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Abstract
A symmetric solution X of the matrix equation X4 = 4* X is called a symmetrizer of (an arbitrary
mattix) 4. A symmetrizer reduces an apparently no: tric matrix eigs lue problem into a

symmetric one. Here we present an implementation of p-adic arithmetic on the Datta method fot

computing a4 symmgatrizer exactly.
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1. Introducticn

A symmetrizer™3® of an arbitrary square matrix 4 is a symmetric solution ‘X of the
matrix equation X4 = 4° X, where ¢ indicates the transpose. Symmetrizers are useful
in the (monsymmetric) matrix eigenvalue problems and in the stability problems of
Control Theory, Computation of eigenvalues is easier for a symmetric matrix than
for 8 nonsymmetric matrix. A symmetrizer reduces an apparently nonsymmetric eigen-
value problem to a symmetric one as given below.

LL A symmetrizer for transformation into a symmetric eigenvalue problem

Let 4 be 2 given nonsymmetric matrix. If there exists a positive deﬁmte symmetmzer
X for 4 then the nonsymmetric sigenvalue problem

Ay = 1y )
@an be transformed into a symmetric elgenvalue problem
Bx = Jx 2
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as shown below:
From (1)
Cy = AXy o
where C = X4. Now X = §* DS where §* = S~* and D is diagonal.
Let G = SCS* and F = Sy. Then
GF = SCS* Sy = SCy = ADF. @
If d; > 0 for all i then we have D = D% for some D,. Thus we have, from “,
GF = j\D\D,F or Di' GF = AD/F or D;* GDT* D\F = \D\F.
Let D* 6D = B and D, F = x. Then (1) becomes
Bx = ix &

where B is symmetric and real

1.2. Symmetrizer for computing zeros of a polynomial

A symmetrizer can be used to obtain the roots of a polynomial equation®%. This is
achieved by symmetrizing the companion matrix® of the polynomial and then comput-
ing its eigenvalyes by a matrix method.

1.3. Exist of & sy trizer

There always exists a symmetrizer! for a nonderogatory matrix 4. An n x n matris
is nonderogatory if and only if its characteristic polynomial (which is of degree rf
is the same as its minimum polynomiald.

1.4, ZTransformation into Hesseﬂﬁerg form

An arbitrary nomsymmetric matrix 4 can, be transformed into a lower Hessenbers
form®$ B (4 and B having identical eigenvalues since the transformation is of simi-
larity type). It is assumed that B has nonzero codiagonal. This assumption does not
reduce the gemerality.

1.5, Algorithm and arithmetic used

Howland and FarrelP were the first to propose a numerical procedure (though ot
steble in general) for computing a symmetrizer of an arbitrary matrix. Here we cor
sider an algorithm due to Datta? for computing 2 symmetrizer of a real matrix (lowsr
Hessenberg).

It is important to obtain an error-free symmetrizer. Often numerical instability
of an algorithm used and errors involved for a given matrix are beyond tolerane.
Here we employ p-adic arithmetic:® for error-free computation of a symmettizer and
describe it for convenience. A criterion for the selection of a prime base p and &
number of digits r to be involved in representing a quantity (in. p-adic form) is described.
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We also describe the computation of the global denominator. Its knowledge is
gecessary for converting p-adic output to rational output. 1t is interesting to note that
in the Datta method of symmetrization of an integer (Hessenberg) matrix the global
denominator undergoes no modification even during p-adic multiplication/division.

2. Steps for exact compntation using p-adic arithmetic

Let there be a numerical problem that involves a finite number of arithmetic operations.
Since a digital computer works with finite length numbers in n-ary scale where n is any
positive integer (say 10) called the radix or base, our input data are always rational
qumbers. We assume the rational input data to be exact.

Step 1. Choice of prime base p and number of digits r. Choose a prime base p and a
positive integer r such that the largest magnitude number (that arises while executing
2 numerical algorithm for solving the said numerical problem) is less than or equat
to v((p' — 1)/2). The condition is sufficient.

Remarks : (i) This allows a negative number to be represented in complement form
uniquely.

(ii) Choice of p and r depends on the given numerical problem and the algorithm
to solve it.

(iiiy Step 1 requires a method to be devised to obtain a small (preferably the smallest)
mmber greater than or equal to the largest magnitude number (which the algorithm
produces).

Step 2. Store the p-adic from of (az positive integral multiple of) the LCM of the
dezominators (positive) of all the input rational numbers in a location called Global
Denominator * GLODEN . Encode sll the input rational numbers (both negative and
positive, assuming a negative sign is attached to a numerator only) to p-adic numbers.
Remark : Since the denominator is a positive integer, its p-adic representation has an
exponent zero.

Step 3. Execute (using the p-adic arithmetic) the numerical algorithm whose input
data are: (i) the p-adic numbers and (i) the GLODEN. Update the GLODEN, if
necessary, whenever there occurs a p-adic multiplication/division.

Remarks : (i) In a p-adic addition/substraction GLODEN remains unchanged.

(i) For the modification of the GLODEN a knowledge of the denominators of the
operands is essential. Since the operations are performed in p-adic arithmetie, the
denominators are not explicitly known. Therefore, whenever a modification of the
GLODEN is required, the operands must be converted to their ratiomal forms using
the current GLODEN.

Step 4. Decode the p-adic output to rational form using the GLODEN.
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2.1, Encoding rational input to p-adic input (Step 2)

Let p and r be known from Step 1. Also, let the usual symbols (like +, - Nt
real arithmetic be the symbols for p-adic operations {add, subtract, multiply, dilvid;;
as long as operaunds are p-adic numbers. T

Substep 1. Compute the LCM of the denominators of all rational input data,
Substep 2. GLODEN + p-adic form of the LCM. [Let the LCM be 4o Then its
p-adic form is .8, ... 5 where s = positive remainder of g,y < p ;= i
0 <'s; < p). g, = positive quotient of ¢, T p, 7= 1 (Hr — 1] ’
Substep 3. Convert the numerator and the denominator of each rational input int
p-adic form in the same way 25 in Substep 2. If the numerator has a negative sign
then consider, for the numerator, its complement, viz., * p" — numerator ” before cop-
varsion. Divide the p-adic numerator by the p-adic denominator using p-adic division
(sez p-adic arithmetic Sec. 2.3).

Note : The input data are thus (i) the p-adic form of all rational input data, and (i
the GLODEN.

2.2. Updating global denominetor GLODEN (Sitep 3)

p-adic addition/subtracticn (+/—) do not alter the Global Denominator GLODEN.
p-adic multiplication/division, however, may alter the GLODEN.

For each integer ¢, where 0 < a < p” ~ 1, define

L. r
u(a):aimsas’iz“, v(ay=a—p it‘Li Veasp—-1. @
Also, for each mantissa part m, = .535, - .. s, of a p-adic number « = m [e, define
T(mz) = 1‘2 s.ph ¢
=1

(i) GLODEN aftér a multiplication : Let o = m,Ee, and f = mgEeg be two padie
pumbers to be multiplied. Compute

@ = [v (I (m, - GLODEN))] ;1,:

B = [v (I (ms - GLODENY)] ;7,§~ &
GLODEN = I (GLODEN).
Compute .
at = GCD (a3, GLODEN)
B+ = GCD (B, GLODEN) @

G = GCD(GLODEN/st, GLODEN/A+).
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1G = 1 then GLODEN does notalter. Otherwise, GLODEN « GLODEN » p-adicform
of G.

(2) GLODEN/u is the denominator of «.
(b GLODEN/g+ is the denominator of f.

Remarks :

it GLODEN after a division : Let o = m,Ee, and f = mgEeg be two p-adic numbers.
2 is to be divided by 8. Here

GLODEN « p-adic form of LCM (GLODEN, B/g+) (10)
shers GLODEN, B, B+ are as defined in (i) of Sec. 2.2.

2.3, p-adic arithnetic (Steps 2 and 3)
Lt usual symbols like +, —, .,/ tepresent respectively the p-adic add, subtract,
suitiply, and divide operations, as long as the operands are p-adic numbers, Let

a = mgFEe,, = mpgEeg, v = myLe, an
be three p-adic numbers where mg, mg and m, are mantissas and e,, eg, ey are expo-
nents. Also, let p be the prime base and » be the number of digits retained in a
mantissa.
ti) p-adic addition (y = o + p): Let

Hlg = 8182 -+ 8,

mg = .Lify... 1,

e > €g. (12)
Shift s's by ey = e, — eg places to the left. Then carry out p-adic addition on these
mantissas in the same way as in the finite field arithmetic with prime base p, The p-adic
point will then be shifted before the leftmost digit of the result. Let this result now
be called my. Any carry beyond r digits is neglected.

Example : Let o« = -30000000 El, B = -21313131 E0. Compute y = o + f.

Here p =35, r = 8, mg = -30000000, mg = 21313131, ¢, =1, g =0

shifted m, = 3-0000000
mg = -2131313

oy = -32131313
ey =e¢—e'g=l~0=l.
Heace y = o + B = -32131313 El.
Gii} p-adic subtraction (y = a ~ B):
of p-adic addition.

Exgmple © Let o = -30000000 El1 # = -33131313 E0. Compute » =a — 8.

The process of p-adic subtraction is similar to that
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Hete p= 5, r =8, mg = -30000000, e, = 1, mg = -21313131, ez =0
shifted m, = 3-0000000
mg= 3313131

my = -32131313
ey =g, —eg=1-—-0=1
Hence y = o — f = -32131313 ElL.

(iii) p-adic multiplication (y = « - f) : Here exponents are added as in the floating point
multiplication (real arithmetic). So ey = e, -+ eg. Mantissas m, and myg are multiplisd
in almost the same way as in the finite field arithmetic. The p-adic point is shifted
before the leftmost digit of the result. This gives m,.

Example : Let o = -32222222 EO, f = -32131313El. Compute y =a. f.
Here p = 5,r = 8, my = 32222222, ¢, = 0, mg = -32131313, ez = 1.

my = -32222222

mg = -32131313

42222222
1000000
322222
42222
3222

422

32

4

my = -43040404
ey =¢g teg=0+1=1.
Hence y = a . f = -43040404 El.

Note : In p-adic multiplication/division we cannot write -43040404 El = 4-304040¢
like a floating point number.

(iv) p-adic division (y = off) : Here exponents are subtracted as in the floating pois:
division (real arithmetic). So ey = ¢, ~ eg. m, is divided by my in almost the same
way as in the finite field arithmetic.

If mg has k zeros at the leftmost side then m, is divided by the p-adic number which
is *mg without the k zeros’. k zeros are then appended before the leftmost digit of the
quotient and after the p-adic point. This gives iy,

Examples: Let o = -23431013 E0, § = -32131313ELl. Compute a/f.
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e p =5 7= 8 ma = 23431013, ¢, = 0, mg= -32131313, ¢ =1.

ms Mg My
+32131313)- 23431013 (-41232340
20131313

3300244
3213131

141013
103131

43321
42444

1421
1031

444
424
20
20

0
0

ey=¢€ —eg=0-1=—1
Hence 7 = aff = 41232340 E — 1.
Leta = -331313 B0, B = -030313 E0. Compute a/f.
He p=35, r =6, my = 331313, ¢, =0, mg = -030313, eg = 0.
mg Hg mey
-30313)-33131 (-11111
30313

3313
3031

331
303

33
30

3
3

ey=eq —eg=0—0=0.
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Hence y = a/f = -011111 EO.

Note : When there are five digits in the divisor, there is no need to consider mor
than 5 digits of the dividend.

2.4. Decoding p-adic output to rational form (Step 4)

Let @ = myEe, with GLODEN g be a p-adic output. Then

L
rational form of a = [EQ@JE/?_)]M (3
(also, see Sec. 2.2) where, for each integer a,

v@=aif 0<a<ZS v@=a—pit@-D2<a<y-1 @

For my = .585...5, of a

I(my) = _2'7 spt {15
z=1(g)
at = GCD (&, ). {16

Note : gfa* is the denominator of a (in rational form).

3. The Datta algorithm

Let B = (b;;) be the given n x n lower Hessenberg matrix with nonzero codiagona.
Let x;, X5, - - -, X, be the rows of a symmetrizer X to be computed. Then

Step 1 : Choose x,# 0 arbitrarily. (To ensure nonsingularity of X, choose an x, of
the form (¢c00 ---0) where ¢ 0).

Step 2 : Compute X,.y, X, .-, X; tecursively from

1
Ky = g Oreax B = bpa,craXiss — byps, vi1Xere — -+ — By s4sa) m
1, 441
i=n—1,n-2...,2,1
Step 3 : Print x;, X,, ..., %, and stop.
4. Choice of prime base p and number of digits r

Let the lower Hessenberg matrix B have (negative andfor positive) integer elemeats
with nonzero codiagonal. This does not reduce the generality. From the Dafia
algorithm (Sec. 3).

1
R (x,B ~ byyx,).
Choose x, =(L 00...0). Lenorm® of x,.,, viz.,

| Xpe1 1< 2(rr]1ax 2_:'1 1 b4 {1 )/Bacs, o since | every element of x, < 1. 1]
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Thus the largest maguitude element in x,_; is less than or equal to the Tight hand side
expression in (18). The factor 2 is due to the addition or subtraction of two
numbers, ¥iz., X.B and b,.x,.

Again from the Datta algorithm

1
Xy = B (X B — bn»l, n1Xp-1 — bn, w1 X )
a2, n=1

Hence,

[ Xpea 1€ 3 (max X [ by [2(Dees, yry na)- (19)

1 1=1

Similarly,

B Xpg 115 4 ("}"-X ‘Z; | Bay | Y2 [(bus, wBucs, n1Da—s, n2) (20)

Hence, choose p and r such that
V-2 zn (miax E j by 1t 2D

Note : The choice of p and r is not unique. However, p and r are so chosen that
¢ ({(p — 1)/2) is the smallest positive real number satisfying (21).

5, Invariance of global denominator

In the Datta algorithm a global denominator GLODEN (for an integer matrix) can be
computed in the beginning once and for all :

GLODEN « p-adic form of TI b, (22
il

This results in considerable reduction in computation and complexity.
Note : In fact, we require here the computation of

JU— i

GLODEN « 0 by, ¢

iml

oaly, although in the numerical example we actually compute GLODEN aud then
GLODEN as a matter of illustration.

& Numerical example

Compute an exact symmetrizer for the matrix (lower Hessenberg)

21 0
B=[312]
121

ELSc—2
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Since the elements of B are integers, it is clear from the algorithm that

n—1
GLODEN = p-adic form of II b, iy

=1
and that during p-adic multiplication/division it undergoes no modification.
Note :  If the clements of B ars (nonintegral) rational numbers then multiply B by ihe
soalar matrix whose (7, /)-th elements are the LCM of the denominators of all the rationat
elements. This results in an integer matrix. Compute a symmetrizer of this integer
matrix. Multiply this symmetrizer by the scalar matrlx to obtain a symmetrizer of 8.

Let max. col. sum = max Z by | = 6.
1 =1

n.(max. col. sum)™?! = 3 x 6% = 108.
Therefore p == 5 and r = 7 will serve our purpose since
V(P - 12y = v (57 - 1)/2) = 108.
Choose x; = (1 0 0).

(i) Encoding the input data into p-adic form : B, in p-adic form, is

2000000 EQ -1000000 EO -0000000 EO
B = -3000000 EO -1000000° EO 2000000 EO ]
-1000000 EO 2000000 EO -1000000 EO

X4, in p-adic form, is
X, = (- 1000000 EO -0000000 EO -0000000 F0)

The global denominator GLODEN is given by
GLODEN = p-adic form of "ﬁl by, e
= p-adic form of 1 x 2 = -2000000.

Note : The global denominator is always a positive number as we atmch the nega-
tive sign (if any) to the numerator only. Thus GLODEN has always an exponent
(viz., EO) and we do not write EO at all.

(u) Exe(‘utmg the Datta Algorlthm usmg p-adic arlthmettc H
=g 0B~ by X))
23

= (-3222222E0 3222222 E0 . -0000000 EO)

X;»-E.—(JKB — by Xy — big x3)
12

= (-0000000 EO 3222222 EO -1000000 E@.)
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s} Converting p-adic output data to rational form : Converting the p-adic output
data X, Xp, X I0TO rational form we obtain x;, x,, x5 as follows :

¥, = -0000000 EO = mgLe,, GLODEN = -2000000
my = g x GLODEN = -0000000 x -200000 — -0000000
GIODEN =2 x5 4+ 0x 5+ 0% 32+ 0 x5 +0x £ 0x 5 +0x 5

=2.

» (GLODEN) = 2 since GLODEN < (p" — 1)/2 = (57 — 1)/2
(This is always the case).
Fmy) =0 % 5° 0 x 5140 x 5 4 ... +0 x5 =
v ({(m)) = 0 since my< (pr — 1)/2 = (57 — 1)/2
Since e, = 0, pPe = 50 = 1.
Therefore,

X1 = - 7

e »(GLODEN) 1~
X, = 3222222 EQ = m,Ee,, GLODEN = -2000000

1 v([(my) 1 (;2:0-

My = my X GLODEN = -3222222 x -2000000 = -1000000
As before, » (GLODEN) = 2.
Im) =1 %5 +0 x5 4 ... 40x 5 =1
v (I (my)) = 1 since m, < (p* — 1)2 = (57 ~ 1)/2
Since  e* = 0, pta = 50 =
1

1 2Umy 11
Xpp = o ) L
P p(GLODEN) 1 2 2

Similarly we can obtain X33, and x,, xs. Hence, the symmetrizer
0 31
Xz(xlx).xs):[% 3 0]
1 00

Admowledgenment
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