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TWO dimensional developmental systems called OL array systems (OLAS) and tabled OL array systems 
~ O M S )  are proposed. These systems reflect the simultaneous growth of every cell in a rectangular 
way. It is shown that the families of array languages generated by these models are not closed under 
many of the operations on armys. These families of developmental array languages are compared with 
C m y  languages already known. Growth function of a DOLAS is studied. 

Keg words: Array languages, developmental array languages, rectangular arrays, APM operations, 
W a l  transformations. 

L-systems were introduced by Lindenmayer originally in connection with some problems 
in theoretical biology=. Several studies have been made to extend the development 
type of generation to two dimensionsz* and this paper is another attempt m this effort 
where the rewriting is simultaneous and new cells are added In the interior of the array. 
Hence we define OL and TOL array systems in which parallel rewriting of every symbol 
in a rectangular array is considered and each symbol is replaced by ah array of the 
m e  size to avoid distortion of rectangular arrays. This paper is motivated more 
from the language theory points of view than from the biological' point of view. 

In section 2, we review some definitions needed for this paper and then we define 
OL and TOL array systems and the languages generated by them. In section 3, we 
give some examples and study some simple properties. In section 4, we discuss the 
hierarchy among these families and compare them with the array languages already 
hewn. In section 5, we investigate the closure properties of the families of array 
kaguages under the AFM operations and pictorial transformations. 

' Department of Mathemati-, Madras Christian College, Mad& 600 059. 
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2. Definitions 

In this section, we review some definitions needed for this paper. For the definitions 
of the array languages and matrix languages, the reader is referred to Siromoney et ~ 1 5 , ~ ~  

Notation : Let I be an alphabet-a finite nonempty set of symbols. A matrix 11.1, 
(or array) over I is an m x n rectangular array of symbols from I (m, n 2 1) and the 
dimensions of the matrix M,, is denoted by I M,,,, / = (m, n). The set of all matrices 
over I (including k )  is denoted by I" and I++ = I*" - (3,). 

Definition 2.1 : An OL array system (OLAS) is a 3-tuple G = (Z, P, a), where 

.... 1. C is a finite nonempty'set (the alphabet, say, Z = {a,, a,)); 

2. w E X is the axiom ; 

3. P is a finite nonempty subset of Z x Z** (called the set of productions) such 
that 

.... Also a,,E C** is such that I aij I = (mi, n,) for each i = 1, 2, k and j may be 
..., .I, from I to r.. > 1, i.e., if P contains rules of the type a, 4 all, a, -, a,,, a, -t 

..., ..., then P has all the rules ai -+ a%, a< -+ a,,, a, -+ air, i = 1, k with I a. 1 = 
...... (m,, n,), i = 1, .... k, j = 1, . . . . r . r  2 1 and (m,, n,) is fixed for each j = 1, 

r 1. The production (a,, a,,) is usually written as a, + aSj. 

Definition 2.2 : A tabled OL array system (TOLAS) is a 3-tuple G = (C,g u), 
where C and o are as defined in definition 2.1 and 3 consists of a finite set {PI, ..., PI} 
for f 1 and each P, is a finite subset of C. x Z** called a table with the following 
two conditions : 

2. (a {a, u))~, a's are of the same dimension. 

Delinition 2.3 : Let 

u = and u = 
9 where a,, E 2, 

1W; 6 Z**, 1 < i G  my 1 < j< 71. We write u +- v if a,j --+ Mi, are in a table P in 9 
(in P) and all the M,,'s are of the same dimension of a TOLAS (OLAS). =>* is the 
reflexive, transitive closure of =+ . 
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TOLAL (oLAL) if and only if, there exists a I'OLAS (OLAS) G such that L = L (G). 
 he family of TOLAL (OLAL) is denoted by 3 TOLAL (a OLAL). 

- 1 .  deterministic, if and only if, for each P in 3 and each a in Z, there exists exactly 
one rule a -t in P and the system is denoted by DTOLAS and the language generated 
by it is denoted by DTOLAL, 

2, propagating if there is no table P in Ssuch that P = {a + A/aeZ) and the system 
is denoted by PTOLAS and the language generated by it is denoted by PTOLAL. 

&mark 2.1 : By the completeness condition and the restriction of the size of the 
arrays, if in a OLAS G = (C, P, a), a -+ 1 is in P then for all a, t 8, a, 1 is in P.  If 
h a  TOLAS G = (2, 9, cu), a -* A is a rule in some table P, then P consists of only 
thz rules of the form a, -+ A for all a, E X. 

By applying the rules from the table P = {a -t A[u 2 ja}: we get u .> 1. the emptymatrix. 
G 

3. Examples and elementary properties 

In this section, we present some examples of OLAS, TOLAS and languages that can 
and cannot be generated by them and also discuss some of their elementary properties. 

Exmple 3 .1 :  Let GI = ({cz}, ( a  t _} , be an OLAS Then L (GI) consists of 

squares of a's of dimension 2", n > 0. 

6mmple 3 . 2  : Let G; = ({a, b}, {{a + b, b t b), {a + a, b + a}}, 3 be a TOLAS. 

We state the three lemmas as the proofs are trivial. 

Lenrma 3.1 : If G is a POLAS (PTOLAS) and x y  y, then I Y  I >  I X I -  
U 

kmm 3.2 : A finite matrix language which consists of a single array is an OLAL. 
h m  3.3 : If L is an OLAL (TOLAL) then L U {A} is also an OLAL (TOLAL). 



104 KAMALA KRITHIYASAN AND NALTNAKSHI NIRMAL 

We give an arithmetic characterization of TOLAS. Let G = @, g, o) be a TOLAX 
where [ w 1 = (m, n), 3 = {PI, . . ., P,} and P, = {a, + a,la, e 2 ,  / / = ( I < ,  s,)}, i = ],2, 
. . . .  k then any array of L (G) will be of dimension mr:~ . . . r g k  x n s;! . . . S;E, ,.,heTe 
q,, q, . . ., qa are non-negative integers. 

Lemma 3 .4  : There are some finite matrix languages which are not OLAL or TOE,& 

aaa 
prooy: L = {:: , oaa] is a finite matrix language which is not an OUL or 

aaa 
TOLAL follows from the arithmetic characterization of TOLAS 

Lemma 3 . 5  : { a ,  2) is not an OLAL (TOLAL). 

Proof : If possible let L = a ,  be a TOLAL generated by G = (Z, 5, {O). i 3 
As i $ L, G should be a propagating system. Hence w = a. To get 2 ,  we mud 

ah 
have a table P containing a -+ To satisfy the completeness condition we must 

... 

have a rule b + M in P where M E {a,  b]* and 1 M I = (2, 2). So arrays which are 
not in L will be generated by G. Hence L is not a TOLAL (OLAL). 

Remark 3.1 : {M,,, M,,,} is not a TOLAL (OLAL) where r,  > r, s ~ >  s (or r ,  >r ,  
s, > s). 

Remark 3 . 2  : {M,>, , M,, , . . ., M,,) is not a TOLAL or  an OLAL, where at least 
one r,, for some i, is such that r+ b r, (at least one s,, for some i, i s  such that s, > 3,). 

4. Hierarchy and comparison with other array languages 

In this section we briefly discuss bow the determinishc restriction affects the gens 
rative power of OLAS and TOLAS. We also compare these languages with the may 
languages already known6B. 

Theorem 4.1 : 

DTOLAL \ TOTAL 
/ / 

/ 
/ 

/ 
/ 

/ 
. / 
/ 
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/' 

/f 
DOLAL / / 

\ / OLAL 
/ 
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The bebove-mentioned diagram holds where a solid line denotes strict inclusion (in the 
& d o n  indicated) and when two families Kl and K, are not connected by a path 
following the arrows in this diagram, it means that they are incomparable but not 
&joint. 

Inclusions follow from definition. For proper inclusion consider a TOLAL 

,, . {:, !!, , generated by a TOLAS GI = {a, b},{Pl, P,J, 

+ b, b b}, P, = {a + a, b -t a). If possible let L, be generated by an OLAS 
aa bb 

(@,b), P, 4. Let m = 2 (w = :: and w = aa are analogous). If CIJ a bb 

bb 
then we have {a + b, b -* b)  C P. aa can be derived from w or from bb.  In the aa 
former case we have {a -+ a, b -t a} C P. Combining these rules with a + b, b + b 

ab ba 
we get a derivation ab bb $ L1. In the latter case we have b + a 6 P. Combining 

~s rule with a + b, b -t b we get a derivation 
ab ba 
ab * bb a' L,. Similarly if w => aa 

mget words which are not in L,. Hence L, is not an OLAL. So SOLAL c sTOLAL. 
4. 

Fromthe same example we also conclude that SDOLAL CSDTOLAL. L, ii a DTOLAL + 
bnt not an OLAL. 

Let 

ab bb bb ab 
L2 = (A ' bb ' a6 bb) 

be an OLAL generated by an OLAS G b), {a + a, a -t b, b -+ b}, 

obvious that L,  is neither a DTOLAL nor a DOLAL. Hence the theqrem. 

By lemma 3.2  and lemma 3.5 we have seen that the family of OLAL (TOLAL) is 
incomparable but not disjoint with the family of FML. From the arithmetic charao 
t&dion of the family of OLAL and TOLAL, we conclude that in any infinite OLAL, 
the length and breadth of the array increase exponentially and not linearly. Whereas 
in the case of RMLE and (R : X) AL (X = R,  CF, CS)6, the length or the breadth of the 
mY or both increase linearly. . . . . , . . 

Hence we have the following theorem. 

%orem 4.2 : (i) ( S R M L  - SFML)  n S Y  = b ;  (ii) ( S ( R  : X) A L  - S R M L )  0 
ST = h where X = R, CF or CS, Y = OLAL or TOLAL. 
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Proof : Squares of X's of ~ i d e  2" is an OLAL and also a (CF : R) AL (Siromoney 

generated by an OLAS G = (UI, / X  + g] . X )  and by (CF : R) AG C. = it,, 
P, S) ,  where Y = IS), J = {X), P = { S  + (SO S) @ ( S  O S) ,  S + XI respectne;) 
Thus gOLAL and 6 ( C F  : R) AL are mcomparable but not dls~oint. 

extended controlled table L array models4 growth occurs only along the feu: 
edges restricted by a table and controlled by a control set. In OLAS and TOLA$ 
each eel] grows and hence these developmental models are incomparable with extend& 
control table L array models. 

5. Closure properties 

Jn formal language theory a classical step towards achieving mathematical charae. 
terizations of a class of languages is to investigate its closure properties with respea 
to  3. number of operations like the AFL operations7. In this scction we investi@k 
the closure properties of ZOLAL and STOLAL under the AFM operations and 
picture language operations5. In one dimension, most of the families of develop men^ 
string languages are not dosed under any of the AFL operations?. 

We have already given the definitions of row and column catenation for mays, 
Now we shaU deiine row star, column star and array homomorphism, H. 

Definition 5.1 : A mapping H from Iff to (I')"+ is called a homomorp6ism if 
H ( X D Y ) = H ( X ) D H ( Y )  and H ( X @ Y ) = H ( X ) @ H ( Y ) .  I t  is easily seen 
that a homomorphism is defined only when H (a) = {r x s array of terminals from 
I', a in I, r and a the same for all a in I}. If M is a set of matrices then 

Definition 5 . 2  : If M is a set of matrices than &, the complement of M = P* - M. 
D&nition 5.3 : If 

.......... 
a, ,~ . . . UL. 

then the transpose of X is 
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quarter turn of X is 

the reflection about the right most vertical is 

amn . . . anrl 
the reflection about the base is 

aml ...amn 

and a half-turn is 

If M is a set of matrices from I-k+ then 

MT = { X T / X  in M )  

Dq'inftion 5.4 : If X E {0, 1)- then Xc (the conjugate of X) is the matrix in which 
very 0 in Xis  replaced by a 1 and every 1 by 0. 

Lf M is a set of matrices then M" = { X C / X  in M ) .  
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Theorem 5 .1  : The family of TOLAL (OLAL) is not closed under union, row eaC 
nation, column catenation, row f, column f, array homomorphism H, interseccOII 
and complementation. 

Proof: Since every OLAL is a TOLAL by definition, in what follows we take an 
OLAL (two oLALs if the operation is binary) and show that by the application 
operation under consideration we get a language which is not a TOLAL. 

it follows that L, u L, is not a TOLAL. 

(ii) Row cantenation : Let 

L, = {a, aa, aaaa, . . .} be two OLALs generated by 

respectiveIy. Then 

is not a TOLAL follows from the arithmetic characterization of TOLAS. 

(iii) Column catenation : Taking L, and T (L,) (The transpose of L,) as ~ w G  

OLALs, rrze can easily show that L, T ( L 4 )  is not a TOLAL. 

". 
(iv) Row v+ : Consider (L3)+ = [a, (a)%, (a),, (a)4, . . ., aa 0%. . . .) . J.fpo&- 

aa ' 
ble let there be a TOLAS G' = ({a}, 3, w) such that L (GI) = (La,. Then w = a. To 
generate words of the type (a),, p a prime number, we must have a table { a  -t (4,) 
But the number of primes is infinite. Hence 3 should contain an infinite numb #f 

tables, which is a contradiction. Hence (La+ is not a TOLAL. 

(v) Cohmn + : Nonclosure under this operation can be similarly proved b 
considering &)+. 
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ua ab 
H (4 = . H (b) = c, , H (c)  = :; , H (d)  = 

dd 
dd ' 

I aaab aaaaabab 
aacd aaaucdcd 

H(L5)  = ccdd' ccccdddd , . . . 1 = {MI ,  M2, . . .}, 
[ ccdd cccc~IddcE ) 

H(&) is generated by a TOLAS  G' = ({a, b, c, dl,  .Z", 03, then a' = M,. ~f 
J{,* M ~ ,  then we shouid have a table which contains rules of the form a -+ aa, a + ab, 
b., ~ b ,  c -t cd, c + cc, d -t cd, d + dd, in which case we get arrays which do not 
a o n g  to H ( L J .  Hence H (L,) is not a TOLAL. 

(yii) Intersection : 

abbb abab 

k two  OLALS. Then L ,  " L ,  = is not a TOLAL follows from the 

m k  3 1. 

(VIII) Complementation : The complement of L,  is not a TOLAL follows from 
the characterization of TOLAS.  

Reorem 5.2 : The family of TOLAL (OLAL)  is closed under quarter-turn, transpose, 
half-turn, reflection about the rightmost vertical, reflection about the base and conju- 
@ion. 

Proof: Let G = (C, P, w )  be an OLAS. Consider an OLAS  GI = (Z, P,, a,) where 
iri, = T, (w) ( T  ( A )  denotes transpose of A). P, = (a -+ T(a) /a  -+ a in P). Then 
clearly L(G,)  = T(L(G) ) .  The proof for the  other operations and for the other 
family is similar. 

In the theory of growth funct~ons only the lengths of the words matter, no attenhon 
&pard to Lhc words themaelves. We extend t h ~ s  Idea to DOLAS and find that most of 
the results of Paz and Salomaas immed~atcly extend to DOLAS also. The growth 



equivalence problem and the problem of growth equivalent axioms will be easib 
solved in  the case of arrays since the production rules are such that the right side is 
of the same size. 

The fofiowing theorem follows just as in the case of string languages. 

Theorem 5.3 : For any DOLAS G, the generating function of its growth funaBE 
equals (rn). (I - AX)-1.7, where A is the growth matrix. 

Proof: Proof is similar to theorem 30 of Paz and Salomaas. 
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