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Abstract 

A symmetric solution X of the mathx equation XA =A' X is called a symmetrizer of (an arbitrary 
~xr ix)  A. A symmetrizer reduces an apparently nonsymmetric matrixeigenvalue problem into a 
r,mmetric one. Here we present an  implementation of p-adic arithmetic on the Datta method for 
mmputing a symm2trizer exactly. 
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1. Introduction 

A syrnmetrizer'-2 of an arbitrary square matrix A is a symmetric solution .X of the 
matrix equation XA = At X, where t indicates the transpose. Symmetrizers are useful 
in the (nonsymmetric) matrix eigenvalue problems and in the stability problems of 
Control Theory. Computation of eigenvalues is easier for a symmetric matrix than 
for a nonsymmetric matrix. A symmetrizer reduces an apparently nonsymmetric eigen- 
value problem to a symmetric one as given below. 

1 .1 .  A symmetrizer for fronsformtwn into o symmetric eigenvalue problem 

kt A be a gweu nonsymmetric matrix. If there exists a positive definite syrnmetrizer 
X for A then the nonsymmetric eigenvalue problem 

Ay = 2y (1) 

be transformed into a bymmetric elgenvalue problem 

Bx = I x  (2) 

*-menf of Mathematics, St. Joseph's College, Bangalore 560 081, India. 
, . 

1dSc.-1 117 



118 S. K. SEN AND N. R. JAYARAM 

as shown below: 

From (1) 

cy = a x y  

where C = XA. Now X = S'DS where St = S-I and D is diagonal. 

Let G = SCS' and F = Sy. Then 

GF = SCS' Sy = SCy = IDF. 14) 
If d,, > 0 for all i then we have D = D: for some Dl. Thus we have, from (4), 

GF = 1D1DlF or D;' GF = 1D,F or D;' GD;'D,F = ADIF. 

Let D;I GD;' = B and D,F = x. Then (1) becomes 

Bx = Ax (9 

where B is symmetric and real. 

1.2. Symmetrizer for computing zeros of a poIynomial 

A syrnmetrizer can be used to obtain the roots of a polynomial equation4.:. Ms is 
achieved by symmetrizing the companion matrixS of the polynomial and then corn* 
ing its eigenvalues by a matrix method. 

1.3. Existence of a symmetrizer 

There always exists a symmetrizerl for a nonderogatory matrix A. An n x n matrix 
is maderogatory if and only if its characteristic polynomial (which is of degree d 
is the same as its minimum polynomials. 

1.4. Transfoormation info ~esseaberg form 

An arbitrary nonsymmetric matrix A can be transformed into a lower Hessenberg 
forms,8 B ( A  and B having identical eigenvalues since the transformation is of simi- 
larity type). It is assumed that B has nonzero codiagonal. This assumption does 
reduce the generality. 

1.5. Algorithm and arithwtic used 

Ib&d and Farcells were the fist to  propose a numerical procedure (though not 
smble in general) for computing a symmetrizer of an arbitrary matrix. Here we con. 
si&r an algorithm due to Datta2 for computing a symmetrizer of a real matrix (lowa 
Hessenberg). 

It is important to obtain an error-free symmetrizer. Often numerical in*biiig 
of an algorithm used and errors involved for a given matrix are beyond toleram 
Here we employ p-adic arithmetic7.8 for error-free computation of a symmetrizer 
describe it for convenience. A criterion for the selection of a prime base P and ' 
number of digits r to  be involved in representing a quantity (in p-adic form) is mi' 
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we describe the computation of the global denominator. Its knowledge is 
,mssary for converting p-adic output to  rational output. It is interesting to note that 
in the Datta method of symmetrization of an integer (Hessenberg) matrix the global 
denominator undergoes no modification even during p-adic m~l t ip l i ca t ion /d i~ i~ i~~ .  

z Steps for exact computation using p-adic arithmetic 

kt there be a numerical problem that involves a finite number of arithmetic operations. 
Since a digital computer works with finite length numbers in n-ary scale where n is any 
positive integer (say 10) called the radix or base, our input data are always rational 
numbers. We assume the rational input data to be exact. 

step 1. Choice of prime base p and number of digits r .  Choose a prime base p and a 
positive integer r such that the largest magnitude number (that arises while executing 
a numerical algorithm for solving the said numerical problem) is less than or equal 
to ,/((p' - 1)/2). The condition is sufficient. 

Remarks : (i) This allows a negative number to be represented in complement form 
uniquely. 

(i) Choice of p and r depends on the given numerical problem and the algorithm 
to solve it. 

(iii) Step 1 requires a method to be devised to  obtain a small (preferably the smallest) 
number greater than or equal to the largest magnitude number (which the algorithm 
produces). 

Step 2. Store the p-adic from of (a positive integral multiple of) the LCM of the 
denominators (positive) of all the input rational numbers in a location called Global 
Denominator ' GLODEN '. Encode all the input rational numbers (both negative and 
pnsitive, assuming a negative sign is attached to a numerator only) to p-adic numbers. 

Remark : Since the denominator is a positive integer, its p-adic representation has an 
axponent zero. 

St@p 3. Execute (using the p-adic arithmetic) the numerical algorithm whose input 
data are: (i) the p-adic numbers and (ii) the GLODEN. Update the GLODEN, if 
msary ,  whenever there occurs a p-adic mnltiplication/division. 

Renarks : (i) In a p-adic addition/substraction GLODEN remains unchanged. 

(li) For the modification of the GLODEN a knowledge of the denominators d the 
w d s  is essential. Since the operations are performed in p-adic arithmetic, the 
denominators are not explicitly known. Therefore, whenever a modification of the 
GmDEN is required, the operands must be converted to their rational forms using 

current GLODEN. 

Step 4. Decode the p-adic output to rational form using the GLODEN. 
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2 . 1 .  Encoding ~,atiunak input fo p-a:&c &at (Step 2) 

Let p and r be known from SLep 1 .  Alw, let the usual symbols (like +, -, , . j i  ,i 
real arithmetic be the symbols for p-adic opcrdtions (add, subtract, multiply, divide, 
as long a5 operands are p-adic numbers. 

.Sub.~bsrc.p 2. GLODEN +-p-adic form of the LCM. [Let the LCM be q,. rhzn its 
p-adic form is .s,s, . . . s, ~ l l e r c  r, = poiitive remeindor of q,., tp, i = i t i l r ;  

(0 < s, < p). q, = pssitivi? quotient of q,- ,  + p ,  i - l (1) r - 1.i 

substep 3. Convert the numerator and the denominator of each rational inpu! into 
form in the same way as ill Substep 2. if  tile numerator has a negative sign 

then consider, for the numcraLor, its colnpkmWIt, vii., " p ' n u m e r a i o r  " before con. 
Divide the p-adic numerrtor by the p-adic deilon~inator using p-adic division 

(ses p-adic arithmetic See. 2.3). 

N O ~ L ,  : The input data are rhus (i) the p-adic form of all rational input data, and [ii, 
the GLODEN. 

2.2. Updating .gJobnl denominator GLODBN (Step 3) 

p-adic addition/subtraction (+/-) do not alter the Global Denominator GLODEN. 
p-adic multiplication/division, however, may alter tht: GLODEN. 

For each integer a, where 0 < a < pr - 1: define 

u ( a ) - a i f ~ < a < g A  , v ( a ) = a - p ' i f g l l < a < p ' - - i .  2 (6) 

Also. for each mantissa part m, = . s,s, . . . s, of a p-ddic nunlbcr a = m,Ee. define 

I (m,, = 'y s,p'. 
i=z  

(2  

(i) GLODEN after a multipliration : Let a = ma&, and fj = mpEe,9 be two p-adit 
number$ to be multiplied. Compute 

1 
ii = [u (I (ma . GLODEN))] -- 

PC' 

f i  = [ti (I (mp GLODEN))] I 
p4e- 

G ~ N  = I (GLODEN) 
Compute 

a' = GCD (6, ~ i ~ )  

fl+ = GCD @, G m )  

G = GCD ( G m N I a + ,  CX~E%N/,~'+). 
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L f ~  = 1 then GLODEN does not alter. Otherwise, GLODEN 6 GLODENY p.adic form 

sf G. 

,pmi&s : (a)  GLODEN/a+ is the denominator of a. 

(b)  G-N/,B' is the denominator of 8. 
tiii GLODEN @er. a division : Let a = m,Ee, and 0 = !ngEeg be twu p-adic numbers. . is :O be divided by P. Here 

GLODEN t p-adic form of LCM (G-, p / p )  (10) 
G-, p, / j -  are ns defined in (I) of Sec 2 2. 

2.3. p-adic ariihmelic (Steps 2 and 3) 

usual symbols like + , - : . , / r e p w m t  respectively the p-adic add, subtract, 
;nuitiply, and divide operations, as long as the operands are p-adic numbers. Let 

52 three p-adic numbers where nl,, mg and n?, are mantissas and e,, e6, ey are expo- 
nents. Also, let p be the prime base and r be the number of digits rztained in a 
mantissa. 

{i) p-odic addition ( y  = a + fi) : Let 

Shift s,'s by r, = e, - ep places to the left. Then carry out p-adic addition on these 
mantissas in the same way as in the finite field arithmetic with prime base p. The p-adic 
psmt will then be shifted before the leftmost digit of the result. Let this result now 
be called m,. Any carry beyond r digits is neglected. 

Exampie : Let a = -30000000 El, ,8 = .21313131 EO. Compute y = a  + a. 
Here p = 5 ,  r = 8, m, = .30000000, mp = ,21313131, e, = 1, eB = 0 

shifted m, = 3.0000000 

mB = ,2131313 

m, = .32131313 

(ii)p-arfie subtraction ( y  = a - p): The process of padic  subtraction i s  similar to &at 
af padic addition. 

h d e  : Let a = -30000000 El j = -33131313 EO. Compute y = a - 8. 



122 S. K. SEN AND N. R. JAYARAM 

Here p = 5,  r = 8, m, = .30000000, .em = 1, mg = .21313131, ep = 0 

shifted m, - 3.0000000 

mg = .3313131 
- 

m, = ,32131313 

e, = e , - e , g = l - O = 1  

Hence y = a - 0 = -32131313 El. 

(iii) padic multiplication ( y  = cr . 8) : Here exponents are added as in the floating point 
multiplication (real arithmetic). So e, = c, + eg. Mantissas ma and mg are muItip& 
in almost the same way as in the finite field arithmetic. The p-adic point is shifted 
before the bftmost digit of the result. This gives my. 

Example : Let a = -32222222 EO, 8 = -32131313 El. Compute y = a. 8 

e, = e a t e k = O + l = l  

Hence .i = a . 0 = - 43040404 El. 

Note : In p-adic multiplication/division we cannot write -43040404 El = 4,3040434 
t i e  a floating point number. 

(iv) p-adic division (y = a/B) : Here exponents are subtracted as in the floating PO& 
division (real arithmetic). So e, = e, - eg. m, is dividzd by mg in almost the 
way as in the k i t e  field arithmetic. 

If mg has k zeros at the leftmost side then m, i s  divided by the p-adic number which 
is 'q without the k zeros '. k zeros are then appended before the leftmost digit ofthe 
quotient and after the p-adic point. This gives m,. 

Exmlples : Let a = -23431 013 EO, B = -32131313 El. Compute alp 



MATRIX SYMMETRIZER USING P-ADIC ARITHMETIC 

e v = e a - e p = O - 1 =  - 1 .  

Kence 7 = a/b = .4123234O E - 1. 
Leta = .331313 E0, j = ,030313 E0. Compute a/fi 

Here p = 5, r = 6, m, = .331313, e, = 0, mg = .030313, eg = 0. 
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Hence y = a lp  = -011111 EO. 

Note : When there are five digits in the divisor, there is no needto consider moz 
than 5 digits of the dividend. 

2.4. Decoding p-adic output to vutionaI form (Step 4 )  

Let a = m,Ee, with GLODEN g be a p-adic output. Then 

PJ (I(% . g))l (llpC) rational form of a = ----: - - --- 
~ l a -  (1% 

(also, see Sec. 2.2) where, for each integer a, 

For m, = . slsz . . . s, of a 

I ( m 3  = .Z ap' 
'-1 

f = I(g) 

a+ = GCD (E, g). 
Note : g/a+ is the denominator of a (in rational form). 

3. The Datta algorithm 

Let B = (b,,) be the given n x n lower Hessenberg matrix with nonzero cod~agonai. 
Let x,, x,, . . ., x. be the rows of a symmetrizer X to  be computed. Then 

Step 1 : Choose x,# 0 arbitrarily. (To ensure nonsingularity of X, choose an r. d 
the form (c 0 0 . . . 0) where c#  0). 

Step 2 : Compute x.-,, x .-,, . . ., x, recursively from 

i = n - 1 ,  n - 2  ,..., 2 , l .  

Step 3 : Print x,, x,, . . ., x, and stop 

4. Choice of prime base p and number of digits r 

Let the lower Hessenberg matrix B have (negative and/or positive) integer eleme~t, 
with nonzero codigonal. This does not reduce the generality. From the Datta 
algorithm (Sec. 3). 

1 
x,-l = ----- (x,B - b,x3. 

b ,  , 
Choose x. = (I 0 0 . .  . 0). Lrnorms of x.-,, viz., 
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~h~~ the largest magnitude element in x,-, is less than or equal to  the right hand side 
in (18). The factor 2 is due to the addition or subtraction of two 
viz., x,B and b , , ~ . .  

Again from the Datta algorithm 

Hence, choose p and r such that 

Note : The choice of p and r is not unique. However, p and r are so chosen that 
c / ( (p '  - 1)/2) is the smallest positive real number satisfying (21). 

5. Invariance of denominator 

In the Ddtta algorithm a global denominator GLODEN (for an integer matrix) can be 
computed in the beginning once and for all : 

I-1 

GLODEN t p-adic form of II b ,  
i-l 

(22) 

This results in considerable reduction in computation and complexity 

Note : In fact, we require here the computation of 

- -1 
GL0DEI-J + b', '+I 

Oaly, although in the numerical example we actually compute GLODEN and then 
GL~DEN as a matter of: illustration. 

6. Neaericd example 

Compute an exact symmctrizer for the matrix (Lower Hesstnberg) 
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Since the elements of B arc integers. it is clear from the algorithm that 
"-1 

GLODEN = 11-aaic form of Il b,, < ,  , 
1-1 

and thar during p-adic rnuitrplication~divisioll it undzrgocc no modification, 

Note : If the clznlenls ilf Bare  (nonintegral) ratiorral numbers then multiply B b, 
scalar matrix whose fi, i)-rh elements are the LCM of the denominaLors of ail the 
elements. This results in an integer matrix. Colnpute a symmetrizer of tha integer 
matrix. Multiply this symmztrizer by the scalar matrix to obtain a symmetrizer of 8 

Let max. coi. sum = max 2 , h,, 1 = 6. , .=I 

n.(max. col. sum)"-I = 3 x 6' - 108 

Therefore p 3 5 and r - 7 'ivill serve our purpose since 

y'((pr -- 1112) = -\, ( ( 5 ;  - 1)/2) 2 108. 

Choose x, - (1 0 0). 

(i) Encnriing [he inpzrt data into p-adic jovm : 5, in p-adic form, is 

x,, In p-adic form, IS 

r; = (. loooooo EO 0000000 EO ~0000000 EO) 

The global denominator GLODEN is given by 
.-I 

GLODEN = p-ad~c form of n h,, , ,, 
rl 

= p-adic form ol' 1 x 2 = -2000000. 

Note : The global denominator is always a positive number as we attach the nega- 
tive sign (if any) to the numerator only. Thus GLODEN has always an exponent 0 
(viz.. EO) and we do not write EO at  all. 

, . . . 
(ii) Executing the Dotta Algorithm using p-adic arithmetic : 

< = 2- (fa F - bi8 xi) 
'b;a 

= (-3222222 .3222222 EO .0000000 EO) 

4 = -'_ (& X - b;, x; - b;, x;) 
b;, 

= (.OOOOOW EO .3222222 EO .1000000 EQ). 
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conyerting p-ucliiic outp~lf doto lo  rational f o m  : Converting the p-adic 
u;, .<, I; into rational form we obtain x,, x,, x, as follows : 

:;, = .0000000 EO = n?,Eea. GLODEN - .2000000 

my = nza x GLODEN = .0000000 x -200000 = .0000000 

G I . O D E ~ = ~ ~ ~ ~ ~ O ~ ~ ~ O X ~ ~ O X ~ ~ + O X ~ ~ + O X ~ ~ + O ~ ~ ~  

= 2. 

v (c-) - 2 sincc GLODEN < ( p r  - 1)/2 : (57 - 1)/2 

(This is always the case). 

I ( m , ) = 0 x 5 ' + O x 5 1 i 0 x 5 ~ - - . . + 0 x 5 G = 0  

v (I (m,)) = 0 since n r , ~  (p' - 1)/2 = (57 -- 1)/2 

Since e. = O, pea = io = 1. 

.I& = .3222222 EO = m,Eea, GLODEN = .2000000 

nz, - m, x GLODEN = - 3222222 x -2000000 = .1000000 

As becore, v (GLODEN) = 2. 

I ( m y ) = 1 x 5 ~ + 0 x 5 1 + . . . + O x 5 6 = I  

v (I (m,)) = 1 since m, (pr -- 1)/2 = (57 -- 1)/2 

Since em = 0, pea = 50 = 1 

Similarb we can obtain x,,, and x,, s,. Hence, the syrnmetrizer 

The work reported here was mostly carried out in the University of the West Indies, 
Cave Hill, Barbados, during November 1975-January 1976. 
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