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Abstract

The unsteady flow of a viscous incompressible fluid in a fixed parallel-plate channel, one of whose bound-
ing walls is a porous medium is considered in the context of the matching flow criterion of Beavers and
Joscph,  Flow due to time-dependent pressure-gradient of cxponentially decaying and periodic types
s been studied. The slip velocity has been calculated in particular cases.
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1, Introduction

The rectilinear flow of a viscous incompressible fluid through a two-dimensional channel
formed by a porous wall and a solid wall has been analysed by several investigators™3,
Swch flows are of importance in industrial, bio-physical and bydrodynanic problems.

In the study of the flow over porous bed, use is made of the bovndary condition
suggesied by Beavers and Josephl, for the permeable surface. This fluid motion is a
caupled one satisfying Navier-Stokes equations in the free fluid and Darcy’s law in
the permeable material and matching conditions at the nominal surface. The Poiseunille
fow has also been extended to the consideration of the flow of stratified fluid of variable
density and viscosity®-®. All the above investigations relate to steady flow.

Unsteady flow of viscous fiuid over permeable bed has been treated by Humt'.
Prakash and Rajbanshi? obtained the solution of the fluctuating flow of a viscous fluid
induced by a uniform fres stream. The present study is concerned with the vmsicady
flow of a viscous fluid in the channel under time dependent pressure-gradients of the
porentially decaying and periodic types. The velocity component due to the flow
ovr the permeable bed has been calculated and compared with the flow over the
wlid bed in the case of exponentially decreasing pressure gradient. The slip-velocity
tas been found for the flow due to periodic pressure~gradient. 8
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2. Formulation of the bomndary-value problem

‘We consider unsteady recillinear flow of a viscous incompressible fluid through a twg.
dimensional parallel channel whose lower boundary is a porous wall and the upper
boundary a solid wall. The porous medium comprising the lower boundary is taken
to be homogeneous, isoiropic and completely saturated. The coordinates along and
perpendicular to the channel are denoted by x and y respectively. Laminar ug.
directiona! flow is assumed to be set up by time-varying longitudinal pressure-gradient
in the channel and in the porous medium. The flow in the channel is governed by the
usual Navier-Stokes equation. In the porous medivm, the flow is governed hy Darey's
law. Walls of the channe] are horizontal and infinitely long to allow the physical
quantities to be independent of the axial coordinate. Velocity-field is assumed w
have only one component in the direction of x-axis. The velocity u and pressure p are
functions of x, y and ¢, ¢ denoting the time. Due to equation of continuity,

=u( D
=p (y: t).
The velocity-field # in the channel satisfies the differential equation
w__1dp  pdu ®
¥ pdx | pAyt

where p is the fluid density and g is the dynamic viscosity. When the external forcss
are absent, the filiration velocity is given by the relation® (p. 170)

in which k is the intrinsic permeability of the medium having the dimension of lengh
squared. Thus, V' is determined as soon as the pressure-gradient is given.

Following Beavers and Joseph!, we specify the boundary condition at the surfae
of the porous medium (which. is the nominal surface) by the relation
du A 7 '
\jk ~¥), y=0 G

where o is & constant depending only on the porous material and not on its strucwre,
Beavers and Joseph tabulated values of o for different materials (foametal and aloxiie)
of various permeabilities. R

The sesond '90“'0"13-TY condition is prov1ded by the no—shp condition at the uppe
bounding wall, ie.,

‘u=0 when y =k @
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1gt us now make eqn. (1) non-dimensional by using the dimensionless quantities

-

x y ’ u ’
—_ < =, ' =
=, N 7 " ik

’

k
g

??‘

Pt K= ®)
shere U is some characteristic velocity (e.g., the mean velocity).

Equation (1) now reduces to

wo_ w2
Yd =73 + n® (6)

where 1/y ropresents the Reynolds number Uhfv. It is evident that dp/dx’ is a func-
tion of ¢

The boundary conditions, in terms of the non-dimensional quantities become,

Du
NI \/k [ + = dx]forn——o (@]
u=0for n =1. ®)

4. Flow due to exponentially decaying pressure-gradient
Let us now assume that the flow is driven by an unsteady pressure-gradient given by
a’ 5,
— = Aexp (—~ A% 1) ()]

whete 4 and A7 are known real constants. We assume that the velocity is given by

d =4 f(n)exp(— 12¢). 10)

Equation (6) now becomes

2 1
&’ f+‘f -1 an
leading to the solution
v A iy A 1
f=A4 cosR/ly - B sin ;—/’—1; — gz a2

whete 4', B are functions independent.of 7.
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Boundary conditions for f follow from (7) and (8). These arc
df  a k7
&=l 7]
1 _ X
:aa‘[]‘~ /TTE:I for n =0 {m
< writion for L
where g is wrliten for N

and
f=0forp=1. (14

Determining 4°, B', by means of (13) and (14) and substituting in (12) we obtain

i Ay
1 15,008 = taa sm — —!w ad {1 -+ )sin - (1 - 17)
Fl =— V7 V7 < >

# 2 cos ; + aosin —
Vo8 s
{13)
Then,
w = Af () exp (— 22 t'). {18}
The slip-velocity is given by
U= Afexp(— 721" amn
where
sin 2 [
VY
7

If the bed of the channel had been impermeable the velocity profile would be given by

uw'* = Af* (nyexp (— 22 1t) @
with
f
f*(n) l \7, -+ smw (I s _1
sin {7

satisfying the conditions «'* =0 on #=0and n=1.
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The above result (18) follows from (15) when we make o ~ co; which means &' — 0,
In this case, the slip velocity indicated by (17) tends to zero.

The skin-friction at the surface of the porous medium is given by

oL df 5 r
= g — %t
() —a(i) w20

where
u.aﬁ,r ( 22 :l
—=|1—{1 J.— o
df) Ll 1) v . (19)
dnJomo B A €08~ -+ a0 sin -~
VTV

In the case of flow over an impermeable solid bed

. af* ,
=4 <71€1—>n=u exp (— A2t

where
4 (l —cos i)
= 1\ vy
== - . (20)
& Sy=o sin —2-
VY

From (20) it follows that the skin-friction is positive on the solid wall.

From (19) we find that the skin-friction is positive if
1—(1—}— 2cos—~>>0 2n

Assuming that the Reynolds number 1/y is small, we expand cos A/4/y in which we
teglect terms containing 1/y% (21), therefore, implies that ¢? > 2 for laminar flow.

5 FWow comparison for different values of 7

To sudy the flow in a channel with permeable bed and that in a channel with solid
bed we calculate u’' and u'* given by (16) and (18) We take A* =1°44, o = -1,
¢=10 and y = 100. Table T gives the values of « and «'* for different values of #
at =0,

fmm the results of the table we find that the effect of permeability is manifest in
ﬁl;mg tige to a slip-low on the bed which gradually diminishes as we move away from
bed,
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Table I
% wiA w¥j4
0 007521 ) 0
3 007222 -004501
-2 006823 008011
3 -006322 -001051
4 -005721 -001201
i1 -005019 -003252
-6 004216 001201
-7 -003312 -001051
-8 -002308 008011
-9 001204 - 004501
1 0 Q

In the case of flow over a solid wall, the velocity profile follows the parabolic law;
the velocity increases from Zero to its maximum value at the middle of the channel and
then decreases.

The magnitude of the flow-velocity in the case of flow over permeabfe bed is grester
than that of flow over solid bed.

6. Flow due to periodic presswe-gradient
We assume that the driving pressure-gradient is oscillatory and write

dp .
«Zx,c cos ! @

where @ is the frequency of the osciflation and ¢ is a known real constant.
It is convenient to use the complex notation and to imt /

dp it

~® e B @)

attributing physical significance only to the real part
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gquation of motion (1) then becomes

W u_ €
v e 24

W p

wiere v is the kinematic coefficient of viscosity.

We make cquation (24) non-dimcnsional by taking

J

e - - »
g=5. U =0y ==, 25)

Equation (24) becomies equivalent to

s 2

S 3,7" = e @6

where

_ v

= @
, 4

¢ = 7[—’2 . . (28)

pho

Fom (27) it follows that 1/y is the Reynolds number of the flow.

We take the velocily in the form

W {n,t) = C' Fin) . (29)

Substituting in (26), we get ihe differential equation

&F GF 1
proia (30)

lolution of the above equation is

F:pch(1+i)viz}l+£s/l(1+i):/”7y~_i. (31)

Boundary conditions are

dF
7,5=‘1"|:F‘y71;2] whenl # =0 (32)

F=90 when 7 = 1. (33)
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These boundary conditions determine F and give
S

HAVRS

iy g M

__;/—2;_4/1(‘ -rz)A\-/r-‘ biag shit - 1) — \/2 —,—a.a(l : W)Sh_ﬁ

{ ~n)

L4+
P )
\/2/ v2y st

Taking real part of the above expression, we obtain
u *(1 sin 7’ +]%,cost

(cf. Ref. 9)
where

2L - T_ o -
y o= - [cl \/2,03 oy V2f LOS\/Z? sh\/ Sm\/27

n it/ A R
4 51z ch x/2y)TSh 73 sin \/23) (c/z \/2 sm

R Sl PO ek I A_—J-l:_'tl
cos 1/7)} h«/Zy COS§ ~—p— T, + ch T sin ver

- ch— (- cos 1

1 H 1 . 1
sh— 5 C0S —a +ch o, 8N —e—
b < 3 S Vay T 2y «m)

- sh

I ! 1
- Sl —— \/2’ sin — \/2/ (alz 1/2 sm\/ 5 — sh \./«Zj-vos VZ}—)]

+ fr - i (s, COS —m ,ch sm———-» clz——
v’;[“vZ' Vi szy «/27 \/2y+ V3

(34

(35

sin \—/li:_l

l
— sm

. a } — 1 1—n
TV [eh ——’24/ COS —=— ,7/ kch \/2 ! sin —\727 —sh 727005 T /)
1 1 - -1 1—1y '
- — Vs \/21, (ch ’Zy sin —\7—2—? + shT cos \/72 \)J
gt sh -, —cos h—— L
T [S Va5 95 oy (90 05 Ty b Sy leos

i .
+ chm si

TGP R | - ]
nv’Zy (ch V2 sin 2y +c71 \/ sln\ﬂy}

——[ch \/2}’ sm \/ 1 sin V27 COS\/Z,;

I—n i~
_ sh =0 N
sh=755 cos v?ﬂ/ ch — \/27 sin. V5 ] (36)
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=1 ch—1_cos— b
r=y V27 \/ \/2}’ \/2?’

+sh

P b I

ad
9 [y (/1
rh/Zyl:“\/Zw V2y \" 2y «/2/

—1
‘}—sh '\/7 COG T/QV

— §h——— sin
V2y

\/23' o
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M h —-l-cos —1~]
V2T 2y T 2y
1—
T P |
% 2)’+c w/ly R

. 1 n
o ) .7
15—\/2;) cos V2 (c]z T sin r

BNV BT Sk BN ek R Sk DOV Sl
—sh 3y Sy \/2y Ty TV Sy,
+r/1~—-co>\/2y Kd \/,) s1n\/1y~sh 005\/2)1)

n_
I /
sk A2y st V2y KC ! ’\/2)/ S0y «/23’ T \/231 €08 \/2)))]

Sll’l

- [gh 1 Sin —=— ((lz
9o /27 /2y \/2V w/%
+ ch cos \/Zy (clz \/2 T sin —\727) + 3/?
aal g ] n
— alg [sh VT cos sz <ch \/2y \/21)
— el 1 sin —z— (Ah 08— -+ .sh
vy \/23' V27 \/21’ «/

) o g —H 1—
t [sh o] cos sh—— sz cos 1/23}

+ ch 1/2 Tsin L 2;1 ch —\—/2—} sin 7\72?] (37)
N ==~ ‘:ch‘ 735 cos? \/ - - sh? \/27] sin? \/}2—};]

+ o’ o? [ch2 Vi sin® \/ +- sh® \/2}’ cos? \/Zy]

+3§—2 aa [ch 7oy sh +x,os \/2 sin \/12})] (3?8}‘

1
+-ch

—7g 1-11)
e G |
\/2Y n\/Zy

~ L -5 I —y
— ST e — 1
'\/2}' 5 ’\/27] CO8 —\/2}/)

Yoo )

x/2"/ ﬂ

on the surface 5 =0, we denote (x),,so and (l//)q:o by 7, and y, respectively. We got
. s

xzﬂl»ch ! cos }
TV «/2y

1
o sh s 008 s cb s sin «/2/]
1h8c—4

sin — sz LOS'\/

!
Ty «/27 «/2,?7
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@ 1 . 4~1‘_ Y l/ 1‘
-+ y—ux/’ﬂ) cos i) sin 5 ch T sh \ﬁf]
o s b sk
+ aZg? [s/z- '\/T cos? V - +ch e sin? m] ®)
=1 i L $in e ! [ §t —m— L ~— sin - ._L
Vo=t Uy 2y \/Zy \/27 (Ve \/Zy ST
A —e— SIR —— L —L{l
Ty «/2 "7 \/Zy o873y
sm ﬂl

1
. [:2
TV [”’ v ¢ vz oS Ty \/2 7]

a?

; 1“2,}”-11] ‘
77[ «/7 008t Ty Tz Y T o)
Siip-velocity is given by

us(l smt+-cosr
For y = 100, « = *1, ¢ = 10, we have,

%o = 0400001,  y, = 0001999
N = -1059694.

Hence, the slip-velocity for Reynolds number -01 is
+62235316 sin ¢' -+ *0018864 cos t'.

In particular, the velocities at the end of time-instants 2nm, (20 1 H=, (22 BT
(2n +3) = where n is a positive integer, are given as follows :

t u
mn 0018864
@+ -6225316
@2n 4+ Hn - 4415352

Cn+Hn -4388574
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