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Abstract

Two dimensional developmental systems called OL array systems (OLAS) and tabled OL array systems
(TOLAS) are proposed. These systems reflect the simuitancous growth of every cell in a rectangular
array. It is shown that the families of array languages generated by these models are not closed under
many of the operations on arrays. These families of developmental array languages are compared with
the array languages already known. Growth function of a DOLAS is studied.

Key words: Axray languages, developmental array languages, rectangular arrays, AFM operations,
pictorial transformations.

1. Introduction

L-systems were introduced by Lindenmayer originally in connection with some problems
in theoretical biology!. Several studies have been made to extend the development
type of generation to two dimensions®>* and this paper is another attempt in this effort
where the rewriting is simultaneous and new cells are added in the interior of the array.
Hence we define OL and T'OL array systems in which parallel rewriting of every symbol
in & rectangular array is considered and each symbol is replaced by an array.of the
same size fo avoid distortion of rectangular arrays. This paper is motivated more
from the language theory points of view than from the biological point of view.

In section 2, we review some definitions needed for this paper and then we define
0L and TOL array systems and the languages generated by them. In section 3, we
give some examples and study some simple properties. In section 4, we discuss the
herarchy among these families and compare them with the array languages already
known. Tn section 5, we investigate the closure properties of the families of array
languages under the 4FM operations and pictorial transformations.

* Department of Mathematics, Madras Christian College, Madras 600 059. .
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2. Definitions

In this section, we review some definitions needed for this paper. For the definitions
of the array languages and matrix languages, the reader is referred to Siromoney et gfss,

Notation : Let I be an alphabet—a finite nonempty set of symbols. A matrix M,
(or array) over I is an m x n rectangular array of symbols from I (m,n > 1) and the
dimensions of the matrix M, is denoted by | M, | = (m, n). The set of all matrices
over I (including A) is denoted by I** and I*+ = I** — {]}.

Definition 2.1 : An OL array system (OLAS) is a 3-tuple G = (Z, P, w), where
1. X is a finite nonempty set (the alphabet, say, Z = {a, ..., &:});
2. weX is the axiom;

3. P is a finite nonempty subset of £ x T** (called the set of productions) such
that

(‘\TLu;)E (E?a;j)z,u ((ah a%i> € P)

Also a;e Z** is such that | o, | = (my, ;) for each i=1,2,...,k and j may be
from 1 to r, r > 1, ie., if P contains rules of the type @y = a3, @1 = ayp. ., 8y > ay,
then P has all the rules ;= oy, &~ a4 ..o > oy, I=1,...,k with Loyl =
mpm), i=1,...k j=1,...,r r>1 and (m, n) is fixed for each j=1,...,r,
r>1. The production {g;,q;) is usually written as a; — o,

Definition 2.2 : A tabled OL array system (TOLAS) is a 3-tuple G = (I, &, 0),
where £ and « are as defined in definition 2.1 and & consists of a finite set {Py, ..., P}
for f > 1 and each P, is a finite subset of £ x Z** called a table with the following
two conditions :

L (¢P)g(wa)z (Fa)zee (0, a) € P).
2. (¢9)s (T (@ a))p, a’s are of the same dimension.

Definition 2.3 : Let

....................................

U= and » = s " where a; ¢ %,

...............
.....................

it -« <y Oy Myy ... My,

{ll‘, eL¥* 1< i< m, 1< j< n. We write u = v if a; —~ M, are in a table P in g
(in P) and all the M,s are of the same dimension of a TOLAS (OLAS). =* is the
reflexive, transitive closure of = .
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Definition 2.4 : Let G = (2, &, w) be a TOLAS (OLAS where @ = P). The language
generated by G is defined as L(G) = {M[w =* M}. A language L < ** is called a
G

T0LAL (OLAL) if and only if, there exists a T’OLAS (OLAS) G such that L = L(G).
The family of TOLAL (OLAL) is denoted by & TOLAL (F OLAL).
Definition 2.5 : A TOLAS G = (%, &, ») is called

71{. deterministic, if and only if, for each P in & and each @ in X, there exists exactly
one rule @ —» o in P and the system is denoted by DTOLAS and the language generated
by it is denoted by DTOLAL,

2, propagating if there is no table P in &P such that P = {a - 1/a< X} and the system
is denoted by PTOLAS and the language generated by it is denoted by PTOLAL.

Remark 2.1 1 By the completeness condition and the restriction of the size of the
artays, if in a OLAS G = (T, P,w), @ — A isin P then for all @, ¢ £, g, > Aisin P. If
ina TOLAS G = (Z, P, w), a — i is a rule in some table P, then P consists of only
the rules of the form a, — A for all @, e X.

fu="""""""" , where g; ¢S, 1 <i<ml<j<n

By applying the rules from the table P = {a — Aja € I}, we get » = A, the empty-matrix.
G

3. Examples and elementary properties

In this section, we present some examples of OLAS, TOLAS and Janguages that can
and cannot be generated by them and also discuss some of their elementary properties.

Bxample 3.1: Let G, = <{a}, {a - 2:} , a) be an OLAS. Then L(Gy) consists of

squares of @’s of dimension 27, n > 0.

Exomple 3.2 1 Let Gy = <{a, B, {{a— B, b — b}, {a~ a, b} z2> be a TOLAS.

Then L(Gy) ___{aa bb}'

aa’ bb
We state the three lemmas as the proofs are trivial.
Lmma3.1: X G is a POLAS (PTOLAS) and x =y, then | y | =[xl

Lewma 3.2 : A finite matrix language which consists of a single arréy is an OLAL,
Lemma 3.3 : I Lis an OLAL (TOLAL) then L U {4} is also an OLAL (TOLAL).
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We give an arithmetic characterization of TOLAS. Let G = (F, &, 0) be a ToL45
where [ | = (m,n), P ={Py, ..., P}and P, = {a; > a,/a; ¢ %, {a,| = (i, 5)), i = 1,2
.... k then any array of L(G) will be of dimension mr ... rfe x nsh ... 5%, where
q1s g2 - - -2 gy, Are non-negative integers.

Lemma 3.4 : There are some finite matrix languages which are not OLAL or TOL4],

aaa
Proof : L = {ZZ s aaa} is a finite matrix language which is not an OLAL o
aaa

TOLAL follows from the arithmetic characterization of TOLAS.

Lemma 3.5 : {a, ZZ} is not an OLAL (TOLAL).

Proof : 1f possible let L = {a, ZZ} be a TOLAL generated by G = (T, 3, o).

b
B’ we  must

As i¢ L, G should be a propagating system. Hence w = a. To getz
have a table P containing a —~ Zg . To satisfy the completeneés condition we must

have a rule b — M in P where M < {g, b} and I M ] = (2, 2). So arrays which are
not in L will be generated by G. Hence L is not a TOLAL (OLAL).

Remark 3.1 : {M,, M} is not a TOLAL (OLAL) where ry > r, 5.2 5 (or 1y 21,
1> 5)

Remark 3.2 1 {M,, , M, ,.... M.} is not a TOLAL or an OLAL, where atleast
one ry, for some i, is such that ¥, > r, (at least one s,, for some 7, is such that s, > s).

4. Hierarchy and comparison with other array languages

In this section we briefly discuss how the deterministic restriction affects the gene-
rative power of OLAS and TOLAS. We also compare these languages with the array
languages already knownt-S.

Theorem 4.1

DTOLAL N TOTAL
e 4 ’ e 4
S -/
7 _ e
// '
pozAL /- < / orar
. 4
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The above-mentioned diagram holds where a solid line denotes strict inclusion (in the
direction indicated) and when two families K; and K; are not connected by a path
fillowing the arrows in this diagram, it means that they are incomparable but not

disjoint.
Proof + Inclusions follow from definition. For proper inclusion consider a TOLAL
ab bb aa - , ab _
L= {ab’ s aa} , generated by a TOLAS G, <{a, b}, {Py, Py}, ab) where P, =
fgsbb> B P,=1{a->ab—a}. If possible let L, be generated by an OLAS
L _ab _ bb nd o= % I - BB
¢ = ({a, B}, P, ). et o = ap\ @ = pp and @ = areanalogous ). 0=

then we have {a — b, b > b} C P. ZZ

former case we have {a - a,b - a} C P. Combining these rules with ¢ = 5, 5~ b

can be derived from » or from II;Z . In the

e get a derivation ZZ ES ZZ ¢ L;. In the latter case we have b — a ¢ P. Combining

i R oo ab  ba s ; aa
this rule with @ — b, b — b we get a derivation b= b ¢ L. Similarly if @ = aa

we get words which are not in L;. Hence L, is not an OLAL. So FOLAL C FTOLAL.
+
From the same example we also conclude that FDOLAL CFDTOLAL. L,isa DTOLAL
+ .
bt not an OLAL.

Let

;. _ @ Bb bb ab
2= \ab’ bb> ab® bb

b an OLAL generated by an OLAS G, = ({a, Bh{a-aa-bb-5, ). I is
obvious that L, is neither a DTOLAL nor a DOLAL. Hence the theorem,

By lemma 3.2 and lemma 3.5 we have seen that the family of OLAL (TOLAL) is
incomparable but not disjoint with the family of FML. From the arithmetic charac-
terization of the family of OLAL and TOLAL, we conclude that in any infinite OLAL,
the length and breadth of the array increase exponentially and not linearly. Whereas
in the case of RMLS and (R : X) AL (X = R, CF, CS)®, the length or the breadth of the
array or both increase linearly. Core

Hence we have the following theorem.

Theorem 4.2 : (i) (FRML — FFML) N FY = ¢; (i) (FR :X) AL — FRML) N
&Y= ¢, where X = R, CF or CS, Y = OLAL or TOLAL.

Theorem 4.3 : FOLAL N F(CF : R) AL# ¢-
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Proof : Squares of X's of side 2" is an OLAL and also a (CF : R) AL (Siromoney etaly
. . XX

generated by an OLAS G = ({X}, {X - XX} , X> and bya(CF: R)AGG = A

P,S), where V =4S}, F={X}, P={S>(SO (SO SI). S X} respectively

Thus FOLAL and &(CF : R) AL are incomparable but not disjoint. -

In extended conmtrolled table L array models* growth occurs only along the foy.
edges restricted by a table and controlled by a control set. In OLAS and TOLA,S:
each cell grows and hence these developmental models are incomparable with extendsg
control table L array models.

5. Closure- properties

In formal language theory a classical step towards achieving mathematical charge
terizations of a class of languages is to investigate its closure properties with Tespect
to a number of operations like the AFL operations’. In this scotion we investigate
the closure properties of FOLAL and FTOLAL under the 4FM operations and
picture language operations’. In one dimension, most of the families of developmentsl
string languages are not closed under any of the AFL operations’.

We have already given the definitions of row and column catenation for arrays,
Now we shall define row star, column star and array homomorphism, H.

Definition 5.1 1 A mapping H from I+ to (I')** is called a homomorphism if
HXDYD=HXOQH) and HIXOY)=HQX)O H(Y). It is easily seen
that a homomorphism is defined only when H (a) = {r x s array of terminals from
I,ain I, rand a the same for allain I}. If M is a set of matrices then

H(M) = {H(X)/X in M}.
Definition 5.2 1 If M is a set of matrices than 37, the complement of M = I** — M.
Definition 5.3 : If

Q11 - -2 A1
X =
[ Don
then the transpose of X is
Ay - o G
XT =
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quarter t0rn of X is

by
i

E M is a set of matrices from I++ then
MT = {X7]X in M}
M ={X/X in M}

M ={X|X in M}

i = (%1% in M),

107

Definition 5.4 : If X {0, Ij*+ then X" (the conjugate of X) is the matrix in which

Wty O in X is replaced by a 1 and every 1 by O.

WM is a set of matrices then M® = (XX in M}. -
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Theorem 5.1 : The family of TOLAL (OLAL) is not closed under union, row cate.
nation, column catenation, row +, column -+, array homomorphism H, Intersection
and complementation.

Proof : Since every OLAL is a TOLAL by definition, in what follows we take an
OLAL (two OLALs if the operation is binary) and show that by the application of the
operation under consideration we get a language which is not a TOLAL,

aa

G) Union : Let L, = {m

aaa
} and I, = {aaa} be two OLALS. But by lemma 34
aaa

it follows that L; U L, is not a TOLAL.

(i) Row cantenation : Let

aaaa
aa aaaa

= {a, cee and
Ls * aa’ qaaa’
aaaa

L, = {a, aa, aaaa, ...} be two OLALs generated by
Gy = <{a}, {a - ZZ} R a> and G, = ({a}, {a - aa}, @)

respectively. Then

{ aaaa
'a aa aaaa
LioLi={,, 0a, aaaa, ...

aa aaaa
aaaa
is not a TOLAL follows from the arithmetic characterization of T7OLAS.

(iii) Column catenation : Taking Ls and T (L,) (The transpose of L,) as two
OLALs, we can easily show that L, O T'(L,) is not a TOLAL.

() Row +:  Consider (Zy), = {a, (@ @3, @as ++ s ZZ (ZZ)E } IF possi

ble let there be a TOLAS G’ = ({4}, &, w) such that L (G’) = (L,),. Theno=a To
generate words of the type (4),, p a prime number, we must have a table {4~ (@
Burt the number of primes is infinite. Hence & should contain an infinite number
tables, which is a contradiction. Hence (L,). is not a TOLAL.

(v) Column + : Nonclosure under this operation can be similarly proved by
considering (L,)*.
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{ ab  aabb
cd’ cedd’ "

(vi) Array homomorphism @ Let Ly = } be generated by an OLAS

5 .
G,=(ab d),{a — aa, b — bb, ¢ — ce, d — dd}, Z d)' Define an array homomor-

phism H as :
aa _ab _cc _dd
H@= > HO) =, H@ = |, Hd) = .

Hence

aaab aaaaabab

aacd aaaacded

H(Lg) = cedd’ cecedddd » -+ { = Mu My, .. 3

cedd  cecedddd
I H(L;) is generated by a TOLAS G =({a,b.c.d}, P, ), then o' = M,. If
¥, = M, then we should have a table which contains rules of the form « — aa, a — ab,
jsab, ¢ cd, ¢ > ¢c¢, d— ed, d - dd, in which case we get arrays which do not
wlong to H(Ls). Hence H (Ls) is not a TOLAL.

(vii) Intersection :

abbb abab
ab  abbb _ ab  abab

LetLo={ & > gpppe - @0 Lo=(a pu s
abbb abab

botwo OLALS. Then Lg A Ly = {a, ZZ} is mot a TOLAL follows from the

remark 3.1.

(viii) Complementation : The complement of L, is not a TOLAL follows from
the characterization of TOLAS.

Theorem 5.2 : The family of TOLAL (OLAL) is closed under quarter-turn, transpose,
balfturn, reflection about the rightmost vertical, reflection about the base and conju-

aation,
Proof: Let G = (X, P, w) be an OLAS. Consider an OLAS G, = (%, Py, w;) where
w =T (@ (T(4) denotes transpose of A). P, = (@ T(a))a—ain P). Then
ckatly L(G,) = T(L(G)). The proof for the other operations and for the other
family is similar.

In the theory of growth functions only the lengths of the words matter, no attention

is paid to the words themselves. We extend this idea to DOLAS and find that most of
te results of Paz and Salomaa® immediately extend to DOLAS also. The growth

LLSe—4
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equivalence problem and the problem of growth equivalent axioms wijl be
solved in the case of arrays since the production rules are such that the right

KAMALA KRITHIVASAN AND NALINAKSHI NIRMAI

of the same size.

easly
side i

The following theorem follows just as in the case of string languages.

Theorem 5.3 : For any DOLAS G, the generating function of its growth functiog
equals y (). (I — Axy™.n, where 4 is the growth matrix.

Proof : Proof is similar to theorem 30 of Paz and Salomaa®.
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