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Abstract 

Using Robertson-Walker coordinates, we examine a system consisting of f-gravity coupled to the 
5013) gauge field. Under certain approximations, we have obiaid spherically symmetric and static 
siuimm to the coupled equations. These solutions are found to give interesting results in the asymptotic 
Bad& In particular, we have obtained a Yukawa-like potential for the strong gravity field besides other 
1QnB. 

Bag muds : Strong gravity, gauge field, strong interadon 

In a reeent paperl, we had considered a Lagrangian for the strong gravity field coupled 
to an SO(3) gauge field. Working in a conformally £tat space-time, we had ob?aiaed 
spherically symmetric, statk soltrtions for tb.e system. However, owing to  our specific 
chaice of the coordinate system, (it., one of conformal htness) a,e *.ad found that our 
q~ations for the figravity field and for the SO(3) gauge iield had become decoupled. 
b e ,  in the present paper, we have solved t>.e problem using a more general metric, 
namely, the Robertson-Walker metric, wkereby we have found that the equations 
rLmain coupled. 

At th~s  point we would like to mention very briefly the purpose of atiaclung the 
p b l e m  in a Robertson-Walker system. In recent years, several authorsz4 have 
cimed tbat the universe and the hadron may follow the same geome;ricd, pattern 
l@, hadrons are probably some kind of ' micro-univarses '. NOW as f8r aS cosmo- 

m0deIs are concerned, the Robertson-Walker metric is the most extensively 
01% owing to  the fact that the form of its line element i s  based direcfly on an 

a w n  of Mach's original principle, which claims that the inertia of mdividual bod~es 
1s a Consequence of all the other bodies in the universe. 
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Therefo~e, keeping in view the sinularity between the universe and the hadrona, arid 
also thc fact that strong gravity is known to govern the internal structure of hadronf.i 
we have found it worthwhile to  investigate Stlong (f) gravity for the ~obertso~~~~,; 
system. 

We will inention briefly some impostant characteristics of the Rohertson.walki 
system. 

h keeping with Mach's principle, we need first of all a homogeneous and isotropic 
three-dimensional sub-space, i.e., the space coordinates ]nust necessarily appear in fhr: 
line element dsZ in the spherically symmetric combination. 

daz = dx'" d.8 + dx3' 

in Cartesian coordinates or equivalently as 

dcZ s drr + r Z  dBZ $ r i  sin2 0 d$' 

when polar coordinates are employed. 

Furthermore, the time-coordinate x" plays tF.e role of a Gau.ssian timen coordinate, 
which physically means that at any given moment of lime, the average velocity of 
the matter in the micro-universe vanishes in its pariicular three-space. Thus amall) 
the time-coordinate describes geodesic trajectories which are orthogonal to each carre+ 
ponding three-space. For this reason, a Robertson-Walker system is also referred 
to  as a co-moving system. 

With all these points in mind, we now proceed to calculate the various quantitm 
that enter into the field equations. 

2. Lagrmgian for a e  system 

In this paper, we consider the metric in its typical form 
&z = (dxo)" - &('I d#, 

where p ( r )  depends only on space coordinates. 

We hegin by employing an Einstein-type Lagrangian for the spin-2 bosons. 'Ib 
important step is to construct an f-g mxing term which imparts a mass to one of tke 
spin-2 fields, and at the same time maintains general covariance IhroughoG 

Thus we may write the combined action integral for the system as 

I=Ig+.5tI , -gtIVW (1) 

where the notations follow closely those used in Ref. 1. For I,, we have the 
Einstein-Lagrangian, 
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quantities being constructed from the metric tensor g,, of the weak 

Si,i&) gravity. Similarly for I,, we have 

f l  - 
I , = J  v l / - f R 1 d 4 ~  (3) 

where R~ and .\/=fare calculated using the strong gravity tensor f,,. 

F~~ I,-,, we use the mixing term given by lsham et all0, which results in an emer- 
gence of mass of the f  -field (in keeping with the finite range nature of the strong inter- 
actions) 

I,-# = - / $$ Jzs lfYu - gv"l I f  "* - g"1 gi ,  - gli  gg.1 d4 X .  

(4) 

H~~~ m, is the mass of the f  -meson (in units of inverse length). 

done earlier we describe the coupling of tMs f-g systemto the SO(3) gauge field 
by the appropriate Lagrangian. 

I(fw) =.f+ ( - f ) " ~ P " f P " F & F ~ , d 4 x  ( 5 )  

The P;, denote the field strengths for the SO(3) gauge field and are given by 

F;, =a, W; - s, w; f q P C  W; W: (6) 

9 being the gauge charge. 

W g  use of the Wu-Yang ansatz'l, we write 

~j*' 2 p ( I )  w; = ---- - 
qr2 

P being the usual totally antisymmetric tensor of rank 3. 

The following constraints have to be imposed for static and spherically symmetric 
solutions : 

W o , = O ;  w ~ ~ , " = o  (8) 

3, Solatl011~ of the field equations 

we begin by neglecting the effect of weak gravity, i.e., the term I, ~f eqn. (1). The 
8 h ~ n  I is th.en evaluated and the energy functional for the system is C ~ C W  
using the relation 

E = -  $ Id8x ,  
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We write down next the usual Eulertagt-ange ecp.ti0n~ by pe~forming variations & 
respect to  p and p. The variation 

yields the equation for p as : 

Similarly the variation 

yields the equation for p as : 

P" - l p y  , P ( P + O ~  +a 
2 r2  

I t  is easily seen that (10) and (11) are both. higb.1~ nonlinear differential equations of 
the second order and as such are difficult to solve. The fact that they are also coupkd 
equations makes the problem of solving them even hardcr. 

Hence in order to simplify the problem, we have made certain approximations. To 
begin with, we have first salved eqn. (11) in tl-e absence of any coupling, ie., ue h a k t  
solved the equation 

Equation (12) can he recogllised as nothing other than the equation for the pure YmB 
Mills field in the limit of ilat space time. It has the three exact soluI.bm, p =8 
P = - 1 and p = - 2. Of these, the solutions for p = o and p = - 2 can be SMW 
to have finite ~aergies, while the p = - 1 solution has infinite energy1'. 

Now we try and solve H p .  (lo) for (and in the vicinity of) thesethe0 enact 
tions for p. 
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fie eqn. (10) is (on dividing throughout by rz), 

Mstitute into (13) 
y = reW4 

it becomes 

for the case p = 0, we have 

Now consider the equation 

Y/" = 0 

a3iich is got from (15), by neglecting the mass term and the other nanlinear terms. 
i t  has a solution of ihe form, 

where A and B are constants of integration. 

Upon~choosing B =0, A = 1, we obtain y/ = r as an asymptotic solution of (15). 

In order to make eqn. (15) solvable, we substitute y = r in all the nonlinear tem1S on 
the right hand side of (15). We then obtain, 

order to solve (16) we make use of the appropriate Green's bncti~n. Now the 
@us's function for the equation 
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with boundary condition y (0) is finite, y (m) = 0 has been worked out as 

The solution for (15) i s  obtained as 

We perform the integral by splitting it into two parts, according to the definition of 
the Green's function (19, and finally ohtain 

at e q ( -  J i m , r )  
p = r f  

2 J J H  m, 

where a, = (k,Mm,) is a constant of integration. 

which gives 

2a1 exp (- J ml r )  
9 - 1  + (18) 

J;m,r  . 
Epuation (18) gives the potential for the strong gravity field for the value p =O. It 
may be noted that exactly the same solution would result also for p = - 2. 

We now try and solve eqn. (14) for a more general value of the variable p m tLv 
regiw of p = 0 (the same thing holds also for values of p in the region of p = -2). 
Consider the em. (ll), i.e., 

1 , _P(P+I)(~ 3-2) 
P'-~P'P- ,, 

In the absence of the couphg with the f -gravity field, we have 



up linearising the above equation, we have 

= 2p/rP 

solutioa of (19) is 

b 
p = nrz + - 

, and b being constants of integration. 

:. p' = 2ar for large r. 

Snbsitute this value of p' in eqn. (14). Then we have 

jqem p = O ,  this becomes, upon simplification, 

Xow we again substitute the asymptotic limit y = r for all the nonlina terms of tXe 
cquation 

We than obtain 

We solve (21) by making use of the same Green's function given in (17). 

Then we have been able to obtain our solution as 

From the above, we can easily obtain, 
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~t is easily seen that (22) is identical to (18) as far as the first two terms go, aeg 
only difference is the additional term 

which arises as a result of the coupling between the SO(3) gauge field and the f -gravk 
field. 

The casep = - 1 is not considered any further since it corresponds to the case of in& 
energy and may not be of any physical sigaificance. 

When there is no coupling of the f-gravity field to the SO(3) gauge field as for the 
of p = 0 or p = - 2, we get the potential for the f -gravity field as given by eqn. (1% 
For very large r, i.e., r -t w the second term vanishes, and I..ence we have ep -, 1, 
which is the correct asymptotic limit for flat space-time. 

It may he noted that the second term of (18) can be identified with a Yuk-& 
potential for the f-gravity field. 

Next we have the case for a more general value of p, near p = 0. For this tax 

also, we get the two terms in (la), but in addition we have a term given by 

This term is proportional to l/r, and arises as a consequence of the SO(3) and 
f -gravity gauge fields being coupled to each other. 

We would like to compare our results with those of Krive and Sitenkolz. Fi. 
they have not obtained the asymptotic limit ep -, 1 for r -t oo and secondly, tha 
potential obtained by them does not exhibit an Yukawa-like behaviour as is to be 
expected for a iield equation with mass term. 

Further, our solution for the linearised p-equation, namely, p = ar2 $ b/r is mom 
general than theirs, and contains the solutions obtained by them in the asywtotic 
limits. 

A possible extension of the paper is to  consider coupling o f f  -gravity to the SU(3) 
gauge hld. 
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