st. Sci. 62 (A). Mar 1980, Pp. 71-81

ian Ins
3, tndian of Science, Printed in India.

7 Tndian Institute

A computational algorithm for the verification of tautologies in
propositional calculus

5. V. RANGASWAMY*, N. CHAKRAPANI* aup V. G. TIKEKAR**
udian Institute of Science, Bangalore 560012, India.

feczived on March 7, 1980.

Abstract

A eomputational algorithm (based on Smullyan’s analytic tableau method) that verifies whether a given
welldormed formula in propositional calculus is a tavtology or not has been implemented on a DEC
Spstem 10. The stepwise refinement approach of progrom development used for this implementation
forms the subject mattar of this paper. The top-down design has reselted in a modular and reliable
program package. This computational algorithm compares favourablv with the algorithm based op
the well-known resolution principle used in theorem provers.

Key words : Tautology, propositional calculus, analytic tableau, top-down design, stepwise refinement,
Biscal,

1 Introduction

A proof procedure, due to Smullyan?, that tests whether a given well-formed formula
(ufl) in Propositional Calcnlus (PC) is a tautology is known as the analytic tableau
method. This paper presents the design and implementation details of a computational
algorithm based on the analytic tableau method. The program is developed using the
top-down stepwise refinement technique? % * and is coded in Pascal®. The program is
implemented on 2 DEC System 10. ¥t comprises 15 procedures and has about
600 lines of Pascal code with a memory requirement of 5K words. The readability
aed modularity of the program have been greatly enhanced due to the structured
programming approach followed in its design.

‘: School of Automation
Department of Applied Mathematics
7

72 S. V. RANGASWAMY et al

2, Tableau method

The analytic tableau method, a variant of the semantic tableau method of By,
is an elegant and cfficient proof procedure for PC. The analytic tableau for a gy
wif is an ordered dyadic tree, whose root is the negation of the given wif which is to by
tested for its validity. For explaining the method of generation of the tableau for 4
wif requires the notions of subformulas, conjugates,and signed formulas, We briefly
present the definitions of these notions in the sequel.

2.1. Definitions
(@) well-formed formula (wff)

A wi in PC is defined recursively as follows :

(i) A propositional variable is a wff, also referred to as an atomic wff.
(i) If 4 is a wif, so is ~ 4.
(iti) If 4, B are wffs, so is (4bB), where b is a binary connective.

(b) immediate subformula

(i) Atomic formulas have po immediate subformulas.
(@) ~ X has X as an immediate subformula and no others.

(iif) XbY, where b is a binary connective, has X, and Y as immediate sub
formulas and no others.

(c) subformula

Y is a subformula of Z if and only if there exists a finite sequence starting with Z
and ending with Y such that cach term of the sequence except the first &5 an
immediate subformula of the preceding term.

(d) signed formula

A signed formula is an expression TX ot FX, where X is a formula. We normally
read TX as “ X is true” and FX as * X is false *.

(e} conjugate
The conjugate of a signed formula is the formula obtained by changing the sige.
Thus the conjugate of TX is FX, and the conjugate of FX is TX.

2.2, Analptic tableau

Axn analytic tableau for a wif X is an ordered dyadic tree, whose nodes are formulas and
whose root is X. The tableau is generated using one of the following four pairs of

VERIFICATION OF TAUTOLOGIES 73

rules ¢
{ () If ~Xis true, then X is false.

() I ~X is false, then X is true.

2 () If XA Y is true, then both X and Y are true.
() ¥ XA Y is false, then either X is false or ¥ is false.

3 () If XV Yis true, then either X is true or Y is true.
@ If XV Y is false, then both X and Y are false.

4 () If X= Y is true, then either X is false or ¥ is true.

(i) If X = Y is false, then simultaneously X is true and ¥ is false.

The above mentioned rules may be represented in signed formula notation as follows :

L T~X L F~X
L (1) ~—F‘j(— (11) TX

. TXAY . FXAY

20~y O 7% 77y

TY

. TXVY . EXVY
0 w7y) —Fx
FY

L TX =Y .. FX=Y

& O ZrTTY @ -
FY

ifat any point in the tableau, a formula of the form given in the numerator of any rule
appears, then the tableau can be extended on that particular branch by the formula(s)
shown in the denominator. In case the denominator contains the ° |7 symbol, then
?tis an indication of the fact that the tableau has a branch at that point. The tableau
sextended by repeated applications of the rules until no more extensions are possible.
A branch of a tablean is closed if and only if it contains some signed formula and its
conjugate. The tableau is said to be closed if and only if every branch in it is closed.
A proof of an unsigned wif X in the system corresponds to showing that there exists
a closed tableau for FX,

The method of proof employing the analytic tableaun is shown to be both consistent
and complete by Smullyant. The system is consistent since any formula provable by
ﬂlﬁ tableau method is a tautology and the root of any closed tableau is unsatisfiable.
’Ih*isls;;’tem is complete since for every tautology X there exists a closed tableau with
oot FY, - . T o . o

[ife~2

74 S. V. RANGASWAMY et al

3. Program implementation

The program is developed using the top-down stepwise refinement technique®, The
program logic and the various data structures used in these procedures are presented
in the sequel*, The problem statement is identified as step 1.

Step 1

Develop a program in Pascal to test whether a given wif in PC is a taatology, using
the analytic tableau method.

A given formula has to be tested for its well-formedness, before we can verify whether
it is a tautology or not; it may contain operators other than and, or, not, and implies and
hence we veed to rewrite the formula into an equivalent form containing only these
four operators. These two requirements suggest the step 2 as a refinement of step 1.

Step 2
begin
2.1 Preprocess the input to epable further processing

2.2 Analyse the given wil using the tableau method to verily its validity.
end

The method of analytic tableau successively splits a given formula into its subformulas
in an effort to come up with a contradiction. At every stage of computation, it
becomes necessary to locate the primary operator in the formula in order to split the
given formula into its constituent subformulas. For ease and elegance of computation,
the well~1§nown postfix Polish notation is'better suited than the conventional infix
notation. This consideration along with the need to check the well-formedness
of the formula corresponds to the actions in step 2.1. Step 3 presents these details as2
refinement of step 2.

Step 3
begin

3.1 Accept a formula from input device.

3.2 Jf operators other than and, or, not, and implies appear in input
then reduce the formula into an equivalent formula containing only these
four operators.

3.3 convert the formula into postfix Polish notation and check for the well-
formedness of input.

* The notation used in stepwise refinement utilizes Pascal-like constructs for depizting control flow.

VERIFICATION OF TAUTOLOGIES 75

3.4 Generate the tableau with the negation of the given formula at its root
if all branches close
then given input wif is a tautology
else given input wif is not a tautology;

end

The steps 3.1 through 3.4 correspond to the preprocessing step and the specifications
for these steps are complete. Each of these steps has been coded as a Pascal procedure.

The procedure for input accepts a given wif from a terminal as a string of characters.
Every character read from the terminal is appended to a string named ° formula *
in the procedure. The end of input is signalled by a blank character. The input wif
is restricted to a maximum Iength of 80 characters. Any error conditions detected
during input are reported to the user.

The input wif in the array ‘ formula ’ is passed on to the procedure that tests whether
the given formula contains the equivalence, nand, or nor operators. The computations
in this procedure are presented in step 4 which is a refinement of step 3.2%.

Step 4 {refinement of step 3.2}
begin

for every operator in the formula do
case operator of

<« 1 rewrite (~opdl v opd2) A (~ opd2 v opdl);
1+ rewrite ~ (opdl A opd2);

1 ¢ rewrite ~ (opdl v opd2);

others : skip

end
end

The wif equivalent to the given wff generated in the previous step is processed by
the postfix procedure to yield the postfix version of the wff. Conversion to postfix
from infix notation is done using the ° shunting yard model” algorithm due to Dijkstra.
This postfix version of the wif is tested to ensure the well-formedness of the given input.
The logic of these procedures is presented in step 5.

 The stepwise refinement steps (step 1, step 2, . ..) correspond to completely refined versions. Io
oIt presentation, to avoid writing down the same details, in successive steps, we provide only the newly
wefited ssction. E.g., step 4 is a refinement of step 3-2; this means that steps 3-1, 3°3 and 34
Temain unchanged.

7. S. V. RANGASWAMY et al

Step 5 {refinement of step 3.3}
begin
for every character in the formula do
begin if (character = operator)
then begin
while topstack operator priority 2> current operator priority
do push topstack operator to oulput;
push current operator into stack
end
else begin
if (character = “ ()
then increase priority of all operators by the standard value
else
if (character =)")
then decrease priority of all operators by the standard value
else push in ouput area
end;
if stack not empty
then pop contents of stack and push them into output
end;
Jor every character in the formula do
case character of
Operands : associate weight — 1;
Unary operator : associate weight 0;
Binary operator : associate weight 1
end;
if sum of weights = — 1
then formula is well-formed
else formula is not well-formed;
end.

This completes the preprocessing of input. Step 3.4 pertains to the processing
based on the tableau method. Before we embark on the stepwise refinement of
this step further, we need to decide about the data structures and control flow organi-
zation. The tableau is an ordered dyadic trec and a path in the tree consists of an
ordered set of Formulas. The method requires the testing of every path to find out
whether it is closed and hence there is no need to maintain the complete tablean in the
memory. For reasons of efficient core utilisation, only one path of the tableau is
maintained at a time in the memory. An array is used to hold all the formulas in 2
path in contiguous locations as the processing on these formulas is strictly sequential
An array of pointers to this *formula array * is maintajned to identify the beginning
of every formulz in this data structure. To enable the generation of a path in the
tableau in a systematic fashion, an array indicating the parent formula of a given sub-

VERIFICATION OF TAUTOLOGIES 77

formula is also maintained. The rules defining the construction of the tableau are
coded as individual procedures. The main procedure is recursively invoked to enable
the complete generation of a path. Once a path is completely constructed, another
procedure scans all the signed atomic formulas to determine whether the path is closed.
The main procedure provides the necessary pointers to access atomic formulas in the
array, thereby avoiding searches to locate them. 1If a path is closed, the main proce-
dure tests whether there are any unexplored paths in the tableau and if so, proceeds
with the next path. A stack of branch pointers is maintained so that the various
paths in the tableau are scanuned in a left-to-right manner. If any open path (a path
that is not closed) is detected, the processing is terminated with a message that the
given formula is not a tautology. If all the paths are closed in the tableau, then the
program declares that the given formula is a tautology. With the above mentioned
control strategy and data structure organization as the base, we present below the refine-

ment of step 3.4 in steps 7 and 8.

Step 7
pbegin prefix an F to the wif in postfix notation.
repeat
repeat
for every formula do
case primary operator of
not : change sign of formula;
and : separate left operand (1hs) and right operand (rhs); ¢ andprocess *;
or : separate lhs and rhs; °orprocess’;
implies : separate 1hs and rhs; ‘implyprocess’

end;

until path is complete;
collect ail atomic formulas in the path;
if both TX and FX exist in this collection
then declare path closed
else declare path is open and set flag;
until nomorepaths or flagset;
if noflagset
then declare given wil is a tautology
end

Step 8 {refinement of ‘andprocess’}
begin
if sign is 7'
then extend current path with two subformulas T(lhs) and T(rhs)
else begin
set a flag to indicate branch at that point and stick the pointer; -
if first traversal then extend current path with F(1hs) !

78 5. V. RANGASWAMY ef al

else begin
extend current path with F(ths);
pop up branch stack
end
end
end

The refinements of steps ¢ orprocess ” and implyprocess * are similar to step 8.

4. TIllustrative examples

We provide below sample outputs generated by the program for two specific inputs,
Every path is listed starting from the origin, for easy perusal; the actual implemen-
tation does not generate every branch from the origin. The first input wif is 2
tautology and the second input wif is not a tautology?.

EXAMPLE 1
input : (PA (QKR)) C (PAQXK(PAR))
output :

GIVEN FORMULA IS WELL-FORMED
FPQRKAPQAPRAKC
FPQAPRAK
TPQRKA
FPQA
TP
FP
FQ

BRANCH CLOSED
FPQRKAPQAPRAKC
FPQAPRAK
TPQRKA
FPQA
TQRK
FQ
FP
TQ
TR

* For purposes of computer implementation A, o]
are used fo represent the operators o, o,
not, and implication Fegspectively, KN 34 to zep one !

VERIFICATION OF TAUTOLOGIES 9

BRANCH CLOSED
FPQRKAPQAPRAKC
FPQAPRAK
TPQRKA
FPRA
TP
FP
FR

BRANCH CLOSED
FPQRKAPQAPRAKC
FPQAPRAK
TPQRKA
FPRA

BRANCH CLOSED
GIVEN FORMULA IS A TAUTOLOGY -

EXAMPLE 2

input : (PAQ)C(PKQ)

output :

GIVEN FORMULA IS WELL-FORMED
FPQAPQKC
FPQK
TPQA
FP
TP

BRANCH CLOSED
FPQAPQKC
FPQK
TPQA
FP
TQ

BRANCH OPEN

HENCE NOT A TAUTOLOGY

S Remarks and conclusions

s computational algorithm has.not so far been used in theorem-prbvérs; most of
te wellknown implementations of theorem-provers ‘make wse of fhe resolution

80 S. V. RANGASWAMY et al

principle’. The resolution-based systems basically require that the wif be presented i
clause form; normally a wif is not available in clause form and the task of converting
a wif into clause form is by itself of exponential complexity, The analytic tablesy
method does not have any such special input requirements.

The resolution method requires that the empty clause be generated from the given
clauses by successively resolving them. As there is no algorithmic way to decide
which of the given clauses yield the empty clause by resolving, refinements to resolution
by means of heuristics aim at reducing the searches through blind alleys. In contrast,
the analytic tableau method, essentially breaks a formula into its constituents (sub-
formulas); the process is a systematic one and terminates much faster compared to
the resolution technique.

The method of Davis and Putnams® is apother method used in one of the efficient
automatic theorem-provers. This method is based on the four rules—tautology rule,
one-literal rule, pure literal rule and splitting rule. This method also requires that the
given formula be in conjunctive normal form so that any of the four rules may be
applied. In the method of analytic tableau there is no need for a given wff to be in
conjunctive normal form. Also at each step of the generation of the tableau, the
principal connective of the signed formula of a node enables the determination as to
which of the eight rules is to be applied; in the method of Davis and Putnam an
analogous determination as to which of the four rules is to be applied is not possible.

The implementation of the tablean method ensures that the number of branches of
the generated tableau is minimum by judiciously ordering the subformulas generated
at each step. The depth-first approach of generating each path in the tableau, in the
left-to-right order, results in reduced main storage requirements for the program.
Each rule of this method has been coded as a procedure resulting in a neatly structared
program ephancing its readability and modularity.

6. Acknowledgements

We express our gratitude to Professor R. Narasimhan, Director, National Centre for
Software Development and Computing Techniques, Bombay, for providing the neces-
sary computational facilities to enable this implementation.

References

I SmurLyaw, R M. Firstorder logic, Springer-Verlag, 1968.

2. W, N, Program development by stepwiss refinement, CACM, 14, 4, 1971,

221-227. ’)

3, Doestaa, B W. Notes on structuved progyamming, in Structred programming by
- Dahl, Dijkstra, and Hoare, Academic Press, 1972.

VERIFICATION OF TAUTGLOGIES 81

Structured programming and problem solving with Algol-W, Prentice~

¢ Kmwniz R.B.

4 Kow Hall, 1975.

5 Jeneey, K. AND Pascal : User Manual and Report, Fecmre Noses in CS, 18,

i wixm. X Springer-Verlag, 1974.

< Ferw, B W. The foundations of mathematics, North Holland, 1959.

« Roason, J. A. A machine-oricnted logic based on the zesolution principle,
JACM, 12, 1, 23-41,

A computing procedure for quantification thzory, JACM, T»

4, Davis, M. aND
1960, 201-215,

Putnam, H.

