig. 15 that

(i) For structure with ¢® == 1-062, the design should be for § = 0:08 or 01 so that
high rate of radial field decay with low attenuation can be obtained.

(i) For structure with & = 1-062, the design should be for § = 0:06 or 0*1.

12. Measurement of radial field decay

Radial field decay for several modulated and a uniform corrugated structures was
measured with a monopole probe (Fig. 16) and the results are compared with theory
(Fig. 17). In the second and fourth illustrations of Fig. 17, the experimental (00) and
theoretical curve coincide for § = 0, whereas, for & = 004 there is a slight divergence
between the two curves.

Woe conclude, that for modulated structures, the rate of radial field decay is faster
than for uniform structure.
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i Fio. 16. Photograph
of the structure,

A. - a’L______'-

13. Stability of the surface wave mode

The stability charts (Fig. 18) for structures with € = 1-062 for § = 008 and 0-25 have
been prepared with # as a parameter by using the equation (10) with the aid of a 360
IBM computer. (The Flow Chart is not reported).

The stable solutions corresponding to modulated propagating waves are associated
with the f-values hounded ascording to the following inequality relation

p<B<p+1(p=0123). (20)

The regions (hatched) which do not satisfy (20) correspond to the unstable solutions
of (10). The unstable solutions are associated with the non-propagating or damped
waves. The values of f are real within the shaded regions (unshaded), whereas they are
complex within the unstable regions. As = f(¢,8) and < =jf(s,b,4) and §
determines the propagating or non-propagating nature of waves, the stability charts
which determine k, can be used for the design of proper modulated structures which
support strongly bound surface waves,

The location of the mode supported by the experimental structure e = 1062, 8 =
0-08 is shown in Fig. 18 (4). The experimental point @ lies within the unshaded region
p =3 and § = 4, thus indicating that the mode supported by the structure is stable.
It is found that the modes supported by other experimental structures with e, = 1-062

and § = 0-06, 0°04 and 0-1 also lie in the stable regions of stability charts which are
not reported.

Figure 18 (b) shows stability diagrams for the strecture with ¢ == 1-062 and § = 0°25.
Similarly, the stability diagrams have also been drawn for other structures with § = 008
and 0-25 for which no experimental structures were made.
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Fig. 17, Variation of power with radial distance. O O Experimental, —-— Theoretical.

The following remarks regarding the stability charts are of interest.

" (i) The curves separating the stable and unsiable regions in some cases cross over
each other, {or example, ncar the points (0, = 440, 480, 580, elc. (Fig. 18(a)

where
INTAN kT 3, g%
00*——(7 |:e° = Eﬂ) :I "iéa(] + 4>

(i) The area of the stable regions increase as the vajue for f increases. There is
also a tendency for the separation to insrease between (wo adjacent cross-over
points as f increases. As a cvomsequence of increase in f, the waves become
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more strongly bound. Henve, it may be said, that the structure for which the
wave is most strongly bound will exhibit the largest area of stable region with
widely separaled cross-over points in the stability chart. Hence, the usefulness
of the stabifity chart for designing a space modulated structure is obvious,

14, Basic assumptions and their limitations

The theoretical derivation of g for space modulated structures is based on the following
assymptions.

(i) The nonuniformiy corrugated metallic siructure is considered as a conducior
coated with a dielectric whose dielectric constant varies coﬂnusmdallv in the
direstion of propagation.

(i) & < 1. Thishelps in truncating the series ford, (n = 1,2, ...) which is involved
in 2[0] and hence for f.

{ii) For deriving the profile equation for the design of a practical structure, small
and large argument approximations [or the Bessel functlions have been intro-
duced from practical considerations. This may impose some Jimitations on the

accuracy, of the results. But considering the accvracy which can be attained,
in practice, in fabricating the structure it is considered that the argement

approximations are valid for all practical purposes.
(iv) The simulated dieleciric medium is considered fossiess in deriving f.

W

In deriving the magnitudes of the spatial harmonics, fr and hence the Fourier
gap coefficients ¢, (f) is considered to be a slowly varying function over a period
of the modulation cycle, which leads to simplification of the expression for f, ().

Z

(vi) Thecoating thickness of the equivalent dislectric isconsidered ttesame as (b — 4).

(vi) In deriving f,, the field outside the siructure is considered to be pure suiface
wave field and the effect of diffraction is ignored. The assumption, however,
is justified in view of the higher value of £, and hence a lower value for v,.
This is conferred by the experimental measurement of radial field decay.

15, Conclusions
(i) Cosinusoidal modulation of spacing between discs of circular cylindrical metallic
corrugated structures lead to more strongly bound stable surface waves.

(ii) Corrugated metallic structures may be considered as equivalent to a conductor
coated with equivalent dielectric whose dielectric constant is a function of the
spacing between discs, radius of the discs and radius of the central supporting
rod,

LLSc.—3
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(iii) The corrugated modulated region provides inductive reactance which helps in
supporting surface WAaves,

(w) The at.e.mauon constant de"re,ases w1th increase in the value of 5.

(v) The power flow outside the modulated structure with respect to the tolal power
flow desrcases with increasing 8.

16, Aékh;ﬁlédgeméﬁf .
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