
,, India lnst. Sci. 62 (A). Mal- 1980, PP. 71-81 
?, lnstituie of Scicnce, Printed in India. 

A computational algorithm for the verification of tautologies in 
pp.n'tional calculus 

S. v. RANGASWAMY", N. CHAKRAPANI* AND V. G. TIKEKAR** 
bdian Imiitute of Science, Banpalore 560012, India. 

*;ived on March 7, 1980. 

Abstract 

I mmputational algorithm (based on Snlullyan's analytic lablrau mcthod) that varifies wheth-er a given 
ueUformed fonnula in propositional cz?lculus is e taxtology or not Ihs been implcmented on a DEC 
Smm 10. The stepwise refinement appmacb. of pr0g.m.m developlncnt used for this implementation 
form the subject mattzr of this paper. T?.e top-down design has resulted in a modular and reliablc 
prcgram package. This computational algoritlhm compares favourablblv with B e  algorithm based rn 
the weU-known rcaolntion principle used in thcorem provers. 

Ew wwds : Tautology, propositional calculus, analytic tableau, topdown design, stcpwise refinement, 
k a l .  

A proof procedure, due t o  Smullyanl, that  tests whether a given well-formed formula 
(wffj in Propositional Calculus (PC) is  a tautology is known as the analytic tableau 
method. This paper presents the design and  implementation details of a computational 
algorithm based ou the analytic tableau method. The program is developed using the  
to~down stepwise refinement technique% % 4 and is coded in Pascals. The program is 
implemented on a DEC System 10. lit comprises 15 procedures and  has about 

lines of Pascal code with a memory requirement of 5K words. The readability 
and modularity of the program have been greatly enhanced due to  the structured 
PrQgramming approach followed in its design. 
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2. Tableau method 

The analytic tableau method, a variant of the semantic tableau method of B~~;s., 
is an elegant and efficient proof procedure for PC. The analytic tableau for a eiven 
wff is an ordered dyadic tree, whose root is the negation of the given wff which is to be 
tested for its validity. For explaining the method of generation of the tableau g, , 
wff requires the notions of subformulas, conjugates,and signed formulas. We bfiefip 
present the definitions of these notions in the sequel. 

2.1. Definitions 

(a) well-formed formula (wf l  

A wff in PC is defined recursively as follows : 
(i) A propositional variable is a wff, also referred to as an atomic wff. 

(ii) If A is a WE, so is -A. 
(iii) If A, B are wffs, so is (AbB), where b is a binary connective. 

(b) immediate subformula 

(i) Atomic formulas have no immediate subformulas. 

(iff - X has X as an immediate subformula and no others. 

(iii) B Y ,  where b is a binary connective, has X, and Y as immediate sub 
formulas and no others. 

(c) subformula 

Y is a subformula of Z if and only if there exists ca finite sequence starting with Z 
and ending with Y such that each term of the sequence except the first is an 
immediate subformula of the preceding term. 

A signed formula is an expression TX or FX, where Xis  a formula. We normally 
read TX as ' X is true' and FX as ' X is false '. 

(8) conjugate 

The wnjugate bf a signed formula is the formula obtained by changing the s ip  
Thus the wnjugate of TX is FX, and the conjugate of FX is TX. 

An analytic tableau for a WE X is an ordered dyadic tree, whose nodes are formulas 
whose root is X. The tableau is generated using one of the following four pairs of 



rules : 

1 (i) If N X is true, then X is false. 

(ii) If N X is false, then X is true. 

2 (i) If X A  Y is true, then both X and Y are true. 

(ii) ~f X A  Y is false, then either X is false or Y is false. 

3 (i) If X V  Y is true, then either X is true or Y is true. 

(ii) If X V  Y is false, then both X and Y are false. 

4 (i) 1f X a  Y is true, then either X is false or Y is true. 

(ii) If X+ Y is false, then simultaueously X is true and Y is false. 

 he above mentioned rules may be represented in signed formula notation as follows : 

1. (i) kX (ii) F*x 
FX 

F X A  Y T X  A Y (ii) 2. (i) --- T X  F X l  FY 
T Y  

F Y  
Eat any point in the tableau, a formula of the form given in the numerator of any rule 
Bppeiils, then the tableau can be extended on that particular branch by the formula(s) 
s'oown in the denominator. In case the denominator contains the ' I ' symbol, then 
it is an indication of the fact that the tableau has a branch at that point. The tableau 
is extended by repeated applications of the rules until no more extensions are possible. 
A branch of a tableau is closed if and only if it contains some signed formula and its 
wnjugate. The tableau is said to be closed if and only if every branch in it is closed. 
A proof of an unsigned WE X in the system corresponds to showing that there exists 
a d0ne.d tableau for FX. 

l'b method of proof employing the analytic tableau is shown to be both consistent 
@d Wpletplete by Smullyanl. The system is consistent since any formula provable by * a k a u  method is a tautology and the root of any closed tableau is unsatisfiable. 
Th s Y s b  is complete since for every tautology X there exlsts a closed tableau with 
mot FX. 



3. Program implementation 

The program is developed using the top-down stepwise refinement technique-. ~ h ,  
program logic and the various data structures used in these procedures are presented 
in the sequel*, The problem statement is identified as step 1. 

Step 1 

Develop a program in Pascal to test whether a given wff in PC is a tautology, using 
the analytic tableau method. 

A given formula has to he tested for its well-formedness, bcfore we can vcrify whether 
it is a tautology or not; it may contain operators other than and, or, not, and implies and 
hence we need to rewrite the formula into an equivalent lorm containing only these 
four operators. These two requirements suggcst the step 2 as a refinement of step 1. 

Step 2 

begin 

2.1 Preprocess the input to enable further processing 

2.2 Analyse the given wff using thc tableau method to verify its validity 
end 

The method of analytic tableau successively splits a given formula into its subformuh 
in an effort to come up with a contradiction. At every stage of computation, it 
becomes necessary to locate the primary operator in the formula in order to split the 
given formula into its constituent subformulas. For ease and elegance of computation, 
the well-known postfix Polish notation is" better suited than the conventional infix 
notation.' This consideration along with the need to check the well-fotmedness 
of the formula corresponds to the actions in step 2.1. Step 3 presents these details as a 
refinement of stcp 2. 

Step 3 

3 1 Accept a formula from Input devlce. 
3.2 If operators other than Md, or, not, and zmplies appear In input 

then reduce the formula into an equwalent formula containing only thefe 
four operators. 

3 . 3  convert the formula into postfix Polish notation and check for the we. 
formedness of input. 

* We notation used in stepwbe refimment utilizes Pascallike co~ffmcts for dcpdng ~0ntnJl hW. 



3.4 Generate the tableau with the negation of the given formula at its root; 
if all branches close 
then given input wff is a tautology 
else given input wff is not a tautology; 

end 

The steps 3.1 through 3.4 correspond to the preprocessing step and the specifications 
for these steps are complete. Each of these steps ha8 been coded as a Pascal procedure. 

The procedure for input accepts a given wff from a terminal as a string of characters. 
Every character read from the terminal is appended to a string named ' formula ' 
in the procedure. The end of input is signalled by a blank character. The input wff 
is restricted to a maximum length of 80 characters. Any error conditions detected 
during input are reported to the user. 

The input wff in the array ' formula ' is passed on to the procedure that tests whether 
thegiven formula contains the equivalence, nand, or nor operators. The computations 
in tbis procedure are presented in step 4 which is a refinement of step 3.2t. 

Step 4 {refinement of step 3.2) 

begin 

for every operator in the formula do 
case operator of 

* : rewrite (- opdl v opd2) A (- opd2 v opdl); 
t : rewrite - (opdl A 0pd2); 
$ : rewrite - (opdl v 0pd2); 

others : skip 

end 
end 

The wff equivalent to the given WE generated in the previous step is processed by 
the postfix procedure to yield the postfix version of the wff. Conversion to postfix 
&om infix notation is done using the ' shunting yard model' algorithm due to Dijkstra. 
'lhis post& version of the wff is tested to ensure the well-formedness of the given input. 
The logic of these procedures is presented in step 5. 

t The stepmise re5ement steps (step 1, step 2, . . .) correspond to completdy reiined versions. lo 
Pmntat~on, to avoid writing down tbe same details, in mccexsive steps, we provide only I l e  newly 

I C f h d  Wtion. Eg., step 4 is a 6 e m e n t  of step 3.2; this means that steps 3.1, 3 .3  and 3.4 
~anchanged. 



Step 5 {refinement of step 3.31 
begin 

for every character in the formula do 
begin ZJ (character = operator) 

then begm 
while topstack operator priorltj 3 current operator pnonty 
do push topstdck operator to oulput; 
pu5h current operator Into stack 
end 

else begin 
if (character = ' ( ' ) 
then increase priority of all operators by the standard value 
else 
$ (character = ' ) ' ) 
then decrease priority of all operators by the standard value 
else push in ouput area 

cnd; 
i/ stack not empty 
then pop contents of stack and push thcrn into output 

end; 
for every character in the forluula do 
case character of 

Operands : associate weight - 1 ; 
Unary operator : associate weight 0; 
Binary operator : associate weight I 
end; 

if sum of weights = - 1 
then formula is well-formed 
else formula is not well-formed; 

end. 

This completes the preprocessing of input. Step 3.4 pertains t o  the processing 
based on the tableau method. Before we embark on the stepwise refinement of 
this step further, we need to decide about the data structures and control flow organi- 
zation. The tableau is an ordered dyadic tree and a path in the tree consists of an 
ordered set of formulas. The method requires the testing of every path to h d  out 
whether it is closed and hence there is no need to maintain the complete tableau in the 
memory. For reasons of efficient core utilisation, only one path OF the tableau is 
maintained at a time in the memory. An array is used to hold all the formulas in a 
path in contiguous bcations as the processing on these formulas is strictly sequential. 

array of pointers to this 'formula array ' is maidabed to identify the beginnhg 
of every formula in this data structure. To enable the generation of a path in the 
tableau in a systematic fashion an array indicating the parent formula of a given sub- 
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formula is also maintained. The rules defining the construction of the tableau are 
coded as individual procedures. The main procedure is recursively invoked to enable 
the complete generation of a path. Once a path is completely constructed, another 
procedure scans all the signed atomic formulas to determine whether thc path is closed. 
~h~ procedure provides the necessary pointers to access atomic formulas in the 
array, thereby avoiding searches to locate them. 1C a path is closed, the main proce- 
dure tests whether there are any unexplored paths in the tableau and if so, proceeds 
with the next path. A stack of branch pointers is maintained so that the various 
paths in the tableau are scanned in a left-to-right manner. If any open path (a path 
that is not closed) is detected, the processing is terminated with a message that the 
piven formula is not a tautology. If all thc paths are closed in the tableau, then the 
program declares that the given formula is a tautology. With the above mentioned 
control strategy and data structure organization as the base, we prescnt below the refine- 
ment of step 3.4 in steps 7 and 8. 

Step 7 
begin prefix an F to the wff in postfix notatlon 

repeat 
repeat 

for every formula do 
case primary operator of 

not : change s ~ g n  of formula; 
and : separatc left operand (Ihs) and rlght operand (rhs) ; ' andprocess ' ; 
or : separate lbs and rhs ; ' orprocess ' ; 
implies : separate 1 hs and rhs: ' lmplyproccss ' 

end; 

until path is complete; 
collect all atomic formulas in the path; 
if both TX and FX exist in this collection 
then declare path closed 
else declare path is open and set Aag; 

until nomorepaths or flagset ; 
if noflagset 
then declare given wff is a tautology 

end 

3ep 8 {refinement of 'andprocess'} 
begin 

5f sign 1s T 
then extend current path wlth two subfomulas T(1hs) and T(rhs) 
else begin 

set a flag to indicate branch at that point and stack the pointer ; 
if first traversal then extend current path wlth F(lhs) 



else begin 
extend current path with F(rhs); 
pop up branch stack 

end 
end 

end 

The refinements of steps ' orprocess ' and ' implyprocess ' are similar to step 8. 

4. Ulnstrati~e examples 

We provide below sample outputs generated by the program for two specific inputs. 
Every path is listed starting from the origin, for easy perusal; the actual implemen- 
tation does not generate every branch from the origin. The first input wff is a 
tautology and the second input wff is not a tautologyt. 

EXAMPLE 1 

input : (PA (QKR)) C ((PAQ)K(PAR)) 

output : 

GIVEN FORMULA IS WELL-FORMED 
FPQRKAPQAPRAKC 
FPQAPRAK 
TPQRKA 
FPQA 
n 
FP 
FQ 

BRANCH CLOSED 
FPQRKAPQAPRAKC 
FPQAPRAK 
TPQRKA 
R Q A  
TQRK 
FQ 
FP 
TQ 
TR 
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BRANCH CLOSED 
EPQRKAPQAPRAKC 
FPQAPRAK 
TPQRKA 
EPRA 
TP 
FP 
FR 

BRANCH CLOSED 
FPQRKAPQAPRAKC 
FPQAPRAK 
TPQRKA 
FPRA 
TQRK 
FP 
FR 
TQ 
TR 

BRANCH CLOSED 
GWEN FORMULA IS A TAUTOLOGY 

EXAMPLE 2 
input : (F'AQ)C(PKQ) 
output : 
GIVEN FORMULA IS WELL-FORMED 

FPQAPQKC 
FPQK 
TPQA 
FP 
TP 

BRANCH CLOSED 
FPQAPQKC 
FPQK 
TPQA 
FT 
TQ 

BRANCH OPEN 
HENCE NOT A TAUTOLOGY 

flhis mmputational algorithm has. not so far been usid in theorem-provk. ; most of 
tk Wn-known implementativas of theorem-provers 'make use ~f the resolutioD 
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principle7. The resolution-based systems basically require that the wff be presented in 
clause form; normally a wff is not available in clause form and the task of conve*ing 
a wff into clause form is by itself of exponential complexity. The analytic tableau 
method does not have any such special input requirements. 

The resolution method requires that the empty clause be generated from the given 
clauses by successively resolving them. As there is no algorithmic way to decide 
which of the given clauses yield the empty c h s e  by resolving, refinements to resolution 
by means of heuristics aim at reducing the searches through blind alleys. In contrast, 
the analytic tableau method, essentially breaks a formula into its constituents (sub 
formulas); the process is a systematic one and terminates much faster compared to 
the resoIution technique. 

The method of Davis and Putnams is another method used in one of the efficient 
automatic theorem-provers. This method is based on the four rules-tautology rule, 
one-literal mle, pure literal rule and splitting rule. This method also requires that the 
given formula be in conjunctive normal form so that any of the four rules may be 
applied. In the method of analytic tableau there is no need for a given wff to be in 
conjunctive normal form. Also at each step of the generation of the tableau, the 
principal connective of the signed formula of a node enables the determination as to 
which of the eight rules is to be applied; in the method of Davis and Putnam an 
analogous determination as to which of the four rules is to be applied is not possible. 

The implementation of the tableau method ensures that the number of branches of 
the generated tableau is minimum by judiciously ordering the subformulas generated 
at each step. The depth-first approach of generating each path in the tableau, in the 
left-to-right order, results in reduced main storage requirements for the program. 
Each rule of this method has been coded as a procedure resulting in a neatly structured 
program enhancing its readability and modularity. 

We express our gratitude to Professor R. Narasimhan, Director, National Centre for 
Sokvare Development and Computing Techniques, Bombay, for providing the neees- 
sary computational facilities to enable this implementation. 
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