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Abstract

Using Robertson-Walker coordinates, we examine a system consisting of f-gravity coupled to the
50(3) gauge field. Under certain approximations, we have obtained spherically symmetric and static
sfutionsto the coupled equations. These solutions are found to give interesting results in the asymptotic
fimits. In particular, we have obtained a Yukawa-like potential for the strong gravity field besides other
terms.

Key words : Strong gravity, gauge ﬁeld, strong interaction

1. Introduction

In a recent paper?, we had considered a Lagrangian for the strong gravity field coupled
10 an SO(3) gauge field. Working in a conformally flat space-time, we had obtained
spherically symmetric, stat'c solutions for the system. However, owing to our specific
choice of the coordinate system, (i.e., one of conformal flatness) we had found that our
equations for the fegravity field and for the SO(3) gauge field had become decoupled.
Hence, in the present paper, we have solved the problem using a more general metric,
namely, the Robertson-Walker metric, whereby we have found that the equations
remain coupled.

At this point we would like to mention very briefly the purpose of atiacking the
problem in a Robertson-Walker system. In recent years, several authors™* have
chimed that the universe and the hadron may follow the same geomeirical, pattern
fe, hadrons are probably some kind of ‘ micro-universes’,. Now as far as cosmo-
logical models are concerned, the Robertson-Walker metric is the most extensively
uied ome, owing to the fact that the form of its line element is based directly on an
exiension of Mach’s original principle, which claims that the inertia of individual bodies
& consequence of all the other hodies in the universe. 7
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Therefore, keeping in view the similarity between the universe and the hadrons, ang
also the fact that strong gravity is known to govern the internal structure of hadrons-s,
we have found it worthwhile 1o investigate strong () gravity for the RObertSOmWaum
system.

We will mention briefly some important characteristics of the Robertson-Wafks
systent.

In keeping with Mach’s principle, we need first of all 2 homogeneous and isotropic
three-dimensional sub-space, i.e., the space coordinates must necessarily appear in the
line element ds® in the spherically symmetric combination.

do? = du'? + dx? + dx
in Cartesian coordinates or equivalently as
do? = dr® + r® di? + r¥sin® 0 dp*
when polar coordinates are employed.

Furthermore, the time-coordinate x° plays the role of a Gaussian time® coordinate,
which physically means that at any given moment of time, the average velocity of
the matter in the micro-universe vanishes in its particular three-space. Thus actually
the time-coordinate describes geodesic trajectories which are orthogonal to each corres.
ponding three-space. For this reason, a Robertson-Walker system is also referred
to as a co-moving system.

With all these points in mind, we now proceed to calculate the various quantities
that enter into the field equations.

2. Lagrangian for the system

In this paper, we consider the metric in its typical form
ds? = (dx°)* — & dg?,

where j(r) depends only on space coordinates.

We hegin by employing an Eiustein-type Lagrangian for the spin-2 bosons. The
important step is to construct an f-g mixing term which imparts a mass to one of the
spin-2 fields, and at the same time maintains general covariance throughout,

Thus we may write the combined action integral for the system as °
I=I,+ L+ Iy + IGFW) ‘ @
where the notations follow closely those used 111 Ref. 1. For I,, we have the usudd
Einstein-Lagrangian,

1, :f 5 VT ERdx o
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e televant quantities being constructed from the metric tensor g,, of the weak (Bin-
goinian) gravity. Similarly for I, we have
1 —s 4
I,=J E-\/-—fR,dx 3)
where Ry and A/=F ave caloulated using the strong gravity tensor Su

For I, We use the mixing term given by Isham e al'%, which resultsin an emer-
gnce of mass of the f-fleld (in keeping with. the finite range nature of the strong inter-

ations)
2 R
Iy = — gfi V=g L — g L™ — g™ 8w g — gin gun] At
1
4)
Here m, is the mass of the f-meson. (in units of inverse length).
As done carlier we describe the coupling of this f-g systemto the SO(3) gavge field
ty the appropriate Lagrangian.

W)y =§3 (=Y f fer By Fop dix (&)
The F§, denote the field strengths for the SO(3) gauge field and are given by
Foy =0, W5 — 0, Wi + g Wi W3 ©)

¢ being the gauge charge.
Making use of the Wu-Yang ansatzl!, we write

jo 5l (p
ws =€ - 20 ™

& being the usual totally antisymmetric tensor of rank 3.

The following constraints have to be ifnposed for static and spherically symmetric
solutions :
Wo=0; Wi ,=0 8

a

3. Solutions of the field equations

We begin by neglecting the effect of weak gravity, i.e., the term I, of eqn. (}), The
“otal action I is then evalvated and the energy functional for the system is calcu-
kted using the relation .

Ew= — f Id®x,
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After a lengthy calculation, we have finally obtained the energy E as

- 12 pl
E= ;% f [I_“' l et 3'”’1';3;’{’ (1 — 2e# - o2
7 L

-2 ) 1 o 2
+4 {rz et (5t (0 + 27 +p )}] dr o

We write down next the usual Euler-Lagrange equations by performing variations wigy
respect to p and p. The variation

2E 2 (IE
W brbu’
yields the equation for p as:

MR SRy 3m; 1w 3 0N,
oy —i—Zpt .]-lyr—~2~<l+2e‘ 29>r

Vi ou[ Lprp+2)r 40| =0 1
ST L 3 i (0

Similarly the variation

w_ o o
dp DY bp')

vields the equation for p as:

PR 1 2
N s =LA ) )
It is easily seen that (10) and (L) are both highly nonlinear differential equations of
the second order and as such are difficult to solve. 'The fact that they are also coupled
equations makes the problem of solving them even harder.

Hence in order to simplify the problem, we have made certain approximations. Te

begin with, we have first solved eqn. (11) in the absence of any coupling, i.e., we hawe
solved the equation . ’ )

" 1
p =22 thE 2 @)
Al
Eq:uation (12_) can hc‘ recognised as nothing other than the equation for the pure Yang:
Mills field in the limit of flat space time. It has the three exact solutions, p =6
=—1land p= —2. Of these, the solutions for p =0 and p = — 2 can be shown
to have finite energies, while the p = — 1 solution has infinite energy*?.

Now we try and solve eqn. (10) for (and in the vicinity of) these three exact solis
tions for p. ’
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The eqn. (10} is (on dividing throughout by r2),
1, 2, 3m 3
ﬂ”+4—1ﬂ2 _.r‘i-‘,f(l,;_ e~#.,2w>

p», = 0. 13)

1 &5 [ 2
-3 —;‘6'“<2'T4P“(P +2)* -+

Substitute into (13)
w o= ret/t

hen it becomes

4V‘”,§T}( 2w 3 LK o
i M G 26>“§q29

1

5 20+ + 5 14

For the case p =0, we have

),U4
L T ”’[zw 357 | =0 )
Now consider the ecquation
' =0
wtich is got from (15), by neglecting the mass term and the other nonlinear terms,
I has a solution of the form,

w=Ar -+ B,
viee 4 and B are constants of integration.
Upon choosing B =0, 4 =1, we obtain y =r as an asymptotic solution of (15).
Inorder to make eqn. (15) solvable, we substitute y == r in all the nonlinear terms on
the right hand side of (15). We then obtain, . :

FE

Vmgmiv =g (L,
v gV =g 21t Zr)

(16)

b3, 3 .
14 ‘*g‘iﬂ;{l/z———gm}r.

In order to solve (16) we make use of the appropriate Green's function. Now the
Oreen’s function for the equation

3
Vi—gmiy =0
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with houndary condition y (0) is finite, w (o0) ==0 has been worked out as

G(r,8) = — :1? exp(—J%m,\r~S\> O<r<s
2\/§m,

)

1 3
= — - exp(-—-J m,|s—rl>S<r<oo
3 8
2J§m,
The solution for (15) is obtained as
w=[G({,s)sds.

We perform the integral by splitting it into two parts, according to the definition of
the Green's function (17), and finally obtain

(=yf3m7)
ap BXp L — Em,r
2 J % my
where a; = (k, Mmy) is a constant of integration.

S

y=r+

u,exp<—
St =1 g
2

,\/gm,r
which. gives
2a,exp(—l\/%m,r)
et~ 1 +——————T————. (18
g

Equation (18) gives the potential for the strong gravity field for the value p=0.
may be noted that exactly the same solution would result also for p = — 2.

We now try and solve eqn. (14) for a more general value of the variable p in the
region of p = 0 (the same thing holds also for values of p in the region of p =12,
Consider the eqn. (11), i.e.,

Lt i 2
P3Pk _rlp+ 12(p+ ).
In the absence of the coupling with the f-gravity field, we have
P 2@+ '
pe—g
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pon linearising the above equation, we have

Pt =2t @)
The solution of (19) is
p=ar? —1'-? e

2md b being constants of integration.

- p =2ar for large r.
grbstitute this value of p' in eqn. (14). Then we have

41/’ 3mi L 3 1k 71 24
A G G TR - G PR

Near p =0, this becomes, upon simplification,

w~3ﬁ’y/(l+2rl‘~.’e#\ fg/c<2” =0

Now we again substitute the asymptotic limit y = r for all the nonlinear terms of the
equation '
3 1rt vk

y" —§m,!// ~m, W(?.y/“ 7r4>+ ~ e #(2afr) =0

We then obtain
. 3 3, ak?

W —-ém}w:—-gm;r-}—z—q!é ‘ (21)

We solve (21) by making use of the same Green’s function given in (17).

Then we have been able to obtain our solution as

!l/r—*r-l—a’cxp( “/8m1) _ kﬁ

JS 2 e 3¢5 m

From the above, we can easily obtain,

3
e o2l o /5m) 2K gy @)

24l
/\/g myr 3¢t
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It is easily seen that (22) is identical to (18) as far as the first two terms 20, and
the only difference is the additional term

2a k3
3 (1)

which arises as a result of the coupling between the SO(3) gauge field and the f ~gravity
field. i

The case p = — | is not considered any further since it corresponds to the case of infiniie
energy and may not be of any physical significance.

4, Discussion

When there is no coupling of the f-gravity field to the SO(3) gauge field as for the cag
of p =0 or p = — 2, we get the potential for the f-gravity field as given by equ. (ig),
For very large r, i.e., r — co the second term vanishes, and lLence we have S
which is the correct asymptotic limit for flat space-time.

It may be noted that the second term of (18) can be identified with a Yukawadike
potential for the f-gravity field.

Next we have the case for a more general value of p, near p =0. For this cage
also, we get the two terms in (18), but in addition we have a term given by

—2a ki (1 ,
frerr ;) (see oqn. 22).

This term is proportional to 1/r, and arises as a consequence of the SO(3) am
F-gravity gauge fields being coupled to each other.

We would like to compare our results with those of Krive and Sitenko'®. Firstly,
they have not obtained the asymptotic limit e* — 1 for » = co and secondly, the
potential obtained by them does mot exhibit an Yukawa-like behaviour as is to be
expected for 2 field equation with mass term.

Further, our solution for the linearised p-equation, namely, p = ar? + b/r is more
general than theirs, and contains the solutions obtained by them in the asymptoti
limits,

A possible extension of the paper is to consider coupling of f-gravity to the SUQ}
gauge field.
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